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Leonhard Euler (Basel, 1707; St.Petersburg, 1783)

I Most prolific mathematician ever: 25 books, 850 papers (800 pages
a year from 1725 to 1783).

I 4500 letters and hundreds of manuscripts.

I Responsible for one quarter of the total output in mathematics,
physics, mechanics, astronomy and navigation in the 18th century.

I Collected works: 70 volumes.

I Established the relation e iθ = cos θ + i sin θ.

I Introduced the symbol π in 1737.

I Contributed to the Königsberg bridges problem.

Reference: A.A. Assad, “Leonhard Euler: A Brief Appreciation”,
Networks 49, 190–198, 2007.
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1. Eulerian graphs

2. The Chinese Postman Problem

3. The Rural Postman Problem
I heuristics
I exact algorithms

4. The Capacitated Arc Routing Problem
I heuristics
I exact algorithms
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Eulerian Graphs
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The bridges of Königsberg (Euler, 1736)

I. Gribkovskaia, Ø. Halskau, G. Laporte (2007), “The Bridges of
Königsberg – A Historical Perspective”, Networks, 49:199–203.
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The Kaliningrad exclave Aerial view of Kaliningrad
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The bridges of Königsberg
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1. The Salesman’s Bridge (1286, 1787, 1900)

2. The Green Bridge (1322, 1590, 1907)

3. The Slaughter Bridge (1377, 1886)

4. The Blacksmith’s Bridge (1397, 1787, 1896)

5. The Timber Bridge (1404, 1904)

6. The High Bridge (1506, 1883, 1939)

7. The Honey Bridge (1542, 1882)

8. The Emperor’s Bridge (1905)
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The bridges of Kaliningrad
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9. The Estacada (1972)

10. Bridge under construction
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The Königsberg bridges problem (Euler, 1736)
A

D

B CPregel
River

Does there exist a closed traversal using each bridge exactly once?
Graph representation:

A

D

B C

Is this graph unicursal (Eulerian)?
Euler: necessary conditions for the unicursality of an undirected graph

I Must be connected

I All vertices must have even degree
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Undirected graphs (edges) (Euler, 1736)

I Connectedness

I Even degrees

Directed graphs (arcs)

I Strong connectedness

I In-degree = out-degree (symmetry)
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Mixed graphs (arcs and edges) (Ford and Fulkerson, 1962)

I Strong connectedness

I Even degrees (irrespective of directions)

I Balanced

[
for every vertex partition (S ,S),∣∣edges S − S

∣∣ ≥ ∣∣(arcs S → S)− (arcs S → S)
∣∣

S S
_

I Evenness and symmetry (in-degree = out-degree) imply that the
graph is balanced
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Famous non-Eulerian graphs

Monaco: Jardin exotique

Mediterranean Sea

France

Elevator

Your typical supermarket
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Traversing a Eulerian graph (easy)

(See, e.g. Hierholzer, 1873)
End-pairing algorithm [described in Edmonds and Johnson, 1973]
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The Chinese Postman Problem
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The Chinese Postman Problem (Guan, 1962)

I Determine least cost traversal of all edges/arcs of a graph at least
once: minimize deadheading

I Methodology:
1. Determine least cost augmentation of the graph to make it Eulerian

(i.e., replicate some of its edges/arcs)
2. Apply end-pairing algorithm

Undirected case (Edmonds and Johnson, 1973)

I Solve matching problem on all odd-degree vertices

Directed case (Edmonds and Johnson, 1973; Orloff, 1974,
Beltrami and Bodin, 1974)

I Solve transportation problem to balance vertices

Mixed case [NP-hard]

I Integer linear programming (branch-and-cut) (Grötschel and Win,
1992; Nobert and Picard, 1996; Corberán et al., 2000)
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Undirected case
BA

ED

C

F

H IG
2

1

1

1
2

3

1

4
1

2

6

1
Matchings:

BD,FH: 3 + 3 = 6
BF,DH: 2 + 2 = 4∗
BH,DF: 5 + 4 = 9
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Directed case
Transportation
problem

BA

ED

C

F
2

1

1

2

1

2
3

21 1

B E

C

F 1

1

1

31

1
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The Rural Postman Problem
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Rural postman problem (Orloff, 1974)

G = (V ,E),R ⊆ E : set of required edges
p connected components are induced by R

4

1

4

1

4

31

NP-hard: Lenstra and Rinnooy Kan (1976)

