

The n_TOF Collaboration, <u>www.cern.ch/nTOF</u>

Physics with neutron beams at the CERN n_TOF facility

Carlos GUERRERO

Applied Physics Fellow @CERN (PH/SME)

n_TOF Run and Analysis Coordinator

"In the early days of the Manhattan Project when an unknown cross section was needed, the procedure for obtaining a value for it was simple. You went and asked Fermi. Invariably he would refuse to hazard a guess. The next step, so the story goes, was to recite slowly a long string of numbers, and if one of the numbers produced a gleam in Fermi's eye - that was the value to use!"

H. Goldstein (talk at Atomenergie, Sweden, September 1953)

n_TOF: A spallation neutron source using the PS 20 GeV/c prot. beam

C. Rubbia et al., *A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 eV to 250 MeV*, CERN/LHC/98-02(EET) 1998.

How does a neutron cross section look like?

Neutrons in fission/fusion react., stars, cancer therapies, imaging,...

Neutrons and production of nuclear energy (& radioactive waste)

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d st st st 9	Cm 241 32,8 d st * 5355 y 472 491:132.	Cm 242 162,94 d sf #6.113.609. \$'c 7(44-1).6" 7(4-20 m-5	Cm 243 29,1 a 51 s 785 5742 c st a 7 275 228; 210sr a 130: a, 620	Cm 244 18,10 a • 5,805; 0 str. • 45 a • 15 e; 11	Cm 245 8500 a «6365;6384 st.g v175;133 v350; v;2109	Cm 246 4730 a a 5.966; 5,343 st; g 7 (45); e r 1,2; cr 0,16	^{244, 245} Cm 1.5 Kg/yr
Am 236 ? 3,7 m	Am 237 73,0 m • 0.047 • 200: 430: 474 • 909 • 09	Am 238 1,63 h * 5.94 7 953: 519: 581 605 6	Am 239 11,9 h st ⁴ 5,774 7278:228 9	Am 240 50,8 h	Am 241 432,2 a a 5486 445 d: y 60:20 g: g a 500; op.;	Am 242 141 a 16 h 151 - 5215 151 - 525 151 -	Am 243 7370 a • 5375(5233 at. y 75: 44 #75 + 5 • 0.074	m 244 20 m 10,1 h 17744 11004 - 1000 6 m 1000 6 m 1000 1 m 2200	Am 245 2,05 h st (1-0.9 +252 (241:290) ****	²⁴¹ Am:11.6 Kg/yr ²⁴³ Am: 4.8 Kg/yr
Pu 235 25,3 m	Pu 236 2,858 a st My 37 st My	Pu 237 45,2 d * ^{9,334} * ^{9,230}	Pu 238 87,74 a st statistics v(43:10)bet v(43:10)bet v(13:10)bet	Pu 239 2,411 - 10 ⁴ a 5,197 - 144 6;17 270: m 762	Pu 240 6563 a styres.5124 styres ros ros ros ros	Pu 241 14,35 a 51 #*0.02:1 1145.25 *370.4100	Pu 242 3,750 - 10 ⁵ a a 4,901; 4,855 11, 9 (45) e 13 e 19: e ₁ < 0.2	Pu 243 4,956 h st # 08 # 100;4;200	Pu 244 st 8,00 - 10 ⁷ a « 4,588 4,546 st.1 e ⁻¹ « 1,7	²³⁹ Pu: 125 Kg/yr
Np 234 4,4 d *, ^{p+} y 1559; 1528; 1602 et* 900	Np 235 396,1 d c. e 5,025; 5,007 y[26;84];e ⁻ g; c 160 + 7	Np 236 22,5 × 154 10 ³ 154 10 ³ 15	Np 237 2,144 - 10 ⁶ a = 4,790; - 4,14 - 7,20; - 67 - 190; - 0, 97	Np 238 2,117 d 9=1,2 v 984; 1029; 1026; 924e ⁻ g: et 2100	Np 239 355 d p ⁻ 0.4: 7 106: 27 228e ⁻ B 32: 19: 37 -	Np 240 7,22 m 65 m (F 22) 7,555, 507 67 67 601 4480	Np 241 13,9 m ^{8-1,3}	Np 242 2,2 m 5,5 m 17 2,7 4 7 736. 7786. 945. 1472 158 9 9	Np 243 1,85 m ^{β-} 1 288 9	²³⁷ Np: 16 Kg/yr
U 233 1,592 · 10 ⁵ a « 4,824; 4,783 Ne 25: γ (42; 97); e ⁻ « 47; « 530	U 234 0,0055 2,455 · 10° c u 475:4729; Mg 28, Ne ; 153, 121 of u 96; y, - 0.005	U 235 0,7200 25 = 7,886-10 ³ c 4,838 8 No 7 18 9 0,07 1 0,07 1 0,07 1 0,07 1 0,07 1 0,07 1 0,07 1 0,07 1 0,07 2 0,07 0 0,070000000000	U 236 120 ps (2322-107a 120 ps (2322-107a 1445 1445 1445 1445 1445 1445 1445 1445 1445 1445 1445 1445 1445	U 237 75 d # 0.2 760: 208 e r = 100: rr < 0.3	U 238 99,2745 270 fr 4,458 10*4 1254 2*55 2*5 2*5 2*5 2*5	U 239 3,5 m \$^1,2;1,3 \$^75;44 \$^22: e:15	U 240 14,1 h β ⁻ 0,4 γ 44: (190) e ⁻ m		U 242 16,8 m ^{p⁺} 7 68;58:585; 573 m	
Pa 232 1,31 d 8° 0,3,1,3 e 9 969, 894 150 e ⁻ 0 460; e 700	Pa 233 27,0 d 810,30,6 9312,300 341;e1 020+19; 01<	$\begin{array}{c c} Pa \ 234 \\ \hline \mu 7 \ m & 6,70 \ h \\ \mu^{\circ} 23 & \pi^{\circ} 25. \\ \eta^{\circ} (1007) & 1.2. \\ \eta^{\circ} 707 & 1.2. \\ \eta^{\circ} 500 & \eta^{\circ} 500 \\ \eta^{\circ} 500 & \eta^{\circ} 500 \end{array}$	21,235 24,2 m 8 ⁻¹ 4 7,123-659 m	Pa 236 9,1 m 8° 2,0; 3,1 9 542; 567 176319	Pa 237 8,7 m 8 ^{-1,4; 2,3} 9854; 865; 529: 541	Pa 238 2,3 m p ⁻ 1.7;2.9 y 1015; 635; 448; 680 9	148		150	
Th 231 25,5 h ^{(F-0,3;0,4} ^{y 26;84}	Th 232 100 1,405-10 ¹⁹ a 9 984-16" 9 7.37: 910000005	Th 233 22,3 r,1 81 81 997 1500 4,15	¹ h 234 14,10 d ^{μ⁻ D.2 7/3 192;93 e⁻ α 8; σ < 0,01}	Th 235 7,1 m ^{β-1,4} γ417:727 696.	Th 236 37,5 m β ^{-1,0} γ 111: (647; 196)	Th 237 5,0 m				LLFP 76.2 Kg/yr
FP Quantities refer to yearly production in 1 GW _e LW reactor										

