Isabel A. Nepomuceno
2023
Comparing artificial intelligence strategies for early sepsis detection in the ICU: an experimental study Artículo de revista
En: Applied Intelligence, vol. 53, pp. 30691-30705, 2023.
Cell-Level Pathway Scoring Comparison with a Biologically Constrained Variational Autoencoder Artículo de revista
En: Lecture Notes in Computer Science, vol. N/A, pp. 62-77, 2023.
SigPrimedNet: A Signaling-Informed Neural Network for scRNA-seq Annotation of Known and Unknown Cell Types Artículo de revista
En: Biology, vol. 12, pp. 579, 2023.
2022
Ten quick tips for biomarker discovery and validation analyses using machine learning Artículo de revista
En: PLOS Computational Biology, vol. 18, no 8, pp. 1-17, 2022.
Updating Prediction Models for Predictive Process Monitoring Artículo de revista
En: Lecture Notes in Computer Science, vol. N/A, pp. 304-318, 2022.
Ten quick tips for biomarker discovery and validation analyses using machine learning Artículo de revista
En: PLOS Computational Biology, vol. 18, pp. e1010357, 2022.
An Extensive Comparative Between Univariate and Multivariate Deep Learning Models in Day-Ahead Electricity Price Forecasting Capítulo de libro
En: pp. 675-684, 2022, ISBN: 978-3-030-87868-9.
An Extensive Comparative Between Univariate and Multivariate Deep Learning Models in Day-Ahead Electricity Price Forecasting Capítulo de libro
En: pp. 675-684, 2022, ISBN: 978-3-030-87868-9.
2021
OCEAn: Ordinal Classification with an Ensemble Approach Artículo de revista
En: Information Sciences, vol. 580, 2021.
Use of Deep Learning Architectures for Day-Ahead Electricity Price Forecasting over Different Time Periods in the Spanish Electricity Market Artículo de revista
En: Applied Sciences, vol. 11, pp. 6097, 2021.
OCEAn: Ordinal Classification with an Ensemble Approach Artículo de revista
En: Information Sciences, vol. 580, 2021.
Use of Deep Learning Architectures for Day-Ahead Electricity Price Forecasting over Different Time Periods in the Spanish Electricity Market Artículo de revista
En: Applied Sciences, vol. 11, pp. 6097, 2021.
A data mining based clinical decision support system for survival in lung cancer Artículo de revista
En: Reports of Practical Oncology and Radiotherapy, vol. 26, 2021.
2020
Using Prior Knowledge in the Inference of Gene Association Networks Artículo de revista
En: Applied Intelligence, 2020, (JCR (2018): 2.882).
Deep Learning Techniques to Improve the Performance of Olive Oil Classification Artículo de revista
En: Frontiers in Chemistry, vol. 7, pp. 929, 2020, (JCR (2018): 3.782).
Generation of Synthetic Data with Conditional Generative Adversarial Networks Artículo de revista
En: Logic Journal of the IGPL, vol. 30, 2020.
Using prior knowledge in the inference of gene association networks Artículo de revista
En: Applied Intelligence, vol. 50, 2020.
Deep Learning Techniques to Improve the Performance of Olive Oil Classification Artículo de revista
En: Frontiers in Chemistry, vol. 7, 2020.
Creation of Synthetic Data with Conditional Generative Adversarial Networks Artículo de revista
En: Advances in Intelligent Systems and Computing, vol. N/A, pp. 231-240, 2020.
2019
Convolutional Neural Networks for Olive Oil Classification Artículo de revista
En: Lecture Notes in Computer Science, vol. N/A, pp. 137-145, 2019.
2018
Pairwise gene GO-based measures for biclustering of high-dimensional expression data Artículo de revista
En: BioData mining, vol. 11, no 4, 2018, (JCR(2018): 2.301).
Pairwise gene GO-based measures for biclustering of high-dimensional expression data Artículo de revista
En: Biodata Mining, vol. 11, no 1, pp. 1-4, 2018, (JCR(2016): 1,57).
2017
Data mining techniques applied to hydrogen lactose breath test Artículo de revista
En: PLOS ONE, vol. 12, no 1, 2017, (IF: 3.057, Q1 11/56).
Machine learning techniques to discover genes with Potential Prognosis Role in Alzheimer's Disease using different biological sources Artículo de revista
En: Information Fusion, vol. 36, pp. 114-129, 2017, (JCR (2015): 4.353, Q1).
2016
Model tree to improve the inference of gene association networks Artículo de revista
En: AI Communications, vol. 29, no 4, pp. 547-549, 2016, (JCR (2015): 0.364 Q4 126/134 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE).
2015
Building transcriptional association networks in Cytoscape with RegNetC Artículo de revista
En: IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 12, no 4, pp. 823-4, 2015, (IF: 1.609 Q1 26/123 STATISTICS & PROBABILITY, Q2 32/101 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS).
Integrating biological knowledge based on functional annotations for biclustering of gene expression data Artículo de revista
En: Computer Methods and Programs in Biomedicine, vol. 119, no 3, pp. 163-180, 2015, (JCR (2015): 1.862 Q1 16/105 Computer Science, Theory and Methods).
2014
Discovering gene association networks by multi-objective evolutionary quantitative association rules Artículo de revista
En: Journal of Computer and Systems Sciences, vol. 89, no 1, pp. 118-136, 2014, (JCR (2014): , Q2).
Transcriptional response to cardiac injury in the zebrafish: systematic identification of genes with highly concordant activity across in vivo models. Artículo de revista
En: BMC Genomics, vol. 15, no 896, pp. 852-867, 2014, (IF: 26/163 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY).
Data mining tools for predicting the risk of toxicity in prostate cancer patients treated with radiation therapy Artículo de revista
En: Radiotherapy Oncology, vol. 111, no 1, pp. S30, 2014, (IF: 4.317, Q1 11/125).
2011
Prognostic transcriptional association networks: A new supervised approach based on regression trees Artículo de revista
En: Bioinformatics, vol. 27, no 2, pp. 252-258, 2011, (IF: 5.468 15/158 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY).
CARGENE: Characterization of Set of Genes based on Metabolic Pathway Analysis Artículo de revista
En: International Journal of Data Mining and Bioinformatics, vol. 5, no 5, pp. 558-573, 2011, (IF: 0.429 Q4 44/46 MATHEMATICAL & COMPUTATIONAL BIOLOGY).
2010
Inferring gene regression networks with model trees Artículo de revista
En: BMC Bioinformatics, vol. 11, pp. 517-529, 2010, (IF: Q1 4/37 MATHEMATICAL & COMPUTATIONAL BIOLOGY, Q2 57/158 BIOTECHNOLOGY & APPLIED MICROBIOLOGY).
- inepomuceno@us.es
- +34 954 559 769
- Universidad de Sevilla. ETSII. F0.44