Frederickson’s heuristic, 1979

1. Shortest spanning tree over connected components

2. Matching of odd degree vertices

Worst-case performance ratio if triangle inequality is satisfied: 3/2
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Rural postman problem (Orloff, 1974)

G = (V ,E),R ⊆ E : set of required edges
p connected components are induced by R

NP-hard: Lenstra and Rinnooy Kan (1976)

Frederickson’s heuristic, 1979

1. Shortest spanning tree over connected components

2. Matching of odd degree vertices

Worst-case performance ratio if triangle inequality is satisfied: 3/2
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Good empirical performance of Frederickson’s heuristic on random
graphs

(Hertz, Laporte, Nanchen-Hugo, INFORMS J. on Computing, 1999)

|V | % deviation from optimum

20 3.36
30 1.69
40 4.02
50 3.98
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Improvement heuristics (undirected graphs) (Hertz, Laporte,
Nanchen-Hugo, INFORMS Journal on Computing, 1999)

Shorten (The lazy postman problem)

5 3 2 1 3 2 4 3 5

5 3 2 1 3 2 4 3 5

5 3 2 3 1 2 4 3 5

5 3 1 2 4 3 5

( )

Add

+ call Shorten

Drop

I Change status of a required edge to non required + call shorten

Make feasible

I if a required edge is missing, add it
23
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2-opt

I As in TSP, try to improve a solution by
I dropping 2 edges
I reconnecting by shortest chains
I calling shorten
I making feasible

I Solution may not be feasible if some required edges were removed
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Some computational results (random graphs)

|V | Frederickson 2-opt sec
% deviation % deviation

20 3.36 0.36 0.02
30 1.69 0.00 0.14
40 4.02 0.00 0.70
50 3.98 0.00 1.26

Mittaz, 1999. Adaptation to the directed case.

Corberán, Mart́ı, Romero (Computers & Operations Research, 2000)

I Heuristics based on flow + matching

I Tabu search

I For mixed graphs
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Exact algorithm for the Undirected Rural Postman Problem
(Ghiani and Laporte, Mathematical Programming, 2000)

Graph simplification (Christofides, 1981)

I Add to GR = (VR ,R) an edge between each vertex pair of VR

using shortest path costs

I Delete any one of two parallel edges if they have same cost

I Delete (i , j) /∈ R if cik + ckj = cij

Graph G = (V ,E) R ⊂ E
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VR = {1, 2, 3, 4, 5}
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Formulations with deadheading variables

xij : number of times (i , j) is deadheaded.

* Never optimal to traverse an edge more than twice

Thus

xij ≤ 1 if (i , j) ∈ R

xij ≤ 2 if (i , j) /∈ R

Also, if i , j ∈ VR (same component), then xij ≤ 1 (Corberán and
Sanchis, 1994).

xij ≤ 1

i

j
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The Corberán and Sanchis Formulation (1984)

I p: number of connected components

I xe : number of deadheadings of e

I δ(S): { edges with one extremity in S }
I v is R-even (R-odd) if it is incident to an even (odd) number of

edges of R

Minimize
∑
e∈E

cexe

s.t. ∑
e∈δ(v)

xe = 0 (mod 2) (v ∈ VR is R-even)

∑
e∈δ(v)

xe = 1 (mod 2) (v ∈ VR is R-odd)

∑
e∈δ(S)

xe ≥ 2 (S = ∪k∈PVk ,P ⊂ {1, . . . , p},P 6= ∅)

0 ≤ xe ≤ 1 or 2 and integer (e ∈ E)

Difficulties: 1) (mod 2) constraints ⇒ extra binary variables z
2) number of connectivity constraints
3) number of 0-1-2 variables
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Ghiani and Laporte, 2000

All but p − 1 variables are 0–1.

In an optimal solution, only variables corresponding to shortest spanning
tree over connected components need be 0–1–2.
For any such variable xe , set

xe = x ′e + x ′′e

where x ′e , x ′′e are 0–1

⇒ all variables of the problem are now 0–1

E = E ∪ {duplicated edges}
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First self-contained formulation using edge variables only
(Ghiani and Laporte, Mathematical Programming, 2000)

Minimize
∑
e∈E

cexe

s.t.

