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Abstract—This paper presents the design of a nonlinear control
law for two-wheeled self-balanced vehicles. The design is based
on forwarding and gives a Lyapunov function that allows us to
obtain an estimation of the domain of attraction for the resultant
law.

I. INTRODUCTION

Self-balanced systems are undergoing a considerable de-

velopment nowadays. They have been made popular by the

vehicle called Segway. Its control around the vertical position

can be studied by applying linear methods and does not present

special problems. However, when problems associated to the

increase of the domain of attraction are to be tackle, the use of

nonlinear methods become inevitable and the problem gains a

remarkable difficulty.

To study these problems, inspiration can be sought in the

results shown by the studies about the inverted pendulum,

device that shares outstanding features with the self-balanced

system, although it differs to a great extent from it. The

inverted pendulum, either on a cart or the rotatory Furuta

pendulum, has been the subject of many studies in the last

decades. Some well-known, pendulum related equipment are

Furuta pendulum [1], acrobot [2], pendubot [3], the reaction

wheel pendulum [4], and other pendulum based vehicles like

the one that can be found in [5].

The difference between the self-balanced vehicle and the

inverted pendulum lies in the fact that, in the first one the

axle of the motors is at the same time the pivot point of

the pendulum, whereas in the second one the pendulum goes

freely around the pivot point. Therefore, this paper proposes

working on a dynamic model different from the model of the

inverted pendulum. The difference between the two models

makes impossible the mere application of the results obtained

for the inverted pendulum to the case of the self-balanced

system. Moreover, in this paper, only the movement of the

vehicle following a straight line is considered.

In spite of the fact that the linear control laws applied to

these vehicles have good practical features, the domain of

attraction that can be estimated analytically for these laws

is extremely small as it is proved in [6]. In this paper,

a new nonlinear control law is proposed, which has been

designed by means of a procedure similar to the forwarding

method for the control of nonlinear systems, since, as it will

be discussed below, the self-balanced system presents the

appropriate structure. An analysis of the domain of attraction

for the new controller is also exposed and it is compared with

the estimate of the domain of attraction of a LQR law through

its Lyapunov function by using the method proposed in [7].

The advantages of the method proposed here are demonstrated.

An unmanned self-balanced vehicle with the features an-

alyzed in this paper is being constructed as a benchmark

for the designed controllers. Some simulation results are

shown, which have been obtained by applying the control law

described and the particular parameters for the design of this

vehicle.

The paper is organized as follows. In Section II, the model

of movement proposed is presented. In Section III, the design

of a linear and a nonlinear control law for the system is shown.

Subsequently, in Section IV, the domain of attraction for the

two designed control laws are estimated. Finally, in Section V

some simulation results are presented for a particular vehicle

design.

II. VEHICLE MODELING

The two-wheeled vehicle is an inverted pendulum where the

pivot point matches the axle of the motors. Thus, the external

torque applied by the motors produces effects of the same

value on wheels and pendulum but with opposite direction.

The system constituted by the vehicle consists of two parts

or subsystems. On the one hand, the two motors, the electronic

control devices and other auxiliary devices are fixed to the

frame to compose the pendulum. On the other hand, the wheels

are fixed to the axle of the motors, constituting the second

subsystem.

Let us define the system variables θ, the inclination angle

or deviation between the pendulum and vertical line; θ̇, the

angular rate of the pendulum; and ϕ̇, the angular rate of the

axle of the motors. These variables are shown in Fig. 1.

In order to simplify the model of the vehicle, we can assume

the mass of the entire pendulum set (frame, motors and other

elements) to be a punctual mass located on the center of

gravity of the physical pendulum. Thus, the pendulum has
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Fig. 1. Diagram of the two-wheeled vehicle

a mass m separated a distance l from the axle, where there

are two wheels fixed with radius r and mass Mr.

By using the Lagrangian of the dynamical system and the

Euler-Lagrange approach for non-conservative forces, which

have been omitted here in order not to extend the explanation

unnecessarily, the movement equations for the system (1) and

(2) can be obtained.

