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Abstract—This paper presents the design of a nonlinear control
law for two-wheeled self-balanced vehicles. The design is based
on forwarding and gives a Lyapunov function that allows us to
obtain an estimation of the domain of attraction for the resultant
law.

I. INTRODUCTION

Self-balanced systems are undergoing a considerable de-
velopment nowadays. They have been made popular by the
vehicle called Segway. Its control around the vertical position
can be studied by applying linear methods and does not present
special problems. However, when problems associated to the
increase of the domain of attraction are to be tackle, the use of
nonlinear methods become inevitable and the problem gains a
remarkable difficulty.

To study these problems, inspiration can be sought in the
results shown by the studies about the inverted pendulum,
device that shares outstanding features with the self-balanced
system, although it differs to a great extent from it. The
inverted pendulum, either on a cart or the rotatory Furuta
pendulum, has been the subject of many studies in the last
decades. Some well-known, pendulum related equipment are
Furuta pendulum [1], acrobot [2], pendubot [3], the reaction
wheel pendulum [4], and other pendulum based vehicles like
the one that can be found in [5].

The difference between the self-balanced vehicle and the
inverted pendulum lies in the fact that, in the first one the
axle of the motors is at the same time the pivot point of
the pendulum, whereas in the second one the pendulum goes
freely around the pivot point. Therefore, this paper proposes
working on a dynamic model different from the model of the
inverted pendulum. The difference between the two models
makes impossible the mere application of the results obtained
for the inverted pendulum to the case of the self-balanced
system. Moreover, in this paper, only the movement of the
vehicle following a straight line is considered.

In spite of the fact that the linear control laws applied to
these vehicles have good practical features, the domain of
attraction that can be estimated analytically for these laws
is extremely small as it is proved in [6]. In this paper,
a new nonlinear control law is proposed, which has been
designed by means of a procedure similar to the forwarding
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method for the control of nonlinear systems, since, as it will
be discussed below, the self-balanced system presents the
appropriate structure. An analysis of the domain of attraction
for the new controller is also exposed and it is compared with
the estimate of the domain of attraction of a LQR law through
its Lyapunov function by using the method proposed in [7].
The advantages of the method proposed here are demonstrated.

An unmanned self-balanced vehicle with the features an-
alyzed in this paper is being constructed as a benchmark
for the designed controllers. Some simulation results are
shown, which have been obtained by applying the control law
described and the particular parameters for the design of this
vehicle.

The paper is organized as follows. In Section II, the model
of movement proposed is presented. In Section III, the design
of a linear and a nonlinear control law for the system is shown.
Subsequently, in Section IV, the domain of attraction for the
two designed control laws are estimated. Finally, in Section V
some simulation results are presented for a particular vehicle
design.

II. VEHICLE MODELING

The two-wheeled vehicle is an inverted pendulum where the
pivot point matches the axle of the motors. Thus, the external
torque applied by the motors produces effects of the same
value on wheels and pendulum but with opposite direction.

The system constituted by the vehicle consists of two parts
or subsystems. On the one hand, the two motors, the electronic
control devices and other auxiliary devices are fixed to the
frame to compose the pendulum. On the other hand, the wheels
are fixed to the axle of the motors, constituting the second
subsystem.

Let us define the system variables 6, the inclination angle
or deviation between the pendulum and vertical line; 9 the
angular rate of the pendulum; and ¢, the angular rate of the
axle of the motors. These variables are shown in Fig. 1.

In order to simplify the model of the vehicle, we can assume
the mass of the entire pendulum set (frame, motors and other
elements) to be a punctual mass located on the center of
gravity of the physical pendulum. Thus, the pendulum has
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Fig. 1.

Diagram of the two-wheeled vehicle

a mass m separated a distance [ from the axle, where there
are two wheels fixed with radius r and mass M,..

By using the Lagrangian of the dynamical system and the
Euler-Lagrange approach for non-conservative forces, which
have been omitted here in order not to extend the explanation
unnecessarily, the movement equations for the system (1) and
(2) can be obtained.

o2ml%0 + mlrgcost —mglsint = —7 + k¢ (1)

(%MT + m) r2p+ mlré cosf
—mir6? sin 0

k@

where ¢ is the gravitational constant and k is a constant that
represents the static friction of the motor.
We define the following constants

= 2ml?
mlr

= mgl
= §M +m | r?
= 5 M .

