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A new swing-up law for the Furuta pendulum

Taylor & Francis
Taylor &Francis Group

F. GORDILLO7*, J. A. ACOSTAT and J. ARACILY}

In this paper the swing-up problem for the Furuta pendulum is solved applying Fradkov’s speed-gradient (SG) method
to a dimension 4 model of the system. The new law is compared with the conventional Astrém—Furuta strategy, based on
a dimension 2 model. A comparative analysis, including simulations and experiments, whereby the advantages and
effectiveness of the new law for swinging the pendulum up are shown, is included.

1. Introduction

The inverted pendulum is a very simple device that
displays very interesting behaviour modes, which have
attracted the attention of many control researchers. In
this paper, the interest is focused on the rotating type of
inverted pendula. A schematic representation of the
system is shown in figure 1. As displayed in this figure,
f denotes the angle of the pendulum with the upright
vertical and ¢ denotes the angle of the rotor arm. The
rotating pendulum is also known as the Furuta pendu-
lum, and has been studied by many authors such as
Astrém and Furuta (2000), and others (Wiklund et al.
1993, Bloch et al. 1999, Pagano 1999). The inverted
pendulum gives rise to many interesting control prob-
lems. It is a non-linear underactuated mechanical system
that is unstable at the desired position. Furthermore, the
actuator limitations produce very complex and interest-
ing behaviours that deserve careful analysis (Aracil et al.
1998). As a matter of fact, it shows two different and
very interesting control problems. One is swinging the
pendulum up from the hanging position to the upright
one. To deal with this problem an energy control strat-
egy is usually adopted. When the pendulum is close to
the desired upright position with low enough speed, a
stabilization or balancing strategy is applied. These two
problems are quite interesting. The first one, in particu-
lar, a truly non-linear control problem, displays many
difficulties. The simplest and best known solution to the
swing-up problem and that which is easiest to implement
is the one proposed by Astrém and Furuta (2000) and
Wiklund et al. (1993). It is based on neglecting the reac-
tion torques from the pendulum to the arm, so that the
energy control of the pendulum can be studied without
considering the position and the velocity of the arm.
This allows us to greatly simplify the model, which is
reduced to a second-order one. With this reduced model,
and with the help of Fradkov’s speed-gradient (SG)
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method (Andrievskii et al. 1996, Fradkov and
Pogromsky 1998), the desired energy injection can be
easily computed and a very successful control law for
the swing-up problem is obtained. However, it is based
on simplifying assumptions, as mentioned above.
Furthermore, the arm speed must be low at the switch-
ing time but this speed is not considered in the dimen-
sion 2 law. Fortunately, for usual pendula parameters
and for the usual initial conditions (the lower position
with no velocity) the dimension 2 law behaves well.

In this paper a new control strategy is proposed that
does not neglect the reaction torques from the pendulum
to the arm, and therefore considers the velocity of the
arm. Thus, an objective function for Fradkov’s speed-
gradient method which includes not only the energy, but
also the arm momentum, is proposed. With this objec-
tive function, Fradkov’s method leads to a control law
which prevents some of the problems found with the
Astrém and Furuta one. If the reaction torques from
the pendulum to the arm cannot be neglected, for ex-
ample, due to the mass of the pendulum or to the low
friction on the arm, the new law solves the swing-up
problem for cases where Astrédm and Furuta’s method
fails. Furthermore, the arm speed is also controlled
during the swing-up process in such a way that the
arm speed is low when the pendulum approaches the
upright position. Concrete examples are given below.

On the other hand, the new law keeps the nice prop-
erties of Astrém-Furuta’s law when compared with
other swing-up laws based on the dimension 4 model
but obtained with other techniques: the new swing-up
law is able to accomplish the goal with very small con-
trol signal magnitude (unlike Olfati-Saber (2000)) and
the control signal converges to zero as the homoclinic
orbit is reached (unlike Fantoni and Lozano (2002)).

The paper is organized as follows. Section 2 is
devoted to recall Fradkov’s speed-gradient method,
with emphasis on the pseudogradient method. Then in
§ 3, the Hamiltonian formulation is used to obtain mod-
els for the Furuta pendulum. A dimension 4 model and
an approximate dimension 2 model are derived. Control
laws for these models are derived by the SG method in
§4. For the dimension 4 model an objective function

International Journal of Control ISSN 0020-7179 print/ISSN 1366-5820 online © 2003 Taylor & Francis Ltd
http://www.tandf.co.uk/journals
DOI: 10.1080/0020717031000116506



Swing-up law for the Furuta pendulum 837

Figure 1. The Furuta pendulum.

with two terms—the energy and the arm momentum—is
proposed, while for the dimension 2 model the objective
function depends only on the energy resulting in the
well-known Astrdm-Furuta’s law. Both control laws
have been checked on a concrete experimental pendu-
lum, where the friction effects are compensated with a
LuGre friction model (Canudas de Wit ef al. 1995). The
results of these experiments are reported in §5. In §6,
some conclusions are given.