Neutrons and production of nuclear energy (& radioactive waste)

New nuclear reactor concepts:

- a) Gen-IV: Fast reactors that can operate with fuels including U, Pu and MA
- b) ADS (Accelerator Driven Systems): dedicated nuclear waste burners

New fuels composition and different neutron energy regime call for new reactions, whose cross sections are not known with the required accuracy.

Neutrons and production of isotopes in stars: The s-process

Chemical elements beyond Iron are synthesized via neutron capture reactions in stars:

- ~ ½ by the s-process (red giants)
- ~ 1/2 by the r-process (explosive)

Neutrons and production of isotopes in stars: The s-process

In the weak s-process region the abundances of isotopes from Fe to Zr are highly affected by the knowledge of the cross section of every single isotopes:

Conclusions can be drawn only when ALL cross sections are known!

n_TOF campaign to measure all the available isotopes of Fe & Ni: <u>54,56,57,58</u>Fe // <u>58,60,61,62,63,64</u>Ni

Neutrons and cross sections: energy distributions

The n_TOF facility at CERN

<u>The n_TOF Collaboration</u> 30 Research Institutions from Europe, Asia and USA.

16 PhD students!

NUCLEAR ASTROPHYSICS: stellar nucleosynthesis

Neutron capture and (n,α) cross section of stable & unstable medium mass isotopes playing a role in the *s*- and *r*-processes (0.1-300 keV).

NUCLEAR TECHNOLOGIES: ADS, Gen-IV and Th/U fuel cycle

Neutron capture and fission cross sections of Actinides and Fission Fragments in the thermal (meV), epithermal (eV-keV) and fast (MeV) energy ranges.

BASIC NUCLEAR PHYSICS: levels densities, γ-ray strength functions and ang. distributions Time-of-Flight measurements with dedicated detectors provide very valuable information on basic nuclear physics quantities.

n_TOF Facility Timeline

Measurement of neutron-induced cross sections: ToF technique

Measuring the neutron cross sections requires:

- <u>A facility</u> providing a neutron beam (The n_TOF facility).
- <u>A detection system</u> for counting the reactions
- A highly pure <u>sample</u>.
- A <u>theoretical framework</u> to express the cross sections (*R*'- matrix formalism).

