

The n_TOF Collaboration, www.cern.ch/nTOF

Neutron-induced reactions at n_TOF An overview of the 2009-2012 physics program

Carlos GUERRERO on behalf of The n_TOF Collaboration

CERN, Geneva (Switzerland)

<u>The n_TOF Collaboration</u>

30 Research Institutions from Europe, Asia and USA. 16 PhD students (7 of them @ND2013)

NUCLEAR ASTROPHYSICS: stellar nucleosynthesis

Neutron capture and (n,α) cross section of stable & unstable isotopes playing a role in the *s*- and *r*-processes (0.1-500 keV).

NUCLEAR TECHNOLOGIES: ADS, Gen-IV and Th/U fuel cycle

Neutron capture and fission cross sections of Actinides in the thermal (meV), epithermal (eV-keV) and fast (MeV) energy regions.

BASIC NUCLEAR PHYSICS: levels densities, γ-ray strength functions and ang. distributions Time-of-Flight measurements with dedicated detectors providing valuable information on basic nuclear physics quantities.

n_TOF: A spallation neutron source using the PS 20 GeV/c prot. beam

The n_TOF Facility at CERN: a Google view

The n_TOF lead spallation target (from 2008 onwards)

- 1. Approx. 400 FAST (MeV-GeV) neutrons/proton (20 GeV/c) are generated @target
- 2. They are slowed-down (MODERATED) in 5 cm of water+¹⁰B-water: meV to GeV
- 3. A fraction reaches the experimental hall after 185 meters of vacuum

```
ToF (GeV) ~ 630 ns

ToF (MeV) ~ 13 μs

ToF (keV) ~ 420 μs

ToF (eV) ~ 13 ms

ToF (10 meV) ~ 133 ms
```


Main characteristics of the n_TOF neutron beam

n_TOF talks @ ND2013

Overviews:

E. Chiaveri, "The CERN n_TOF facility: neutron beam performances"

C. Guerrero, "Investigation of neutron induced reactions at n_TOF"

Basic Nuclear and Medical Physics

- F. Gunsing, "Spin measurements on neutron resonances of ⁸⁷Sr for level density studies"
- \rightarrow I. Porras, "³³S(n, α) cross section measurement at n_TOF: implications in NCT"
 - D. Tarrio, "Fission fragment angular distribution for ²³²Th(n,f) ..."

Nuclear technologies

- \rightarrow D. Cano-Ott, "Measurement of the $\sigma(n,\gamma)$ of the fissile isotope ²³⁵U"
 - F. Mingrone, "Measurement of the ²³⁸U radiative capture cross section with C₆D₆..."
- \rightarrow A. Tsinganis," A masurement of the ^{240,242}Pu(n,f) cross section ..."
 - F. Belloni, "A MicroMegas detector for neutron beam imaging ..."
- E. Mendoza-Cembranos, "Measurement of the ²⁴¹Am and the ²⁴³Am neutron capture cross section ..." <u>K. Fraval, "Analysis of ²⁴¹Am(n,g) cross section with C₆D₆..."</u>
 - T. Wright, "High-precission measurement of $^{238}U(n,\gamma)$ cross section with the TAC ..."
 - M. Barbagallo, "Results on the ²³⁶U neutron cross section ..." (capture)
 - E. Leal-Cidoncha, "Study of the neutron-induced fission resonances in ²³⁴U measured ..."

Astrophysics

- <u>C. Massimi, "New measurement of the ${}^{25}Mg(n,\gamma)$ reaction cross section"</u>
- -> C. Lederer, "Neutron capture reactions for the astrophysical s-process in the Fe/Ni region"
- \rightarrow C. Weiss, "The (n, α) reaction in the s-process branching point ⁵⁹Ni"

Detection systems at n_TOF

The n_TOF Facility in pictures

Detection of neutron induced fission reactions

The most easy and clean method for measuring fission reactions is based in the **detection of at least one of the fission fragments**: ionization chambers!