Let us consider the state variables 1 = 0, 22 = 6 and
x3 = ¢. If we regroup the terms in (1) and (2), we obtain the
state equations for the system shown in (3), (4) and (5).

S 2 ™R
I

T = @ 3)
To = % ['yn sinxy — 52:53 sin x1 cos x1
+(+ Beos) (kzs —u) o
T3 = % [ — Bysinzy cosxy + aﬂ:cg sin x1
—(a+ Beoszy) (kxs — u)} ®)

where A = an — 52 cos® x;1.
By means of the partial linearization [8] defined as

B By sin 1 cos z1 aﬁx% sin z1

 a+fBcosz a+ Bcosxy

(om — B2 cos? :cl)
(a+ Bcoszy)

+kxs + (6)

the following state space representation of the system is
obtained

T1 = X2 @)
. ~ sin a1 B3 sin a1
Xro =
a+ fBcosry  a+ Bcosxy
_(77+Bcosx1)v @)

o+ Bcosxy
i3 = w. C)

Since this is a prototype designed to work like a benchmark
for control laws, the designer has some freedom to choose the
dimensions of the elements that compound the vehicle. As a
result of this freedom we can force 7 = a modifying the set of
parameters and, thus, the equations that describe the system
in (7), (8) and (9) can be simplified as shown in (10), (11)
and (12). In this way, the design process of the control law is
expected to be easier.

T = @2 (10)
. ~ sin zq Bm% sin z

= — 11
2 a+ﬁcos:c1+a+ﬂcos:c1 v (D)
3 = v. (12)

III. CONTROL LAWS DESIGN

The main objective for the control of this system is to
stabilize the vehicle (the pendulum) in the upper vertical
position. To achieve this aim, different control strategies can
be used. Two different control laws are going to be established
in this article, a linear one based on LQR (Linear-Quadratic
Regulator) and a nonlinear one based on forwarding as pro-
posed in [9].

A. Linear LOR Law

The LQR method consists in a minimization of a cost
function
(o)
J = / (2" Qz+u" Ru)dt (13)
0
where () and R penalize the error in the state variables and
the control signal, respectively.

The LQR controller works with the linear model represen-
tation of the system @ = Ax + Bu. The system shown in (10),
(11) and (12) can be linearized around the origin z = (0, 0, 0),
that is the desired equilibrium point, to obtain

0 1 0 0
i=| 25 0 0 |z+ [ -1 |u. (14)
0 0 0 1
The control law K that minimizes the cost function is
u = —Kzx. (15)

1558



B. Nonlinear Law

As it has been mentioned previously, the system has an
upper triangular structure, so that techniques similar to for-
warding can be used because the system matches the structure

(16)
a7

Z.’ =

§ =

f(2) +9(2,8) +9(z, v
a(§) +b(§)v .

By analyzing the equations for the system, it is possible
to identify the lower subsystem (17) with equations (10) and
(11), whereas the upper subsystem (16) can be identified with
(12).

The lower subsystem can be proved to be unstable. These
techniques require £ = a(§) to be stable and, in order to
achieve this, it is neccesary to use a previous control law

2 (v + Bx?) sinx
= (’y 6 2) ! +U;d
o+ Bcosxy

(18)

where a new control variable u, is introduced in order to
stabilize the upper subsystem.

When the aforementioned control law is applied, the result-
ing system is

T1 = T2 (19)
_ (v + B3) sinay
= TR T 20
2 o+ Bcosxy td 20
2 (v + Ba3) si
by = ('y /81:2) sin x1 21

o+ Bcosxy

where the lower subsystem (17) can be identified with equa-
tions (19) and (20), and the upper subsystem is identified with
equation (21). In this case, the lower subsystem with ug = 0
is stable. The system 2 = f(z), that corresponds to &3 = 0,
is globaly stable and, therefore, forwarding techniques can be
applied.

The subsystem composed by (19) and (20), with ug = 0,
admits an invariant function

v + B3

—_— 22
B (o + Beosay)’ 2

141 =

that can be considered a kind of energy function.

Let us consider the sum of the invariant function (22) for
the lower subsystem plus a quadratic term v as a Lyapunov
function candidate. Then

v + B3 Y 1 5
V= _ 2
B(a+ Beoszy)’  Bla+p)? +2pu

(23)

where p > 0 is a tuning parameter.

The control law ug can be obtained by forcing the Lya-
punov function derivative for the whole system to be negative
definite.