The n_TOF Facility at CERN: a Google view

The n_TOF lead spallation target (from 2008 onwards)

- 1. Approx. 400 FAST (MeV-GeV) neutrons/proton (20 GeV/c) are generated @target
- 2. They are slowed-down (MODERATED) in 5 cm of water+¹⁰B-water: meV to GeV
- 3. A fraction reaches the experimental hall after 185 meters of vacuum

```
ToF (GeV) ~ 630 ns

ToF (MeV) ~ 13 μs

ToF (keV) ~ 420 μs

ToF (eV) ~ 13 ms

ToF (10 meV) ~ 133 ms
```


The n_TOF Facility in pictures

The n_TOF Facility in pictures

Main characteristics of the n_TOF neutron beam

Main characteristics of the n_TOF neutron beam

Neutron beam + state-of-the-art detectors and acquisition systems make n_TOF UNIQUE for:

- measuring radioactive isotopes, in particular actinides
- identifying and studying resonances (at energies higher than before)
- extending **energy range** for fission (up to 1 GeV !).

Measurements at n_TOF

Detection of neutron induced fission reactions

The most easy and clean method for measuring fission reactions is based in the **detection of at least one of the fission fragments**: ionization chambers!

Detection of neutron induced fission reactions

The main problem in fission measurements is the **background** due to α -decay. At n_TOF the background minimized by the very **high instantaneous** neutron flux.

Parallel Plate Avalanche Counters (PPAC)

- Fission fragments detected in coincidence
- Very good rejection of α-background
- Provide info on angular distr. of fission fragments

Micromegas (MGAS) detectors

• low-noise, high-gain, radiation-hard detector

Detection of neutron capture reactions

Neutron capture reactions are measured by:

detecting the γ -rays emitted in the de-excitation process.

At n_TOF two different systems are available to minimize different types of background

Detection of (n, α) reactions

The main problem in (n,α) measurements is the background from other reactions in the sample, or in the detectors (gas recoils, etc.)

Micromegas chamber (MGAS)

- low-noise, high-gain
- Several samples in parallel

Diamond (pCVD or sCVD)

- Background reactions only above 1 Mev
- Very fast response
- Particle discrimination (if sCVD or charge collection distance > 300 μm)

The neutron beam dump as neutron irradiation testing facility

Measurement of fast neutrons with a triple GEM S. Puddu (CERN/RP) and F. Murtas (LNF-IFNN, Italy)

Test of a medipix device for neutron detection C. Tecla (CERN/RP)

First test of a 3D silicon detector with fast neutrons R. Palomo (U. Sevilla, Spain), I. Vila (CSIC, Spain) et al.

Diamond detectors response function to quasi-monochromatic high-energy neutrons E. Perelli, M. Rebai, A. Pietropaolo et al. (CNR, Italy)

On the use of FBG optic fibers as neutron dosimeters R. Palomo (U. Sevilla, Spain), I. Vila (CSIC, Spain) et al.

SELECTED MEASUREMENTS (just four)

n_TOF Phase2 (2009-2012)

isotope ⁶³Ni

In the weak s-process region the abundances of isotopes from Fe to Zr are highly affected by the knowledge of the cross section of every single isotopes:

Conclusions can be drawn only when ALL cross sections are known!

n_TOF campaign to measure the $\sigma(n,\gamma)$ of all the key isotopes of Fe and Ni: 54,56,57,58Fe // 58,60,61,62,63,64Ni

CERN-INTC-2010-067 / INTC-P-283 08/10/2010

The neutron capture cross section of the s-process branch point

isotope ⁶³Ni

Unstable ⁶³Ni produced by irradiation for years of ⁶²Ni in nuclear reactor: ~100 mg of ⁶³NiO powder

First RRR measurement ever

In the weak s-process region the abundances of isotopes from Fe to Zr are highly affected by the knowledge of the cross section of every single isotopes:

Conclusions can be drawn only when ALL cross sections are known!

C. Weiss PhD work

Sample from ORNL:

(180 ± 5) µg metallic Ni: 95% ⁵⁹Ni => 516 kBq (thickness = 102 nm) (205 ± 5) µg LiF: 95% ⁶Li (thickness = 394 nm)

C. Weiss PhD work

- 8 sCVD + 1 DOI diamond diodes:
 - 1. Thickness: 150 µm
 - 2. Electrodes: 200 nm Al

C. Weiss PhD work

CERN-INTC-2010-042 / INTC-P-280 21/05/2010 2

Measurement of the fission cross-section of ²⁴⁰Pu and ²⁴²Pu at CERN's n_TOF Facility

²⁴² Pu					
²³⁸ Pu	0.002719%				
²³⁹ Pu	0.00435%				
²⁴⁰ Pu	0.01924%				
²⁴¹ Pu	0.00814%				
²⁴² Pu	99.96518%				
²⁴⁴ Pu	0.00036%				
Mass	3.0mg				
Activity	1.2MBq				

Also spontaneous fission!!