Detection of neutron induced fission reactions

The main problem in fission measurements is the **background** due to α -decay. At n_TOF the background minimized by the very **high instantaneous** neutron flux.

Parallel Plate Avalanche Counters (PPAC)

- Fission fragments detected in coincidence
- Very good rejection of α-background
- Provide info on angular distr. of fission fragments

Micromegas (MGAS) detectors

• low-noise, high-gain, radiation-hard detector

Detection of neutron capture reactions

Neutron capture reactions are measured by:

detecting the γ -rays emitted in the de-excitation process.

At n_TOF two different systems are available to minimize different types of background

Detection of (n, α) reactions

The main problem in (n,α) measurements is the background from other reactions in the sample, or in the detectors (gas recoils, etc.)

Micromegas chamber (MGAS)

- low-noise, high-gain
- Several samples in parallel

Diamond (pCVD or sCVD)

- Background reactions only above 1 MeV
- Very fast response
- Particle discrimination (when sCVD or charge collection distance > 100 μm)

n_TOF Phase2 (2009-2012)

SELECTED MEASUREMENTS (just six)

isotope ⁶³Ni

In the weak s-process region the abundances of isotopes from Fe to Zr are highly affected by the knowledge of the cross section of every isotope, but in particular the seeds of the *s*-process: Fe/Ni isotopes!

n_TOF campaign to measure the $\sigma(n,\gamma)$ of all the key isotopes of Fe and Ni: 54,56,57,58Fe // 58,60,61,62,63,64Ni

CERN-INTC-2010-067 / INTC-P-283 08/10/2010

The neutron capture cross section of the s-process branch point

isotope ⁶³Ni

Unstable ⁶³Ni produced by irradiation for years of ⁶²Ni in nuclear reactor: ~100 mg of ⁶³NiO powder

Ni63 sample Ni62 sample Sample Holder 10⁻² Beam Off C. Lederer (this conf.) Capture Yield 10⁻³ 10⁻⁴ 10⁻⁵ 4 10³ 10⁵ 10² 10⁻¹ 10⁴ 10 Neutron Energy (eV)

The neutron capture cross section of the s-process branch point

Sample from ORNL:

205±5 μg LiF: 95% ⁶Li (thickness = 394 nm)

<u>180±5 μg</u> metallic Ni: 95% ⁵⁹Ni => 516 kBq

Lowest mass measured at n_TOF to date!

New development

Array of 9 sCVD diamond diodes:

- 1. Thickness: 150 μm
- 2. Detector size 5x5 mm² (each)
- 3. Electrodes: 200 nm Al

05/01/2012

CERN-INTC-2012-011 / INTC-P-327 The (n, α) reaction in the s-process branching point ⁵⁹Ni

sCVD mosaic-detector (x9 array):

- 1. Thickness: 150 μ m
- 2. Electrodes: 200 nm Al

CERN CER 04/0	N-INTC-2012-006 / INTC-P-322 1/2012	Micromegas de	etector for ${}^{33}S(n,\alpha)$ cross section measurement	at n_TOF
³³ S as	a cooperative target for NC	Γ	Boron Neutron Capture Therapy (BNCT)	
	³³ S(n,α) ³⁰ Si		¹⁰ B(n,α) ⁷ Li	
	E _α ~3.1 MeV		E _{Li} ≈0.84 MeV E _α ≈1.47 MeV	
	LET≈126 keV/µm (optimal v	value ~100)	LET(Li)=162 keV/μm LET(α)=196 keV/μm	
	x _α ~15μm		x _{Li} ~5μm x _α ~8μm	
	E _n ≈13 keV -> σ(n,α)≈	20 b?	E _n ~eV -> σ(n,α)≈3840 b E _n ~keV -> σ(n,α)≈5 b	
	No gamma		E _γ ≈0.48 MeV	
			I. Porras, Phys. Med. Biol. 53 (2008)	

Measurement carried out in November-December 2012

10 MGAS detectors 10 samples back-to-back: ³³S thin (x4), ³³S thick (x2), blanks (x2), ¹⁰B (x2)

CERN-INTC-2010-042 / INTC-P-280 21/05/2010

Measurement of the fission cross-section of ²⁴⁰Pu and ²⁴²Pu at CERN's n_TOF Facility