2ml2θ̈ +mlrϕ̈ cos θ −mgl sin θ = −τ + kϕ̇ (1)

(

3
2Mr +m

)

r2ϕ̈+mlrθ̈ cos θ

−mlrθ̇2 sin θ = τ − kϕ̇
(2)

where g is the gravitational constant and k is a constant that

represents the static friction of the motor.

We define the following constants

α = 2ml2

β = mlr

γ = mgl

η =

(

3

2
Mr +m

)

r2 .

Let us consider the state variables x1 = θ, x2 = θ̇ and

x3 = ϕ̇. If we regroup the terms in (1) and (2), we obtain the

state equations for the system shown in (3), (4) and (5).

ẋ1 = x2 (3)

ẋ2 =
1

∆

[

γη sinx1 − β2x2
2 sinx1 cosx1

+(η + β cosx1) (kx3 − u)
]

(4)

ẋ3 =
1

∆

[

− βγ sinx1 cosx1 + αβx2
2 sinx1

− (α+ β cosx1) (kx3 − u)
]

(5)

where ∆ = αη − β2 cos2 x1.

By means of the partial linearization [8] defined as

u =
βγ sinx1 cosx1

α+ β cosx1
−

αβx2
2 sinx1

α+ β cosx1

+kx3 +

(

αη − β2 cos2 x1

)

(α+ β cosx1)
v (6)

the following state space representation of the system is

obtained

ẋ1 = x2 (7)

ẋ2 =
γ sinx1

α+ β cosx1
+

βx2
2 sinx1

α+ β cosx1

−
(η + β cosx1)

α+ β cosx1
v (8)

ẋ3 = v . (9)

Since this is a prototype designed to work like a benchmark

for control laws, the designer has some freedom to choose the

dimensions of the elements that compound the vehicle. As a

result of this freedom we can force η = α modifying the set of

parameters and, thus, the equations that describe the system

in (7), (8) and (9) can be simplified as shown in (10), (11)

and (12). In this way, the design process of the control law is

expected to be easier.

ẋ1 = x2 (10)

ẋ2 =
γ sinx1

α+ β cosx1
+

βx2
2 sinx1

α+ β cosx1
− v (11)

ẋ3 = v . (12)

III. CONTROL LAWS DESIGN

The main objective for the control of this system is to

stabilize the vehicle (the pendulum) in the upper vertical

position. To achieve this aim, different control strategies can

be used. Two different control laws are going to be established

in this article, a linear one based on LQR (Linear-Quadratic

Regulator) and a nonlinear one based on forwarding as pro-

posed in [9].

A. Linear LQR Law

The LQR method consists in a minimization of a cost

function

J =

∫ ∞

0

(

x⊤Qx+ u⊤Ru
)

dt (13)

where Q and R penalize the error in the state variables and

the control signal, respectively.

The LQR controller works with the linear model represen-

tation of the system ẋ = Ax+Bu. The system shown in (10),

(11) and (12) can be linearized around the origin x = (0, 0, 0),
that is the desired equilibrium point, to obtain

ẋ =





0 1 0
γ

α+β 0 0

0 0 0



x+





0
−1
1



u . (14)

The control law K that minimizes the cost function is

u = −Kx . (15)
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B. Nonlinear Law

As it has been mentioned previously, the system has an

upper triangular structure, so that techniques similar to for-

warding can be used because the system matches the structure

ż = f(z) + Ψ(z, ξ) + g(z, ξ)v (16)

ξ̇ = a(ξ) + b(ξ)v . (17)

By analyzing the equations for the system, it is possible

to identify the lower subsystem (17) with equations (10) and

(11), whereas the upper subsystem (16) can be identified with

(12).

The lower subsystem can be proved to be unstable. These

techniques require ξ̇ = a(ξ) to be stable and, in order to

achieve this, it is neccesary to use a previous control law

v =
2
(

γ + βx2
2

)

sinx1

α+ β cosx1
+ ud (18)

where a new control variable ud is introduced in order to

stabilize the upper subsystem.

