María Martínez Ballesteros
2024
Embedded feature selection for neural networks via learnable drop layer Artículo de revista
En: Logic Journal of the IGPL, vol. N/A, pp. N/A, 2024.
From simple to complex: a sequential method for enhancing time series forecasting with deep learning Artículo de revista
En: Logic Journal of the IGPL, vol. N/A, pp. N/A, 2024.
Explainable deep learning on multi-target time series forecasting: An air pollution use case Artículo de revista
En: Results in Engineering, vol. 24, pp. 103290, 2024.
Evolutionary Feature Selection for Time-Series Forecasting Artículo de revista
En: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing, vol. N/A, pp. 395-399, 2024.
Multi-Objective Lagged Feature Selection Based on Dependence Coefficient for Time-Series Forecasting Artículo de revista
En: Lecture Notes in Computer Science, vol. N/A, pp. 81-90, 2024.
Explaining deep learning models for ozone pollution prediction via embedded feature selection Artículo de revista
En: Applied Soft Computing, vol. 157, pp. 111504, 2024.
Explainable Deep Learning with Embedded Feature Selection for Electricity Demand Forecasting Artículo de revista
En: 2024 International Conference on Smart Systems and Technologies (SST), vol. N/A, pp. 153-158, 2024.
2023
Association Rule Analysis of Student Satisfaction Surveys for Teaching Quality Evaluation Artículo de revista
En: Lecture Notes in Networks and Systems, vol. N/A, pp. 319-328, 2023.
Feature-Aware Drop Layer (FADL): A Nonparametric Neural Network Layer for Feature Selection Artículo de revista
En: Lecture Notes in Networks and Systems, vol. N/A, pp. 557-566, 2023.
A Feature Selection and Association Rule Approach to Identify Genes Associated with Metastasis and Low Survival in Sarcoma Artículo de revista
En: Lecture Notes in Computer Science, vol. N/A, pp. 731-742, 2023.
A Bayesian Optimization-Based LSTM Model for Wind Power Forecasting in the Adama District, Ethiopia Artículo de revista
En: Energies, vol. 16, pp. 2317, 2023.
A new deep learning architecture with inductive bias balance for transformer oil temperature forecasting Artículo de revista
En: Journal of Big Data, vol. 10, pp. N/A, 2023.
A new approach based on association rules to add explainability to time series forecasting models Artículo de revista
En: Information Fusion, vol. 94, pp. 169-180, 2023, ISSN: 1566-2535.
PHILNet: A novel efficient approach for time series forecasting using deep learning Artículo de revista
En: Information Sciences, vol. 632, pp. 815-832, 2023, ISSN: 0020-0255.
Embedded Temporal Feature Selection for Time Series Forecasting Using Deep Learning Artículo de revista
En: Lecture Notes in Computer Science, vol. N/A, pp. 15-26, 2023.
Explaining Learned Patterns in Deep Learning by Association Rules Mining Artículo de revista
En: Lecture Notes in Networks and Systems, vol. N/A, pp. 132-141, 2023.
A New Hybrid CNN-LSTM for Wind Power Forecasting in Ethiopia Artículo de revista
En: Lecture Notes in Computer Science, vol. N/A, pp. 207-218, 2023.
Deep Learning-Based Approach for Sleep Apnea Detection Using Physiological Signals Artículo de revista
En: Lecture Notes in Computer Science, vol. N/A, pp. 626-637, 2023.
A bioinspired ensemble approach for multi-horizon reference evapotranspiration forecasting in Portugal Artículo de revista
En: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, vol. N/A, pp. 441-448, 2023.
Evolutionary computation to explain deep learning models for time series forecasting Artículo de revista
En: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, vol. N/A, pp. 433-436, 2023.
A new treatment for sarcoma extracted from combination of miRNA deregulation and gene association rules Artículo de revista
En: Signal Transduction and Targeted Therapy, vol. 8, pp. N/A, 2023.
2022
A novel approach to discover numerical association based on the coronavirus optimization algorithm Artículo de revista
En: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, vol. N/A, pp. 1148-1151, 2022.
Explainable machine learning for sleep apnea prediction Artículo de revista
En: Procedia Computer Science, vol. 207, pp. 2930-2939, 2022.
2020
Autoencoded DNA methylation data to predict breast cancer recurrence: Machine learning models and gene-weight significance Artículo de revista
En: Artificial Intelligence in Medicine, vol. 110, pp. 101976, 2020.
2019
Analysis of the evolution of the Spanish labour market through unsupervised learning Artículo de revista
En: IEEE Access, 2019, (JCR (2018) 4.098).
External Clustering Validity Index based on chi-squared statistical test Artículo de revista
En: Information Sciences, 2019, (JCR(2017): 4,305).
2018
MRQAR: a generic MapReduce framework to discover Quantitative Association Rules in Big Data problems Artículo de revista
En: Knowledge-Based System, vol. 53, no 1, pp. 176-192, 2018, (JCR (2016): 4.529).
2017
Machine learning techniques to discover genes with Potential Prognosis Role in Alzheimer's Disease using different biological sources Artículo de revista
En: Information Fusion, vol. 36, pp. 114-129, 2017, (JCR (2015): 4.353, Q1).
2016
Improving a multi-objective evolutionary algorithm to discover quantitative association rules Artículo de revista
En: Knowledge and Information Systems, vol. 49, no 2, pp. 481-509, 2016, (JCR (2016): 2.004).
Obtaining optimal quality measures for quantitative association rules Artículo de revista
En: Neurocomputing, vol. 176, pp. 36-47, 2016, (JCR (2016): 3.317, Q1).
A Study of the Suitability of Autoencoders for Preprocessing Data in Breast Cancer Experimentation Artículo de revista
En: Journal of Biomedical Informatics, vol. 72, no C, pp. 33-44, 2016, (JCR (2016): 2.753).
2015
Enhancing the scalability of evolutionary algorithms to discover quantitative association rules in large-scale datasets Artículo de revista
En: Integrated Computer-Aided Engineering, vol. 22, no 1, pp. 21-39, 2015, (JCR (2015): 4.981, Q1).
2014
Discovering gene association networks by multi-objective evolutionary quantitative association rules Artículo de revista
En: Journal of Computer and Systems Sciences, vol. 89, no 1, pp. 118-136, 2014, (JCR (2014): , Q2).
Discovering quantitative association rules: A novel approach based on evolutionary algorithms Artículo de revista
En: AI Communications, vol. 27, no 2, pp. 153-165, 2014, (JCR (2014): 0.547, Q4).
Selecting the best measures to discover quantitative association rules Artículo de revista
En: Neurocomputing, vol. 126, pp. 3-14, 2014, (JCR (2014): 2.083, Q2).
2011
Evolutionary Association Rules for Total Ozone Content Modeling from Satellite Observations Artículo de revista
En: Chemometrics and Intelligent Laboratory Systems, vol. 109, no 2, pp. 217-227, 2011, (JCR (2011): 1.920, Q1).
An Evolutionary Algorithm to Discover Quantitative Association Rules in Multidimensional Time Series Artículo de revista
En: Soft Computing, vol. 15, no 10, pp. 2065-2084, 2011, (IF 1.880 24/99 Int App Q1, 30/111 Art Int Q2).
2010
Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution Artículo de revista
En: Integrated Computer-Aided Engineering, vol. 17, no 3, pp. 227-242, 2010, (JCR (2010): 2.122, Q1).
- mariamartinez@us.es
- +34 954 556 949
- Universidad de Sevilla. ETSII. F1.81