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Introduction

EAR2:  Simulation characteristics & prospects [6] 
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EAR1: Geant4 simulation benchmarking [5] Geant4 simulation description
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The n_TOF spallation target

MONTE CARLO SIMULATIONS OF THE N_TOF LEAD SPALLATION
TARGET WITH THE GEANT4 TOOLKIT: A BENCHMARK STUDY

Monte Carlo (MC) simulations are an essential tool to determine fundamental features of a
neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be
measured or at least not in every position or energy range. Until recently, the most widely used
MC codes had been MCNPX [1] and FLUKA[2] . However, the Geant4 toolkit [3] has become a
competitive code also in this field, especially after the work done by Mendoza et al. [4] to adapt
the evaluated neutron libraries to the native Geant4 format, called G4NDL. In this context, we
present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done
with version 10.1 of the toolkit.

The first goal was the validation of the intra-nuclear cascade models implemented in the code
using, as benchmark, the characteristics of the neutron beam measured at the first experimental
area (EAR1) [5], especially the neutron flux and energy distribution, and the time distribution of
neutrons of same kinetic energy (the so-called “resolution function”). The second goal was the
development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and
planning of the upcoming measurements at the new experimental area (EAR2) of the facility [6].

 EAR1: 1cm Water+4cm 
Borated Water
(1.28% of H3BO3) before 
beam pipe.

 EAR2: Vertical beam pipe 
fitted in the structure        
Pure water cooling  (No 
specific moderator)

Scoring Methods
EAR2 : Detailed 3D scorer, beam line shape

EAR1: 2D scorer @ entrance of beam line

 Scoring surfaces defined as in 
previous  simulations at n_TOF

 Angular acceptance limited to 
4 deg ↔ isotropic spectra 
within this solid angle.

 Collected information at 
scorer:
Position, momentum, energy, 
type of particle and time.

Inner components target  assembly:  
Proton entrance window + vessel+ Lead Core + 

Moderator/absorber  + neutron exit window +  beam line entrance

 Real simulation to the  EAR's : Unaffordable CPU Time
 Each scored neutron (with θ ≤ 4 deg) is resampled scanning a 2 cm radius 
scorer placed in EAR1 (185 m distance) or EAR2 (19 m); only those that fly 
through the collimators are recorded.

Simplified “optical” transport to EARs

Detailed implementation of 
the n_TOF Target-

moderator assembly

Neutron flux @ EAR1

Beam profileNeutron flux γ-ray backgroundNeutrons’ spatial 
distribution scorer 

towards EAR2

Capture 
setup C6D6 
detectors

Expected v-ray  
background 
conditions

Resolution Function
Fraction of the beam 

intercepted by a 
sample @19.5m
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Non-univocal energy- time relation induces 
resonance broadening 

Ratio between Geant4 
PLs follow same trends 

than in EAR1

Beam profile γ-ray flux @ EAR1

Energy spectra
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Sizable differences 
among the Geant4 
Physics Lists (PL) in 

absolute flux.

Remarkable 
reproduction of the 

spectrum shape. 
Differences at energies 

above 20MeV: 
Intranuclear cascade 

models 

Neutron beam profile at  
EAR1 beam line entrance.

Prompt (TOF<1us): Spallation (γ-flash)
Delayed: γ-rays after neutron captures 

γ-flash: High energy g-rays
Delayed: Characteristic capture 

peaks (1H, 10B, 27Al)

All PLs above the 
experimental flux [7]. 

Closest: 
QGSP_INCLXX_HPT  

(+12%)

Fraction of the target 
“seen” from EAR1 after 

collimation
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Geometry Model
Time distribution
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