When the aforementioned control law is applied, the result-

ing system is

ẋ1 = x2 (19)

ẋ2 = −

(

γ + βx2
2

)

sinx1

α+ β cosx1
− ud (20)

ẋ3 =
2
(

γ + βx2
2

)

sinx1

α+ β cosx1
+ ud (21)

where the lower subsystem (17) can be identified with equa-

tions (19) and (20), and the upper subsystem is identified with

equation (21). In this case, the lower subsystem with ud = 0
is stable. The system ż = f(z), that corresponds to ẋ3 = 0,

is globaly stable and, therefore, forwarding techniques can be

applied.

The subsystem composed by (19) and (20), with ud = 0,

admits an invariant function

ν1 =
γ + βx2

2

β (α+ β cosx1)
2 (22)

that can be considered a kind of energy function.

Let us consider the sum of the invariant function (22) for

the lower subsystem plus a quadratic term ν as a Lyapunov

function candidate. Then

V =
γ + βx2

2

β (α+ β cosx1)
2 −

γ

β (α+ β)
2 +

1

2
ρν2 (23)

where ρ > 0 is a tuning parameter.

The control law ud can be obtained by forcing the Lya-

punov function derivative for the whole system to be negative

definite.

By differentiating the Lyapunov function (23), it results

V̇ =
2x2

2

(α+β cosx1)
2 ẋ2 +

2(γ+βx2

2) sin x1

(α+β cosx1)
3 ẋ1 + ρν∇νẋ

= ρν

(

x2
∂ν
∂x1

+
(γ+βx2

2) sin x1

(α+β cosx1)

(

− ∂ν
∂x2

+ 2 ∂ν
∂x3

)

)

+ud

(

− 2x2

(α+β cos x1)
2 + ρν

(

− ∂ν
∂x2

+ ∂ν
∂x3

))

.

(24)

In order to ensure V̇ is negative, the first term in (24) can

be forced to zero, yielding the following Partial Differential

Equation (PDE)

x2
∂ν

∂x1
+

(

γ + βx2
2

)

sinx1

(α+ β cosx1)

(

−
∂ν

∂x2
+ 2

∂ν

∂x3

)

= 0 . (25)

The solution for the PDE provides a new invariant function

ν2 = 2x2 + x3 . (26)

Finally, the control law ud can be calculated, ensuring V̇ ≤
0, by means of

ud = −

(

−
2x2

(α+ β cosx1)
2 + ρν

(

−
∂ν

∂x2
+

∂ν

∂x3

)

)

.

(27)

The result is

ud =
2x2

(α+ β cosx1)
2 + ρ (2x2 + x3) . (28)

The complete control law for the system (10), (11) and (12)

is

v =
2
(

γ + βx2
2

)

sinx1

α+ β cosx1
+

2x2

(α+ β cosx1)
2 + ρ (2x2 + x3) .

(29)

IV. STABILITY ANALYSIS

In order to compare the designed control laws, a stability

analysis is done by studying the domain of attraction for each

of them. Studying the linear case, it is not possible to precisely

measure the domain of attraction, so that it has to be estimated.

The domain of attraction estimate for each control law can be

compared.

A. Domain of Attraction for the LQR Law

When the LQR based control law is applied to a strongly

nonlinear system like this vehicle, it is not possible to know

exactly the domain of attraction. For this reason, the domain

must be estimated. To get an estimation we must find a

bound for the Lyapunov function of the system that guarantees

stability, and the domain of attraction will be stated as the

region contained into the maximum level surface of V inside

the bound. The following result is based on [7].

Let us consider (14) the linearization of the system deter-

mined by (10), (11) and (12), around the desired equilibrium

point. The linearized system can be stabilized by using a

LQR control law. The law, u = −Kx, asyntotically stabilizes

the system (14) and locally stabilizes the system (10), (11)
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and (12). Considering the local stabilization of the nonlinear

system, a local region of attraction, U , can be determined for

the closed-loop system, according to the procedure that will

be described subsequently.