A. Tsinganis PhD work

A. Tsinganis PhD work

CERN-INTC-2010-037 / INTC-I-105 Validation of simultaneous measurement of capture and fission 21/05/2010 reactions at n_TOF

The n_TOF Total Absorption Calorimeter

- 4π geometry (high tot. absorption effic.)
- 40 BaF₂ crystals (segmentation)
- Good energy resolution (back. discrimin.)
- Used extensively for (n,γ) on actinides

The n_TOF MicroMegas fission detector

- -Two gas regions: conversion & amplification
- High gain and low noise
- Possibility for several samples in parallel.
- Used extensively for (n,f) and (n, α)

Information from (n,γ) cascades with the n_TOF/TAC

CERN-INTC-2010-037 / INTC-I-105 21/05/2010 Validation of simultaneous measurement of capture and fission reactions at n_TOF

CERN-INTC-2010-037 / INTC-I-105 21/05/2010 Validation of simultaneous measurement of capture and fission reactions at n_TOF

THE FUTURE: A VERTICAL NEUTRON BEAM LINE AT 20 M

n_TOF Phase 3: vertical flight path (20 m)

The future: n_TOF vertical flight path at 20 m

Experiments in EAR-2 can be performed :

- i) on very small samples (reduce activity or used samples with limited availability)
- ii) on isotopes with very small cross sections (where signal/background ratio is crucial)
- iii) in much shorter time (some meas. can be eventualy repeated to reduce systematic Δ)
- iv) on neutron-induced cross sections at high energies (E_n >10-100 MeV), which are not possible in the existing EAR-1, will benefit if the γ -flash is reduced.
- possibility to bring a 'basket' with electronics component down to only 1.5 m from the target (10¹⁰ neutrons/pulse): irradiation facility (e.g. SEE)

The future: n_TOF vertical flight path at 20 m

The future: n_TOF vertical flight path at 20 m

The future: n_TOF vertical flight path at 20 m

The future: n_TOF vertical flight path at 20 m

Main activities during the LS1

n_TOF@CERN

- Civil engineering work for building the bunker
- Optimize the design of the collimator and beam dump
- Making the bunker a Work Sector Type A

n_TOF Collaboration

- ✓ Design new detectors optimized for the EAR-2 (very high counting rates)
- ✓ Upgrade the exisiting DAQ
- Find/prepare samples of exotic isotopes

Conclusions and perspectives

n_TOF@CERN is a world leading in the field of neutron induced reaction measurements

Operating since 2001 and upgraded in 2008
Nucleosynthesis , Advanced Reactors and Basic Physics
Mainly, but not only, (n,γ), (n,f) and (n,α)
40 capture measurements to date
15 fission measurements to date
16 PhD students at present

New neutron beam line to be ready in 2014

20 meters flight path
 25 times higher neutron flux
 250 times higher instantaneous intensity

The n_TOF team @CERN

E. Berthoumieux, M. Calviani, E. Chiaveri,I. Bergstrom, C. Guerrero, A. Tsinganis, V.Vlachoudis and C. Weiss

Basic nuclear physics measurements at n_TOF

Angular distribution of fission fragments: Driven by the <u>dynamics of the fission process</u> One can observe effects from 1st, 2nd,... chances

Use of position sensitive PPAC tilted 45°.

Spin assignments near S_n Observe diff. in γ-ray decay from resonances of different spin Fine tune/test of <u>level density models</u>

Use of 'segmented' TAC for γ cascades

(some) Neutron production mechanisms

²⁴¹Am/⁹Be using ²⁴¹Am α -decay: α + ⁹Be \rightarrow ¹²C + n

(quasi)Mono-energetic sources (depending on Q-value, E_p and angle)

p + ⁹Be → ⁹B + n p + ⁷Li → ⁷Be + n D + T → ⁴He + n D + D → ³He + n

e.g. NFS@GANIL, ENEA-FNG

Electron driven source: $e^{-} + U \rightarrow Bremsstrahlung + U \rightarrow photofission_{(En < 20 MeV)}$ <u>e.g. GELINA, ORELA</u>

Spallation sources: $p + Pb(W) \rightarrow Spallation neutrons_{(En < Ep)}$

e.g. n_TOF, LANSCE, J-PARC