2. Speed pseudogradient algorithm

In this section the speed pseudogradient algorithm
(Fradkov and Pogromsky 1998) in finite form is
recalled. Consider the time-invariant, affine-in-control
system given by

X =f(x) +g(x)u (1)

y = h(x) )

where x(7) € R" is the state vector, y(7) € R’ is the out-
put and u(¢) € R™ is the input. Also consider the control
objective y(f) — 0 when ¢ — oo; this control objective
can be written with the objective function

0(x) = 3lh(x)P 3)

and defining the goal as lim,_ ., Q(x(#)) = 0.
For this objective function the speed pseudogradient
algorithm in finite form, can be written as

u=—A(Lgh(x))" h(x) (4)

Stability properties of the algorithm (4) are described in
Theorem 2.21 in Fradkov and Pogromsky (1998, p.
101). For the sake of completeness this theorem is repro-
duced here.

Theorem 1 (Fradkov and Pogromsky 1998): Consider
the system (1), (2) and (4) under the following assump-
tions:

o Al. The functions f, g, h are smooth and bounded
together with their second partial derivatives in the
region Qy = {x € R": Q(x) < Qy} for some Q.

e A2. Forall x € Q it follows that h(x)Tth(x) <0.

o A3. There exists a positive number € > 0 such that
any connected subset of the set

D, = QN {x € R":det((Lyh(x)) Lh(x)) < €}

is compact.

o Ad. The matrix Lgh(x) has rank [ for any x € Q,
such that Q(x) # 0.

Then in system (1), (2) and (4) for any initials conditions
x(0) € Qg the goal y(t) — 0 when t — oo is achieved.

Remark 1: If assumption A4 is violated on some set
Dy then it can be shown that all trajectories of the
closed loop system tend to a maximal invariant subset
M, of Dy. Particularly if set M, is countable and con-
sists of isolated points such that in all these points the
matrix V,f has a least one eigenvalue with the positive
real part, then the statement of Theorem 1 remains
true for almost all initial conditions from Q.

Remark 2 (Fradkov et al. 1997): Condition A4 se-
verely restricts the class of controlled plant models. In-
deed, it can be fulfilled only if m > [, i.e. if the number
of controlling inputs is not less than the number of
controlled outputs. It was shown in Fradkov et al.
(1997) that A4 can be weakened at the cost of
strengthening A2. Namely, let A2 be complemented by
the conservativity-like condition

A2 h(x)'Lih(x) <0 for all xe€€Q, and
h(x)"Lih(x) = 0 if x € Q) and Lyh(x) = 0.

Let A4 be replaced by Shiriaev’s rank condition

dim S(x) >/ Vx € Q
where S(x) = span{L}‘-(Lgh(x)), k=0,1,...}, then the
theorem statement remains true.

The essence of this theorem is that the positive defi-
nite objective function Q(x) is a Lyapunov function and,
therefore, the goal will be achieved. Some applications
of the SG method are given in Fradkov et al. (1995),
Fradkov (1996), Konjukhov et al. (1996) and Fradkov
and Pogromsky (1998).
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3. Models of the Furuta pendulum
3.1. Dimension 4 model

Consider the pendulum shown in figure 1. The rotor
arm (corresponding to angle () is subjected to a torque,
while no torque is applied directly to the pendulum shaft
(angle 6). Therefore, it is an underactuated system. The
system parameters are: the mass of the pendulum m, the
pendulum length 2/, the arm radius , moment of inertia
of the pendulum 7, the moment of inertia of the motor,
J m» the moment of inertia of the motor and the arm 7,
and the torque constant K (the control torque F is equal
to Ku). The following parameters are introduced

mgl mrl
Wy = /2 _mr

T o+ mr’ K
bl a ) = ; =
J J

The generalized coordinates are [¢, ¢»] = [6, ¢] and
their conjugate momenta are defined as

1 = J (g, + agycosq;) (5)
P2 = J(ag,cosq, + (B +sin® q,)gy) (6)