U = {(x1, x2, x3)
⊤
: |x1| ≤ a, |x2| ≤ b, |x3| ≤ c} (30)

with a, b and c, positive constants.

By rewriting the stabilized system as the addition of the

linear part plus the nonlinear part, it can be obtained

ẋ = (A−BK)x+

(

0,
(γ+βx2

2) sin x1

α+β cosx1

− γx1

α+β , 0

)⊤

. (31)

Since the sistem A−BK is stable, the Lyapunov’s equation

(A−BK)
⊤
P + P (A−BK) = −I (32)

has a solution, P , that is positive definite.

Choosing V = x⊤Px as Lyapunov function for the system,

the derivative of V through the trajectory of the system (31)

is

V̇ = x⊤
(

(A−BK)⊤ P + P (A−BK)
)

x

+2x⊤P

(

0,
(γ+βx2

2) sin x1

α+β cosx1

− γx1

α+β , 0

)⊤

(33)

≤ −‖x‖
2
+ 2 ‖x‖ ‖P‖

∣

∣

∣

∣

(γ+βx2

2) sin x1

α+β cosx1

− γx1

α+β

∣

∣

∣

∣

.

Focusing on the expression for the absolute value of the

second term of the inequality, it can be separated into new

terms through the next inequality
∣

∣

∣

∣

∣

(

γ + βx2
2

)

sinx1

α+ β cosx1
−

γx1

α+ β

∣

∣

∣

∣

∣

≤
∣

∣

∣

γ sin x1

α+β cos x1

− γ sin x1

α+β

∣

∣

∣+
∣

∣

∣

γ sin x1

α+β − γx1

α+β

∣

∣

∣+
∣

∣

∣

βx2

2
sin x1

α+β cosx1

∣

∣

∣

≤
βγ

α2 − β2

|x1|
3

2
+

γ

α+ β

|x1|
3

6
+

β

α− β
|x2|

2
|x1| ,

(34)

where the next inequalities have been used

|sinx1| ≤ |x1|, |sinx1 − x1| ≤
|x1|

3

2 ,

|1− cosx1| ≤
|x1|

2

2 , α+ β cosx1 ≥ α− β .

By means of (34), and taking into account that |xi| ≤ ‖x‖,

the expression can be bounded using the inequality
∣

∣

∣

∣

(γ+βx2

2) sin x1

α+β cos x1

− γx1

α+β

∣

∣

∣

∣

≤ ‖x‖
3
(

βγ
2(α2−β2) +

γ
6(α+β) +

β
α−β

)

.

(35)

Consequently, by introducing (35) into (33) and rearranging

the terms, we can obtain the next bound.

V̇ ≤ ‖x‖
2
[

2 ‖x‖
2
‖P‖

(

βγ
2(α2−β2) +

γ
6(α+β) +

β
α−β

)

− 1
]

.

(36)

Let us take a positive constant parameter that satisfies

x̄ <
[

2 ‖P‖
(

βγ
2(α2−β2) +

γ
6(α+β) +

β
α−β

)]−1/2

. (37)

The inequality V̇ < 0 can be ensured inside the region

U0 =
{

x = (x1, x2, x3)
⊤ : ‖x‖ < x̄, x 6= (0, 0, 0)⊤

}

. (38)

Let us define r = x̄
√

λmin/λmax, where λmin and λmax

are the minimum and maximum eigenvalue of the matrix P ,

respectively. The region (30) with positive constants a, b and

c satisfying

a2 + b2 + c2 ≤ r2

can be ensured to be an estimate for the domain of attraction

of the system shown in (10), (11) and (12) by using the linear

control law (15).

For any x0 ∈ U , the level surface Cx0
=

{

x : x⊤Px = x⊤
0 Px0

}

of V at x0 is entirely contained in

U0, since for any x0 ∈ U

λmin ‖x‖
2
≤ x⊤Px

= x⊤
0 Px0 ≤ λmax ‖x0‖

2 ≤ λmaxr
2

(39)

which results in

‖x‖2 ≤
λmax

λmin
r2 = x̄2 . (40)

And thus, this expression implies that ‖x‖ ≤ x̄.