(1)
∑

e∈δ(v)\F

xe ≥
∑
e∈F

xe − |F | + 1 (cocircuit inequalities)

(v ∈ V , F ⊆ δ(v), |F | odd if v is R-even,

|F | even if v is R-odd)

(2)
∑

e∈δ(S)

xe ≥ 2 (S = ∪i∈PVi ,P ⊂ {1, . . . , p},P 6= ∅)

(3) xe ∈ {0, 1} (e ∈ E)

I δ(S) = { edges with one extremity in S }
I v is R-even (R-odd) if it is incident to an even (odd) number of

edges of R
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Co-circuit inequalities (1)

(1)
∑

e∈δ(v)\F

xe ≥
∑
e∈F

xe − |F | + 1

(v ∈ V , F ⊆ δ(v), |F | odd if v is R-even,

|F | even if v R-odd)

generalize to

(1′)
∑

e∈δ(S)\F

xe ≥
∑
e∈F

xe − |F | + 1

(F ⊆ δ(S), |F | odd if S is R-even,

|F | even if S is R-odd)
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Special cases of (1′)

R-odd inequalities (1′′) (Corberán, Sanchis, 1994)

S

} S  is  R-odd

R

at least one extra edge must be selected∑
e∈δ(S)

xe ≥ 1 (S is R-odd, F = ∅)

R-even inequalities (1′′′) (Ghiani, Laporte, 2000)

S

} S  is  R-even

R

eb

at least one extra edge must be selected if xeb = 1∑
e∈δ(S)\{eb}

xe ≥ xeb (S is R-even, F = {eb})

In practice, (1′′) and (1′′′) + (2), (3) are sufficient to obtain a feasible
solution.
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Polyhedral properties (Ghiani and Laporte, 2000)

All constraints of the model are facet defining.

Branch-and-cut algorithm

1. Upper bound: compute upper bound z on z∗ (Frederickson).

2. First node of tree:
Relaxed problem:
I one connectivity constraint per component
I one cocircuit inequality (F = ∅) for each R-odd vertex

3. Termination text: if list empty, stop. Otherwise select problem
with least LB.

4. Solve subproblem. If undominated and feasible, update z , and go
to 3.

5. Add cuts (separation heuristics for violated constraints). If
possible, to to 3. If not, go to 6.

6. Branch on a fractional variable. Insert subproblems in list, go to 3.

x ′ = 0 x ′′ = 0 x ′ + x ′′ = x
x ′ = 1 x ′′ = 1
x ′ = 0 x ′′ = 1

34



|V | π p Succ Root Connect R-odd R-even LB/z∗ Nodes Seconds

0.30 9.6 5 5 12.0 33.4 3.6 1.000 1 0.8
7 × 7 0.50 8.4 5 3 10.4 40.8 26.6 0.995 1.8 0.8

0.70 6.0 5 4 8.0 39.2 28.8 0.996 3.0 1.2
0.30 20.2 5 1 39.4 187.8 635.2 0.986 49.4 23.4

10 × 10 0.50 11.4 5 1 19.6 246.8 1399.2 0.997 33.8 56.4
0.70 6.0 5 3 7.8 114.4 105.8 0.999 5.8 17.8
0.30 26.8 5 1 55.6 435.4 1480.8 0.990 96.6 88.6

12 × 12 0.50 16.8 5 1 19.2 116.0 23.8 0.999 2.6 95.0
0.70 5.0 5 3 8.6 379.6 680.2 0.998 27.4 122.6
0.30 41.8 5 0 50.2 179.8 221.2 0.997 7.0 110.4

15 × 15 0.50 22.0 4 0 54.0 712.5 3684.7 0.995 113.5 580.7
0.70 7.2 5 0 8.0 312.6 564.8 0.999 11.0 629.4
0.30 55.8 5 1 189.0 1114.4 5587.6 0.997 199.8 820.8

17 × 17 0.50 26.4 5 0 33.0 441.8 969.8 0.998 21.4 964.6
0.70 6.6 4 0 6.8 522.5 590.7 0.999 12.0 1368.0



Computational results for Type 3 graphs
|V | π p Succ Root Connect R-odd R-even LB/z∗ Nodes Seconds

0.30 8.4 5 5 10.4 32.0 0.5 1.000 1.0 0.8
50 0.50 8.0 5 3 11.2 55.0 21.4 0.999 4.2 1.6

0.70 6.6 5 3 9.2 62.8 63.8 0.996 7.8 2.2
0.30 19.0 5 3 23.0 92.5 12.0 0.998 1.8 4.25

100 0.50 14.8 5 3 18.4 122.6 66.2 0.999 5.8 9.0
0.70 6.0 5 4 11.8 171.4 199.0 0.999 11.4 16.8
0.30 29.0 5 1 44.3 182.3 351.5 0.995 13.5 29.0