By differentiating the Lyapunov function (23), it results

2(v+5m§) sin xq
(a+Bcoszy)®

V _ 213

(@t Bcwnn) z1 + pvVva

21:2+

_ v (A/Jrﬁ“g)smxl v v
= pv (3329—11 S e (—a—zz + 2673) 24)

2z v v
Tud (_(oz-l—,ﬁclozsacl)2 +pv (_9_12 + 6_13)) ’

In order to ensure V is negative, the first term in (24) can
be forced to zero, yielding the following Partial Differential
Equation (PDE)

ov (’y + ﬁ:c%) sin zq v ov
2 01 (a+ Bcosz) 0o + O3 0. @9

The solution for the PDE provides a new invariant function
Vo = 229 + 3. (26)

Finally, the control law w4 can be calculated, ensuring Vv <
0, by means of

SO S B V(_Q+ﬁ)
! (a+ Beoszy)? P dxy  Oxz) |~
(27
The result is
2
Uqg = LQ +p(2zg + x3) . (28)

(v + Beosz)
The complete control law for the system (10), (11) and (12)
is
B 2 ('y + ﬂx%) sin 21 2x9

v = + +p (222 + x3) .
o+ fcoszy (a4 Beosz)? p(2z2 +23)
(29)

IV. STABILITY ANALYSIS

In order to compare the designed control laws, a stability
analysis is done by studying the domain of attraction for each
of them. Studying the linear case, it is not possible to precisely
measure the domain of attraction, so that it has to be estimated.
The domain of attraction estimate for each control law can be
compared.

A. Domain of Attraction for the LOR Law

When the LQR based control law is applied to a strongly
nonlinear system like this vehicle, it is not possible to know
exactly the domain of attraction. For this reason, the domain
must be estimated. To get an estimation we must find a
bound for the Lyapunov function of the system that guarantees
stability, and the domain of attraction will be stated as the
region contained into the maximum level surface of V' inside
the bound. The following result is based on [7].

Let us consider (14) the linearization of the system deter-
mined by (10), (11) and (12), around the desired equilibrium
point. The linearized system can be stabilized by using a
LQR control law. The law, © = — Kz, asyntotically stabilizes
the system (14) and locally stabilizes the system (10), (11)
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and (12). Considering the local stabilization of the nonlinear
system, a local region of attraction, U, can be determined for
the closed-loop system, according to the procedure that will
be described subsequently.

U={(w,22,23)" : |21| < a,|v2| <b,Jas| <c}  (30)

with a, b and ¢, positive constants.
By rewriting the stabilized system as the addition of the
linear part plus the nonlinear part, it can be obtained

a+pB cos i

.
. (v+B23) sin 2 L
i =(A—BK)z+ <0,+ —amo) . @D

Since the sistem A— BK is stable, the Lyapunov’s equation
(A—-BK)' P+ P(A—BK)=—1I (32)

has a solution, P, that is positive definite.

Choosing V = x T Pz as Lyapunov function for the system,
the derivative of V' through the trajectory of the system (31)
is

V- a ((A-BK) P+ P(A-BK))a

a+Bcosxy

(’y—i—sz) sin xq - T
+2z P (0, AN Akt 35;15,0) (33)

(’y—i—ng) sin 1

a+pB cosxq

yx1
o+

2
< =l + 2= 1Pl -

Focusing on the expression for the absolute value of the
second term of the inequality, it can be separated into new
terms through the next inequality

(7 + ﬁm%) sin zq _m
o+ B cosxy a—+f
ysinz; _ ysinag + ysinz; _ yx + ,ﬁ:cg sin xq
— |a+Bcosz a+pB a+pB a+3 a+B cosxy
3 3
By |zl v |z B 2
< + + To|” |x
T a2-p2 2 a+pB 6 a—6|2||1|’
(34)
where the next inequalities have been used
. . B BN
lsinzy| <a1], [sinz; — ] < S5

|z1]

5=, a+fcoswy>a—f3.

|1 —cosxq] <

By means of (34), and taking into account that |z;| < ||z
the expression can be bounded using the inequality

)

('erBzg) sin x1
a+pB cosx

Yr1

o+

< ol (sretmy + araiy + 225

(35)

Consequently, by introducing (35) into (33) and rearranging
the terms, we can obtain the next bound.