B. Domain of Attraction for the Nonlinear Law

In order to study the stability of the system (10), (11) and

(12) with the nonlinear control law (29), we focus on the

following Lyapunov function

V =
γ + βx2

2

β (α+ β cosx1)
2 −

γ

β (α+ β)
2 +

1

2
ρ (2x2 + x3)

2

whose derivative through the trajectories of the system is

V̇ = −

(

2x2

(α+ β cosx1)
2 + ρ (2x2 + x3)

)2

. (41)

By using this Lyapunov function, it is possible to prove

the stability of the system since the function satisfies the next

conditions

V (0) = 0 y V (x) > 0 ∀x 6= 0

V̇ (x) ≤ 0 ∀x .

Lyapunov stability can be proved because V̇ (x) is negative

semi-definite, but it is not possible to prove the asymptoti-

cal stability. It is necessary to use the LaSalle’s Invariance

Principle to prove that the maximum invariant set such that

V̇ (x) = 0 is the origin.

Forced V̇ (x) ≡ 0, what, through (24), is equivalent to ud =
0, the residual dynamics of the system results

ẋ1 = x2 (42)

ẋ2 = −

(

γ + βx2
2

)

sinx1

α+ β cosx1
(43)

ẋ3 =
2
(

γ + βx2
2

)

sinx1

α+ β cosx1
(44)
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with

F ,
2x2

(α+ β cosx1)
2 + ρ (2x2 + x3) ≡ 0 . (45)

By studying the dynamics of F through the trajectories of

(42), (43) and (44), it can be obtained

Ḟ =
∂F

∂x1
ẋ1 +

∂F

∂x2
ẋ2 +

∂F

∂x3
ẋ3 (46)

=
2 sinx1

(

βx2
2 − γ

)

(α+ β cosx1)
3 . (47)

Function Ḟ equals 0 for x1 = 0 and x1 = ±nπ with

n ∈ N, n ≥ 1 , and for the values x2 = ±
√

γ
β . The points that

contain these values represent the candidates to be members of

invariant sets. Since this condition demands x2 to be constant,

we obtain ẋ2 = 0 and from (43) it can be concluded that

γ + βx2
2 = 0, which implies a contradiction. Therefore, the

points with x2 = ±
√

γ
β do not belong to the invariant set.

Points with x1 = 0 guarantee ẋ2 = 0 and ẋ3 = 0. The

requirement of ẋ1 to equal 0 implies that x2 = 0 and through

(45) it is guaranteed that x3 = 0. Thus, the origin is a member

of the invariant set.

The case with x1 = ±nπ sets the bounds for the local

region where the system is asymptotically stable. In particular,

the bounds are x1 = ±π, that represent physically the

same point, and this point is unachievable according to the

characteristics of the vehicle.

Therefore, the maximum invariant set for this system (in the

feasible work zone) matches up with the equilibrium point

x = (0, 0, 0)⊤, and we can conclude that the system is

asymptotically stable, being the domain of attraction bounded

by the maximum level surface of (41) that satisfies x1 < |π|.

V. SIMULATION RESULTS

This study is being developed jointly with the construction

of a two-wheeled self-balanced vehicle that will be used as a

benchmark to prove the results obtained. For the simulation of

the system behaviour, we use the model of the vehicle shown

in Section II, whose parameters have been experimentally

identified from the designed vehicle.

Fig. 1 describes the vehicle and shows an outline of the

hardware. The vehicle is composed of an aluminium frame-

work in the shape of an inverted T, with two motors fixed on its

lower section, whose axles are at the same time the axles for

the two wheels. Two boxes are shown, where the electronics

and sensors needed to implement the control of the system

(microcontroller board, motor controller, wireless transmitter,

batteries and Inertial Measurement Unit) are placed to be

properly protected. A preliminary version of the vehicle is

shown in Fig. 2.

