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In this appendix, we provide an equivalent proof of the results presented in Sections

3 using solely concepts from the specific scheduling problem. Firstly, using the forward

and backward codifications, two definitions for the forward and backward critical path are

introduced (see Definitions 1 and 2, respectively). Then, by using these definitions we are

able to prove that at least one critical path exists in the problem, and how it changes

when a new job is inserted in the sequence.

Before starting with some required definitions, we show an example of the forward and

backward codifications. Thereby, in Figures 1 and 2 we represent a sequence (2, 3, 1, 4)

in an instance composed by three pre-assembly machines (machines 1, 2 and 3) and three

assembly machines (machines 4, 5 and 6). From these figures, we can see (using both cod-

ifications) that there are operations, denoted as critical, which cannot be moved without

worsen the objective function of the problem (see e.g. operation O6,1 in Figure 1). In this

regard, we introduce two new definitions, forward critical path and backward critical path

(see Definitions 1 and 2).
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Figure 1: Example of forward codification with four jobs and six machines

Figure 2: Example of backward codification with four jobs and six machines

Definition 1. (Fordward critical path) Let I be an instance of the DPm→ Fm||Cmax

problem and Π = (π1, . . . , πn) a solution for this problem. Then, we define the forward

critical path of Π, P(Π), as a path to go from some operation Oi,π1 in the pre-assembly

phase (with i ∈ {1, . . . ,m1}) to operation Om,πn, without adding any idle or waiting times,

and moving always either to a posterior job or stage. Equivalently, we define the forward

critical path of operation Oi,j, denoted as P(Oi,j), as the path to go from the first operation

to Oi,j without adding idle or waiting times.

Definition 2. (Backward critical path) Let I be an instance of the DPm→ Fm||Cmax

problem and Π the reversed sequence with respect to Π = (π1, . . . , πn), i.e. Π =

(π1, . . . , πn) = (πn, . . . , π1). Then, we define backward critical path of Π, P(Π), as a

path to go from some operation Om,πn in the assembly phase to the latest operation Oi∗,π1

in the shop (with i∗ ∈ {1 . . .m1}), without adding any idle or waiting times, and moving

always either in a decreasing direction of jobs or stages. Equivalently, we define the back-

ward critical path of operation Oi,j, denoted as P(Oi,j), as the path to go from the last

operation to Oi,j without adding idle or waiting times.

Note that in both cases, the sum of all processing times in the corresponding critical

path must be equal to the makespan. In Figures 3 and 4, we show the forward and back-

ward critical paths for the previous example, respectively. Next, in Theorem 1, we prove

that the forward and backward critical path must exist in the problem under considera-
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Figure 3: Example of forward critical path

Figure 4: Example of backward critical path

tion. Finally, the Theorem 2 is introduced to indicate an efficient equation to calculate

the objective function when a job is inserted in the best position of a partial sequence.

Theorem 1. Let I be an instance of the DPm→ Fm||Cmax problem and Π = (π1, . . . , πn)

a solution for this problem. Then, there is at least one forward critical path, P(Π), using

the forward codification.

Proof. Without lost of generality, let us consider last scheduled operation, Om,πn , in the

shop. Then, according to Equation 4 and in case that m2 > 1 and n > 1, we can move

either to operation Om−1,πn or operation Om,πn−1 without adding any idle time, since

either Cm,πn = Cm−1,πn + pm,πn , or Cm,πn = Cm,πn−1 + pm,πn , respectively. This move can

be repeated until either k = 1 or i = m1 + 1, which are analysed below:

Case k = 1: According to Equation 3, we have Ci,π1 = Ci−1,π1 + pi,π1 , i ∈ {m1 +

2, . . . ,m}. In other words, we are moving from operation Oi,π1 to operation Oi−1,π1 with-

out any idle time between them. Similarly, considering k = 1 and i = m1 + 1, Equation 2

establishes Cm1+1,π1 = maxi≤m1{Ci,π1}+ pm1+1,π1 . Denoting by i∗ the machine with max-

imum completion time for job π1 in the pre-assembly phase (i.e. i∗ = arg maxi≤m1 Ci,π1),

the equation can be rewriting as Cm1+1,π1 = Ci∗,π1 + pm1+1,π1 , and operations Om1+1,π1

and Oi∗,π1 join without idle time. Finally, for k = 1 and machine i∗ ≤ m1, Equation 1

establishes that Ciπ1 = pi,πk
, which is the first operation in the shop.
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Case i = m1 + 1: According to Equation 2, Cm1+1,πk
=

max{maxi≤m1{Ci,πk
}, Cm1+1,πk−1} + pm1+1,πk

, k ∈ {1, . . . , n}, i.e. either operation

Om1+1,πk
moves to operation Om1+1,πk−1 (if Cm1+1,πk

= Cm1+1,πk−1 + pm1+1,πk
) or to

the machine i∗ which satisfies Cm1+1,πk
= Ci∗,πk

+ pm1+1,πk
, without adding idle time

in both cases. We have two possibilities, either the critical path move to operation

k = 1 (analysed above) or to machine i∗. For this subcase i∗, according to Equation 1

Ci∗πk
= Ci∗,πk−1 + pi,πk

, k ∈ {1, . . . , n}, i.e. operation Oi∗,πk
moves to operation Oi∗,πk−1.