The Hamiltonian that represents the energy of the
unforced system is

1
Hap =3A

+ T (cos g — 1) (7)

{(B +sin® q,)pi + p3 — 2apip, cos g, }

with A= J[3+sin’ ¢, —a’cos’q;].  Thus, the
Hamilton equations are

g 0 0 1 07[0Hip/0q 0
C}Q _ 0 0 0 1 BH4D/8([2 n 0 y
pl —1 0 0 0 8H4D/6p1 0
P 0 —1 0 0] LoHsp/0p NE®
(8)
or
o .
g1 =& [(8+sin”q1)p) — apycos ¢ 9)
. 1
42=Z@2—apl cos q1] (10)
P = EJ[(B + sin’ (11)17% +P% — 2app; cos 41]
x [(1+a%)sin2q;] + Jwising,
—E[p% sin 2¢; + 2appasin g (11)
Pr = Jwiou (12)

3.2. Dimension 2 model

Astrém and Furuta’s control law was derived using a
model of a pendulum for which the linear acceleration of
the pivot is the control action. In this case the energy of
the uncontrolled pendulum can be approximated by

1
Hap = ﬁl’% + Jwy(cos gy — 1)
=374t + Jwi(cos g1 — 1) (13)
where p; = J¢, is the conjugate momentum for variable

qi-
The Hamilton equations corresponding to this
Hamiltonian function are

: J
H[ 21/ ]+[ e |1 019
P Jwj sin g, —Klcos g,

The dimension 2 energy (13) is an approximation to the
energy (7). In order to study the validity of the approx-
imation, expression (7) may be written as a function of

(QI7q2aql7p2)

1 A PO 2
Y (R PR

2\B+sin’q)) " 27(B+sin’g))
+ Jwi(cos gy — 1) (15)
Note that if  — oo and J,/mr* — oo
2
g Jatm *jm’ S (16)

and therefore

Hap —>§< )q%ww%(cosql 1)

B +sin’gq;
and
Aéj(ﬁ + sin’ q, — o cos? 1) — J(B - o? cos? q1)

Besides

[ S)

o 2

B T(Tafmr*) +1)

and, as J,/mr- — oo, then az/ﬂ — 0. Therefore,
A — Jf and, thus, A/(3+sin® q;) — J.

Therefore, if r — oo and J a/mr2 — 0o, the dimen-
sion 4 energy (15) approaches the dimension 2 approx-
imation (13). This fact suggests that, under this
assumption, the laws obtained from the dimension 2
model may be valid for the actual system. As a matter
of fact, the well-known control law proposed in Astrém
and Furuta (2000), is successful for most of the experi-
ments carried out with the current laboratory pendula.
The reason for this success is that the conventional
design of pendula leads to parameter values that ful-
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fill the assumptions above. However, some practical
counter-examples will be seen in § 5.

4. Speed pseudogradient control laws

The swing-up problem consists of swinging the pen-
dulum to the upright position. This can be accomplished
driving the energy towards the energy of the upright
position. Two strategies for swinging the pendulum up
are presented; both are based in the SG method. First,
the law presented by Astréom and Furuta (2000) is
recalled. This law is based on the dimension 2 model
(14), which is an approximation to model (9)—(12).
Then, a dimension 4 model is used and a new law that
takes into account the velocity of the arm is proposed.
However, in practice, variable ¢ does not affect the
obtained control law. Therefore, a dimension 3 control
law is actually obtained.

4.1. Law obtained with a dimension 2 model

The control law proposed in Wiklund er al. (1993)
and Astrom and Furuta (2000) can be derived by the SG
method when only the pendulum is considered, and the
arm is neglected. Then, the dimension 2 model (14) is the
one taken into account.

In order to apply the SG method consider the objec-
tive function Q =4(H,yp — Hip)?, where H3, is the
desired energy of the upright position, which is zero
when the origin for the potential energy is the one cho-
sen here. Therefore, the affine-in-control system is given
by equation (14) and the objective output is

¥ =h(x) =Hyp —Hap (17)
where x = (¢, p) and where ¢ = ¢; and p is the conjugate

momentum for variable ¢. Clearly, if the SG method is
applied, the control law is given by

Ki .
u= —)\J— (Hap — Hap)pcosq
P
= —XKI(H,p — H3p)gcosq (18)

where A is a positive control gain. In Astrém and Furuta
(2000) some modifications are proposed in order to
make it more efficient, e.g. u = sat{\(Hyp — H>p)}
x sign (§cos¢g), with A = M\kl. This variant of (18) is
more efficient and also makes O < 0. Some other mod-
ifications serve as attempts to decrease the arm velocity
trying to correct the lack of consideration of ¢, in the
simplified model. In these cases, Q is no longer a
Lyapunov function.