The designed control law can be programmed into the

memory of the embedded microcontroller. Thus, experimental

data can be reported to a PC via a bluetooth-serial connection.

Electronics and auxiliary elements for the vehicle are lo-

cated near the axle and, in that way, the effective center of

mass is lowered.

Fig. 2. Preliminary version of the two-wheeled self-balanced vehicle

The pendulum mass is 3 kg and its equivalent center of

mass is located at a distance of 13 cm from the axle. The

system has been designed to fulfill η = α, what implies that

the wheels have a radium of 15 cm and a mass of 0.5 kg each

one.

The main parameters that characterize the model result in

the next values: α = 0.1014, β = 0.0585 and γ = 3.8259.

Considering these values for the parameters, the estimate

of the domain of attraction of the system with the LQR law

results in r = 6.38 · 10−4, that is an extremely small estimate

of the domain of attraction due to the high conservatism

necessary to justify mathematically the stability. On the other

hand, the estimate of the domain of attraction of the system

with the nonlinear law can be extended to the larger Lyapunov

level surface such that the control law is defined inside it.

In order to compare the domain of attraction of the system

using both control laws, the volume of the regions can be

calculated to have quantitative values that can be compared.

According to (39), the ellipsoid x⊤Px = λmaxr
2 bounds

the estimate of the domain of attraction of the system with the

LQR law. The volume inside the ellipsoid can be calculated

in the following way

Volumeellipsoid =
4π

3

√

(λmaxr2)
3

|P |
, (48)

and, using the values for the parameters of the system, the

volume associated to the LQR law is VolumeLQR = 7.0956 ·
10−7.

The maximum level surface of (41) that satisfies x1 < |π|,
for the system with the nonlinear law and the parameters that

have been presented, is

γ + βx2
2

β (α+ β cosx1)
2 −

γ

β (α+ β)
2 +

1

2
ρ (2x2 + x3)

2
= C ,

(49)

with C = 32978.

This level surface is shown in Fig. 3 and the volume

contained in it can be calculated through integration and results

VolumeNL = 78544.98. The practical operating region of the

system is included in this volume.

Despite the fact that LQR controller shows a good behaviour

stabilizing the system in the practice, the domain of attraction
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Fig. 3. Domain of attraction of the system with the nonlinear law
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Fig. 4. Simulation results for the nonlinear law

that can be mathematically proved for the LQR law is much

smaller than the theoretical one proved for the nonlinear law.

Fig. 4 presents the simulation data for the system taking the

initial conditions x = (1.42 rad,−5 rad/s, 20 rad/s)⊤ that are

considerably separated from the origin. The figure shows the

state variables of the system, x1(t) = θ(t), x2(t) = θ̇(t) and

x3(t) = ϕ̇(t), the control signal v(t) for the partial-linearized

system and the control signal u(t) for the complete system.

The evolution of the state variables shows that the system is

stabilized. Another advantage of the nonlinear law is that its

control signal is smaller than the linear one. This is due to

the fact that, according to x1, with x2 = 0 and x3 = 0, the

nonlinear control signal is always under the linear one. This

implies that, when the initial x1 is far from the origin, the

inicial peak in the nonlinear control signal is smaller than in

the linear one.

As a preliminary study, the robustness of the control law to

parameter uncertainty can be checked by using different sets of

parameter associated with the real system in our laboratory in

the simulation. Fig. 5 shows a comparison of the state variables
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Fig. 5. Robustness to parameter uncertainty

xi,j(t) and the control signal uj(t), where j = 1 refers to the

case η = α = 0.1014; j = 2 to η = 0.0084, α = 0.1014; and

j = 3 to η = 0.4484, α = 0.2782. The simulation shows the

good behavior of the control law in the three cases.

In conclusion, for this two-wheeled self-balanced vehicle, a

new nonlinear control law has been designed which allows to

prove the possibility of asymptotic stabilization of the system

with a domain of attraction including the whole operation

region.
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