²⁴² Pu				
²³⁸ Pu	0.002719%			
²³⁹ Pu	0.00435%			
²⁴⁰ Pu	0.01924%			
²⁴¹ Pu	0.00814%			
²⁴² Pu	99.96518%			
²⁴⁴ Pu	0.00036%			
Mass	3.0mg			
Activity	0.13 MBq			
Also spontaneous fission				

A. Tsinganis (this conf.)

CERN-INTC-2010-042 / INTC-P-280 21/05/2010

Measurement of the fission cross-section of ²⁴⁰Pu and ²⁴²Pu at CERN's n_TOF Facility

Compensation method for digitized signals: minimization of g-flash effects!

CERN-INTC-2010-042 / INTC-P-280 21/05/2010

Measurement of the fission cross-section of ²⁴⁰Pu and ²⁴²Pu at CERN's n_TOF Facility

Compensation method for digitized signals: minimization of g-flash effects!

C. Guerrero, "Neutron-induced reactions at n TOF" Int. Conf. Nuclear Data for Sc. And Tech. ND2013, New York, March 2013

Multiplicity

²⁴¹Am sample:

- 32 mg
- 12 mm in diameter
- ~4 GBq

- Measured with <u>both TAC and C₆D₆ detectors</u>

E. Mendoza (this conf.)

PhD thesis by J. Balibrea (CIEMAT)

THE FUTURE: A VERTICAL NEUTRON BEAM LINE AT 20 M

n_TOF-EAR2

The future: n_TOF vertical flight path at 20 m

The future: n_TOF vertical flight path at 20 m

Experiments in EAR-2 can be performed :

- on very small samples (reduce activity or used samples with limited availability)
- on isotopes with very small cross sections (where signal/background ratio is crucial)
- in much shorter time (some meas. can be eventually repeated to reduce systematic σ)
- on neutron-induced cross sections at high energies ($E_n > 1-100$ MeV), which are not possible in the existing EAR-1, will benefit if the γ -flash is reduced.
- possibility to bring a 'basket' with electronics component down to only 1.5 m from the target (10¹⁰ neutrons/pulse): irradiation facility (e.g. SEE)

PROPOSED EXPERIMENTS FOR 2014-2016

- Cross sections and prompt γ-ray emission of fissile **Pu** isotopes
- The role of ²³⁸Pu and ²⁴⁴Cm in the management of nuclear waste: simultaneous measurements of their capture and fission cross sections
- Measurements of (n,xn) reaction cross sections for heavy target nuclei
- Fission cross section of the ²³⁰Th(n,f) reaction
- First measurement of the capture (and fission) cross sections of the fissile ²⁴⁵Cm
- Cross section and angular distribution of fragments from neutron-induced fission of ²³²U
- Measurement of the ${}^{25}Mg(n,\alpha){}^{22}Ne$ cross section
- Neutron capture measurement of the s-process branching point ⁷⁹Se
- Destruction of the cosmic γ-ray emitter ²⁶Al by neutron induced reactions
- Measurement of ⁷Be(n,p)⁷Li and ⁷Be(n,α)⁴He cross sections, for the cosmological Li problem.
- In addition: ⁷⁹Se, ¹⁴⁷Pm, ¹⁷¹Tm and ²⁰⁴Tl samples (s-process branching points) are being produced at ILL (Grenoble, France)

Conclusions and perspectives

n_TOF@CERN

Operating since 2001 and upgraded in 2008

Nucleosynthesis , Advanced Reactors and Basic Physics
 Mainly, but not only, (n,γ), (n,f) and (n,α)
 40 capture measurements to date
 15 fission measurements to date

16 PhD students at present

New neutron beam line to be ready in 2014

20 meters flight path
 25 times higher neutron flux
 250 times higher instantaneous intensity

Enjoy the upcoming n_TOF talks!