. 2 2
V<ol [2 12l 1PH (358 + sy + 225) — 1] -
(36)
Let us take a positive constant parameter that satisfies

= B 8
7 < 2171 (s + oy + 25|

(37)

The inequality V < 0 can be ensured inside the region

Up = {:c = (1, 22,23)" : 2| < 7,2 # (o,o,of} . (38)

Let us define r = Zv/Amin/Amazs Where Apin and Apax

are the minimum and maximum eigenvalue of the matrix P,
respectively. The region (30) with positive constants a, b and
c satisfying

a?+ b2+ <o?

can be ensured to be an estimate for the domain of attraction
of the system shown in (10), (11) and (12) by using the linear
control law (15).

For any 29 € U, the level surface Cj,
{#:2"Px=ua§Pxo} of V at zg is entirely contained in
Uy, since for any zog € U

Amin 7> < 27 Px

(39
= $JP$0 < Amaz Hx0||2 < )\m(m’rQ
which results in
A
le]* < §7=r® = 2. (40)

And thus, this expression implies that ||z| < Z.

B. Domain of Attraction for the Nonlinear Law

In order to study the stability of the system (10), (11) and
(12) with the nonlinear control law (29), we focus on the
following Lyapunov function

+ B3 1
V= v+ B — 7 2+—p(2$2+$3)2

6(04—}—6005301)2 B(a+8) 2

whose derivative through the trajectories of the system is

(o + Beoszy)?

By using this Lyapunov function, it is possible to prove
the stability of the system since the function satisfies the next
conditions

2
+p(2$2+£€3)> . “41)

V0)=0 y V(z)>0 Vz#0
V(r) <0 V.

Lyapunov stability can be proved because V(:c) is negative
semi-definite, but it is not possible to prove the asymptoti-
cal stability. It is necessary to use the LaSalle’s Invariance
Principle to prove that the maximum invariant set such that
V(x) = 0 is the origin.

Forced V(m) = 0, what, through (24), is equivalent to ug =
0, the residual dynamics of the system results

3'31 = X2 (42)
2 .
by — (’y + 6302) sin z1 43)
o+ Bcosxy
2 2) si
iy (7 + BacQ) sin xq (ad)

o+ B cosxy
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with 9
x
F2 2 5 +p (22 +23)=0.

(a4 Bcosz)

By studying the dynamics of F' through the trajectories of
(42), (43) and (44), it can be obtained

OF oF | oF .

(45)

F = 3—:E1$1 + 8—932302 + 8—933353 (46)
_ 2sinzy (B3 — ;y) . @7
(a+ Bcosz)

Function F' equals O for ;1 = 0 and z; = +n7 with
n € N, n > 1, and for the values o = + % The points that
contain these values represent the candidates to be members of
invariant sets. Since this condition demands x5 to be constant,
we obtain &2 = 0 and from (43) it can be concluded that
v+ Bm% = 0, which implies a contradiction. Therefore, the
points with zo = + % do not belong to the invariant set.

Points with z; = 0 guarantee 22 = 0 and 23 = 0. The
requirement of @, to equal O implies that x2 = 0 and through
(45) it is guaranteed that 23 = 0. Thus, the origin is a member
of the invariant set.

The case with 1 = +nm sets the bounds for the local
region where the system is asymptotically stable. In particular,
the bounds are x; = =, that represent physically the
same point, and this point is unachievable according to the
characteristics of the vehicle.

Therefore, the maximum invariant set for this system (in the
feasible work zone) matches up with the equilibrium point
r = (0,0,0)7, and we can conclude that the system is
asymptotically stable, being the domain of attraction bounded
by the maximum level surface of (41) that satisfies z1 < ||

V. SIMULATION RESULTS

This study is being developed jointly with the construction
of a two-wheeled self-balanced vehicle that will be used as a
benchmark to prove the results obtained. For the simulation of
the system behaviour, we use the model of the vehicle shown
in Section II, whose parameters have been experimentally
identified from the designed vehicle.

Fig. 1 describes the vehicle and shows an outline of the
hardware. The vehicle is composed of an aluminium frame-
work in the shape of an inverted T, with two motors fixed on its
lower section, whose axles are at the same time the axles for
the two wheels. Two boxes are shown, where the electronics
and sensors needed to implement the control of the system
(microcontroller board, motor controller, wireless transmitter,
batteries and Inertial Measurement Unit) are placed to be
properly protected. A preliminary version of the vehicle is
shown in Fig. 2.