Proposition 4.1:  When control law (18) is applied to
system (14), Q — 0 for almost all initial conditions from
Qo ={x e R":Q(x) < Qo} and, thus, the pendulum will
tend to the homoclinic orbit Hyp = 0.

Proof: Let us check the conditions of Theorem 1.
Assumption Al is fulfilled because all functions f(x),
g(x) and A(x), in model (14)~(17), and their second
partial derivatives are bounded in a region Q. As Q(x)
is conservative when v =0, Lsh(x) =0 and Assump-
tion A2 is valid. Assumption A3 is also valid, because
any connected subset between sets of D, = Qy N0, is
compact where 0y = {q,p:p =0} U{q,p:q=k(n/2),
k=+1,£2,...}. The last assumption A4 is not ful-
filled. Matrix Lyh(x)" = (k/J,)pcosq, has a rank
I=0#£1 for Dy={p=0}U{q=k(n/2),k==l,
+2,...}. As assumption A4 is violated for the set D,
the statement of the proposition is derived using
Remark 1. O

4.2. Law obtained with a dimension 4 model

In order to take into account the arm velocity in the
derivation of the control law, the dimension 4 model is
adopted. The affine-in-control system is now given by
(9)—(12). If the objective function is still the square of the
divergence of thze total system energy
0=0, = %C%(H —H")", the mechanical system will
tend towards the surface H =0 in the space
(61 42,d2) = (q1. 41, 42) (see figure 2(a)). This aim does
not guarantee that the system will pass near the origin. If
now the objective function is modified, so Q = Q; + 0,
with O, a positive semidefinite function, the system will
tend towards the curve (Q; = 0,0, = 0). If Q5 is chosen
correctly, the origin of the state space will belong to this
curve. One possibility is to choose both Q; and O, con-
servative for the unforced system. The Hamiltonian
structure of the system model can help to find function
0,. It can be seen that, as the system is symmetrical with
respect to angle ¢, the conjugate momentum p, is con-
servative for u = 0. This fact is obvious in 212). Thus, it
is reasonable to choose Q, = %C%(Pz —p>)". Note that
the objective curve is a trajectory for the open loop
system (u = 0) corresponding to the homoclinic orbit
(figure 2(b)).

Therefore, the objective of the SG controller will be
to bring the system to this homoclinic orbit and then,
with u = 0, the system will evolve towards the desired
position and, once close to it, the control strategy can be
commuted to a local stabilizing controller. Thus the
objective function is

L2 W2
0=1GH-H) +150p—p3)
b 0.

and the output of system (9)—(12) is
_ _|GH-H)
yih(x) B [Cz(l’z-l’é) } (19)

where x = (¢q1, ¢», p1,p2) and (;,(, are arbitrary positive
constants.
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Figure 2. (a) Surfaces Q; = 0 and O, = 0 in the space (6, é,pz). (b) Homoclinic orbit in the space (6, 6, ?).

The SG algorithm (4) yields

u= =N (H = H)dr + G(p2 — pb)) (20)

where X = A\Jw3.

The effectiveness of this control law depends on a
careful selection of constants ¢; and (,. However, for
any value of (; and (, the system works well, in the
sense that the objective is reached. It should be noted
that the control law depends only on the variables
[91, 41, 4>], so it can be considered a dimension 3 control
problem.

Proposition 4.2: When control law (20) is applied to
system (9)—(12), Q — 0 for almost all initial conditions
from Qy and, thus, the pendulum will tend to the homo-
clinic orbit {H =0} N {p>» = 0}.

Proof: Let us check the conditions of Theorem 1.
Assumption Al is fulfilled because all functions f(x),
g(x) and h(x), in model (9)—(12) and (19), and their
second partial derivatives are bounded in a region
Qo ={x € R": Q(x) < Qo}. Since Q(x) is conservative
for u=0 then Lsh(x) =0 and Assumption A2 is
fulfilled. Assumption A3 is also true, since D. = QyN
0y = Q, because Uy = {x € R":det((Lgh(x))" Lgh(x))}
and

L L) = (Tt |2 |10 cl=0 @)

As in the dimension 2 case, Assumption A4 is not ful-
filled. Furthermore, in this case, Remark 1 is not applic-
able. Matrix Lgh(x)T x [Clq'z,CZ]T, has rank 1 </=2
for all points in the state space. On the other hand,
this assumption can only be valid if m >/ (number of
the inputs > number of outputs), and in our case the

system is underactuated. Nevertheless, using Remark 2
the statement of the proposition is proven since

s =swan{[92 ][4} @2

and dimS(x) =1=2Vx € Q,. O

Remark 3: Notice from (20) that u — 0 as the system
approaches the homoclinic orbit {H = H*} " {p> = p3}.