So, it is demonstrated that a path to go from the first to the last operation in the shop

must exist.

From this theorem, the following corollaries can be derived.

Corollary 1. Let I be an instance of the DPm → Fm||Cmax problem, Π = (π1, . . . , πn)

a solution for this problem, and P(Π) one critical path. Then, P(Π) is also a critical path

applying the backward codification.

Proof. The proof is obvious according to Definition 1. Since there is no idle time between

the operations in the critical path, it is clear that the path to go from the first to the

last operation without adding idle times is the same that to go from the last to the first

operation, and P(Π) is also a critical path for the backward codification.

Corollary 2. Let I be an instance of the DPm → Fm||Cmax problem and Π =

(π1, . . . , πn) a solution for this problem. Then, there must exist at least one forward and

one backward critical path P(Oi,j) and P(Oi,j).

Proof. The proof is obvious using the same reasoning as in Theorem 1.

Finally, based on these previous results, we can demonstrate the following theorem

which describes how to obtain the makespan when a new job σ is inserted in any position

of a partial sequence.
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Theorem 2. Let I be an instance of the DPm → Fm||Cmax problem and Π =

(π1, . . . , πk−1) a solution for this problem with k − 1 jobs. Then, the makespan obtained

after inserting job σ in a position l (with l ∈ {1, . . . , k}) of Π is defined by:

Cmax = max
i∈{1,...,m1+m2}

{Cσ
il + Ciπl

} (1)

where Cσ
il is the completion time on machine i of job σ when is inserted in position l of

sequence Π (using the forward codification), and Ciπl
is the completion time of job Πl using

backward codification.

Proof. The theorem can be proved by contradiction. Let us assume that Cmax is either

lower or greater than maxi=1,...,m1+m2{Cσ
il + Ciπl

}.

Let us first start with the first assumption, i.e. Cmax < maxi∈{1,...,m1+m2}{Cσ
il + Ciπl

}.

Let i′ denote the machine with maximum value of both completion times, i.e. i
′ =

arg maxi∈{1,...,m1+m2}{C
σ
il + Ciπl

}. On the one hand, by Equations 1, 2, 3, and 4, the

completion time of operation Oi′σ cannot be reduced considering forward codification,

without reducing their processing times (or some previous one). On the other hand, by

Equations 5, and 6, the completion time of operation Oi′πl
cannot be reduced considering

backward codification (analogously without reducing any processing time), i.e. the time

between the starting time of operation Oi′πl
and the final operation in the shop cannot

be compressed more than Ciπl
. Then, as operation Oi′σ is scheduled before operation

Oi′πl
, and the completion times (Cσ

il and Ciπl
) cannot be compressed more, it is clear than

Cmax ≥ maxi∈{1,...,m1+m2}{Cσ
il + Ciπl

}.

Secondly, let us suppose that Cmax > maxi∈{1,...,m1+m2}{Cσ
iπl

+ Ciπl
}. Regarding a

generic i, Cmax > maxi∈{1,...,m1+m2}{Cσ
il + Ciπl

} can be written as Cmax > Cσ
il + Ciπl

(i ∈ {1, . . . ,m1 +m2}). Since it has been proved that Cσ
il and Ciπl

cannot be compressed,

this expression can be equivalently formulated by Cmax = ITi + Cσ
il + Ciπl

, where ITi

(ITi > 0, i ∈ {1,m1 +m2}) is the idle time between job σ and job πl on machine i, when
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the sequence is scheduled forward until σ and backward from πl. Finally, as idle time

ITi is greater than 0 for every machine, the schedule is not semi-active and there is a

contradiction.

Let us continuous with the previous example supposing that job 5 is going to be inserted

in the second position of the actual sequence (2,3,1,4). Then, according to Theorem 2, the

makespan after the insertion can be calculated using Cmax = maxi∈{1,...,m1+m2}{Cσ
il +Ciπl

}.

In Figure 5, we indicate the values for Cσ
il +Ciπl

for each machine i ∈ {1, . . . , 6}. Clearly,

the makespan is obtained, as the sum of both variables, in the second machine.
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Figure 5: Example for Theorem 2
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