The designed control law can be programmed into the
memory of the embedded microcontroller. Thus, experimental
data can be reported to a PC via a bluetooth-serial connection.

Electronics and auxiliary elements for the vehicle are lo-
cated near the axle and, in that way, the effective center of
mass is lowered.

Fig. 2. Preliminary version of the two-wheeled self-balanced vehicle

The pendulum mass is 3 kg and its equivalent center of
mass is located at a distance of 13 cm from the axle. The
system has been designed to fulfill » = «, what implies that
the wheels have a radium of 15 cm and a mass of 0.5 kg each
one.

The main parameters that characterize the model result in
the next values: o = 0.1014, 8 = 0.0585 and vy = 3.8259.

Considering these values for the parameters, the estimate
of the domain of attraction of the system with the LQR law
results in 7 = 6.38 - 1074, that is an extremely small estimate
of the domain of attraction due to the high conservatism
necessary to justify mathematically the stability. On the other
hand, the estimate of the domain of attraction of the system
with the nonlinear law can be extended to the larger Lyapunov
level surface such that the control law is defined inside it.

In order to compare the domain of attraction of the system
using both control laws, the volume of the regions can be
calculated to have quantitative values that can be compared.

According to (39), the ellipsoid 2T P2 = Apaszr? bounds
the estimate of the domain of attraction of the system with the
LQR law. The volume inside the ellipsoid can be calculated
in the following way

4 ()\maxTQ)g
3 Pl
and, using the values for the parameters of the system, the
volume associated to the LQR law is Volumergr = 7.0956 -
1077,

The maximum level surface of (41) that satisfies z1 < |7|,
for the system with the nonlinear law and the parameters that
have been presented, is

v+ B3 g

1 2
_ 1 .
Ba+ Beosz)’  Bla+B)? +5p (222 + 23) :
(49)

VOhlmeellipsoid = (48)

with C = 32978.

This level surface is shown in Fig. 3 and the volume
contained in it can be calculated through integration and results
Volumey, = 78544.98. The practical operating region of the
system is included in this volume.

Despite the fact that LQR controller shows a good behaviour
stabilizing the system in the practice, the domain of attraction
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Fig. 3. Domain of attraction of the system with the nonlinear law

x,(t) [rad] xz(t) [rad/s]
o

xa(t) [rad/s]
n A~ o0
o O o

o

-20

Fig. 4. Simulation results for the nonlinear law

that can be mathematically proved for the LQR law is much
smaller than the theoretical one proved for the nonlinear law.

Fig. 4 presents the simulation data for the system taking the
initial conditions = = (1.42 rad, —5 rad/s, 20 rad/s) " that are
considerably separated from the origin. The figure shows the
state variables of the system, x;(t) = 6(t), zo(t) = 0(t) and
x3(t) = H(t), the control signal v(t) for the partial-linearized
system and the control signal u(t) for the complete system.
The evolution of the state variables shows that the system is
stabilized. Another advantage of the nonlinear law is that its
control signal is smaller than the linear one. This is due to
the fact that, according to x1, with 5 = 0 and x3 = 0, the
nonlinear control signal is always under the linear one. This
implies that, when the initial z; is far from the origin, the
inicial peak in the nonlinear control signal is smaller than in
the linear one.

As a preliminary study, the robustness of the control law to
parameter uncertainty can be checked by using different sets of
parameter associated with the real system in our laboratory in
the simulation. Fig. 5 shows a comparison of the state variables

X. ‘(l) [rad]

0 5 10 15 20 25 30 35
2 T T T T T T
=
B o
= XQ‘\
s 2 %50 : 1
3 2
S ]
i i i i i i
0 5 10 15 20 25 30 35
100 T T T T T T
@
® %[ %) 1
Z Ohgw
<
50 i i i i i i
0 5 10 15 20 25 30 35

u(t) [Nm]
o

Fig. 5. Robustness to parameter uncertainty

x;,;(t) and the control signal u;(t), where j = 1 refers to the
case n = o = 0.1014; 5 =2 to n = 0.0084, oo = 0.1014; and
7 =3 ton=0.4484, a = 0.2782. The simulation shows the
good behavior of the control law in the three cases.

In conclusion, for this two-wheeled self-balanced vehicle, a
new nonlinear control law has been designed which allows to
prove the possibility of asymptotic stabilization of the system
with a domain of attraction including the whole operation
region.
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