5. Benchmark: simulations and experiments

This section will show simulations and experimental
results on the Furuta pendulum depicted in figure 3 (see
the Appendix). In order to approach a Hamiltonian
system, a LuGre model (Canudas de Wit ez al. 1995)
has been used in order to partially compensate the fric-
tion of the pendulum arm. The saturation limits in all
experiments are | u |< 0.25. In order to compare both
control laws (18) and (20) some experiments are
included.

Control law (18) based on the approximate dimen-
sion 2 model does not work for every value of A (even in
the simulations). If the assumptions made in the pre-
vious section are not valid, the swing-up is only accom-
plished for some particular values of parameter A. In
other words, parameter A must be tuned. In the bench-
mark Furuta pendulum used here (see figure 3), 8 ~ 6.4
and o’/ ~ 0.25. We have found that for A < 0.01 the
task is not achieved. In figure 4 the results of a simula-
tion and an experiment for the case A = 0.02 in which
the objective is achieved can be seen. On the other hand,
control law (20) is easier to be tuned. See in figure 5 the
results of a real experiment with law (20) with a response
that it is faster than the one of figure 4 obtained with law

(18).
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Figure 3.
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In order to make evident the advantages of the new
law, some physical changes in our laboratory pendu-
lum have been performed in order to violate some of
the conditions above. We have chosen to increase the
mass of the pendulum putting an additional weight of
300 g at the centre of mass of the pendulum. With this
change, control law (18) fails for every value of A.
Figure 6 shows an example with A =0.1. It can be
seen that the state of the system does not pass close
to the origin and, therefore, if the hybrid controller
were used, the local law would not have the oppor-
tunity to work. On the other hand, control law (20)

-0.1

Time (sec) Time (sec)

Simulated (dashed) and experimental (solid) results for control law (18).

is successful. See, e.g., figure 7 where A = 0.5, {; = 0.3
and ( = 1.

A final set of experiments have been performed in
order to show the behaviour of the pendulum when
the hybrid controller with both stages (swing-up and
stabilization) is implemented. The stabilization prob-
lem is solved with an LQR controller. Experiments
comparing control laws (18) and (20) for this whole
problem have been performed with the initial config-
uration of the pendulum. Figure 8 shows experiments
with both hybrid control laws. In both experiments
when the pendulum is close to the upright position,
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the control law is switched to a linear controller, in
order to stabilize the pendulum. Both experiments cor-
respond to the same initial conditions (6,6, p) =
(3.14,0,0). It can be seen that both control laws are
successful.

6. Conclusions

A new control law for swinging the Furuta pendu-
lum up has been obtained applying Fradkov’s speed-
gradient method to a dimension 4 model. The associated
Lyapunov function is the sum of the squares of the
errors in the energy—which is conservative for the
unforced system since it is Hamiltonian—and in the
conjugate momentum associated to the cyclic vari-
able—which is also a conservative quantity for the
unforced system. Global stability (except for a zero-
measure initial set) has been proved.

The new law outperforms the well-known Astrém
and Furuta law as has been shown by simulations and
experiments due to the fact that this law is based on an
approximate dimension 2 model. Nevertheless, in order
to show examples where the dimension 2 law fails, the
pendulum has been brought to extreme conditions.
Thus, in the experimental example the mass of the pen-
dulum has been sensibly increased. This fact suggests
that the dimension 2 law can be successful in normal
operation of most laboratory Furuta pendula. In any
case, the new law presented in this paper is formally
more correct, has a wider range of operation conditions
and is easier to be tuned.

Finally, it must be pointed out that this law can be
directly extended to other underactuated systems with
two degrees of freedom with one cyclic variable. This
last property makes the associated conjugate momen-
tum conservative for the unforced system and, therefore,
the same procedure can be applied. Note that, if the
well-known partial linearization is applied in advance,
this nice property will be broken and the same pro-
cedure is no longer applicable in spite of the partial
linearization simplifying the system equations. Partial
linearization is very useful for many problems but in
some cases, as the one presented here, it does not help
since it destroys the Hamiltonian structure of the
system.
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