150 0.50 19.6 5 2 26.2 226.6 144.0 0.996 8.2 50.2
0.70 8.6 5 1 21.6 344.0 245.0 0.998 13.4 85.8
0.30 38.0 5 1 47.0 241.7 175.3 0.997 6.5 71.0

200 0.50 22.0 5 2 30.5 289.3 310.3 0.998 8.5 181.8
0.70 9.6 5 2 11.6 342.2 344.2 0.999 6.6 241.8
0.30 49.6 5 0 70.5 244.3 335.8 0.997 18.0 194.0

250 0.50 30.2 5 2 34.6 295.0 111.6 0.998 7.0 420.0
0.70 9.8 5 1 10.8 350.0 79.3 0.999 2.5 563.5
0.30 57.6 4 0 82.3 302.8 280.2 0.997 23.8 320.8

300 0.50 32.4 5 0 52.1 324.8 420.5 0.998 20.2 410.2
0.70 9.6 4 0 26.6 341.9 370.8 0.998 21.9 497.8
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Comparison

1. Christofides et al., 1981
Average of 1943 branch-and-bound nodes for |V | ≤ 84

2. Corberán and Sanchis, 1984
Visual branch-and-cut

3. Letchford, 1996
|V | = 50 : LB/z∗ = 0.9972
Only the root node is solved; no branching implemented

4. Ghiani, Laporte, 2000
|V | = 50 : LB/z∗ = 0.998
First full branch-and-cut algorithm
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More recent results for the RPP

I Fernández, Meza, Garfinkel, Ortega (Operations Research, 2003):
New formulation using flow variables

I Corberán, Romero, Sanchis (Mathematical Programming, 2003):
Polyhedral analysis and lower bounds for the mixed general routing
problem

I Blais and Laporte (JORS, 2003): Exact solution of the mixed
general routing problem through graph transformations

I Corberán, Sanchis, Plana (Networks, 2007): Branch-and-cut
algorithm for the windy general routing problem
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The Capacitated Arc Routing
Problem
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The capacitated arc routing problem (CARP)

I Required edges have a demand qij
I Several vehicles of same capacity Q based at the depot

Q = 10

4

42

3

3
2

3

2

1

4

Literature review

I Introduced by Golden and Wong (1981)

I Several heuristics:

Path-Scanning (PS) Golden et al., 1983
Augment-Merge (AM) Golden et al., 1983
Construct-Strike (CS) Christofides, 1973
Modified CS (MCS) Pearn, 1989
Modified PS (MPS) Pearn, 1989
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CARPET: A tabu search heuristic for the CARP (undirected)
(Hertz, Laporte, Mittaz, Operations Research, 2000)

1. 1st feasible solution
I Solve RPP using Frederickson’s (1979) heuristic
I Cut solution into feasible routes

2. Post-Opt
I Paste: merge routes (into a single route)
I Switch: diversification strategies – reverse chains (v , . . . , v)
I Cut
I Shorten: applied to each route

3. Tabu search
I Move edges to neighbour routes
I Infeasible routes are considered during the search

cut

paste

shorten

switch
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More recent heuristics for the undirected CARP:

I Hertz and Mittaz (Transportation Science, 2001): Variable
neighbourhood search

I Beullens, Muyldermans, Cattrysse, Van Oudheusden (EJOR, 2003):
Guided local search

I Doerner, Hartl, Maniezzo, Reimann (Lecture Notes in Computer
Science, 2004): Ant colony optimization

I Lacomme, Prins, Ramdane-Cherif (Annals of Operations Research,
2004): Memetic algorithm

I Belenguer, Benavent, Lacomme, Prins (Computers & Operations
Research, 2006): Lower bounds and heuristics for the mixed CARP

I Brandão and Eglese (Computers & Operations Research, 2008):
Tabu search
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Computational results on the DeArmon (1981) instances
Instance CARPET (T ) Best
Number |V | |E| PS AM CA MCA MPS F0 T = 1 T = 10 CARPET Known F Seconds

1 12 22 316 326 331 323 316 337 323 323 316 316 316 17.1
2 12 26 367 267 418 345 355 345 345 345 339 339 339 28.0
3 12 22 289 316 313 275 283 289 275 275 275 275 275 0.4
4 11 19 320 290 350 287 292 330 287 287 287 287 287 0.5
5 13 26 417 383 475 386 401 414 406 377 377 377 377 30.3
6 12 22 316 324 356 315 319 323 315 298 298 298 298 4.6
7 12 22 357 325 355 325 325 325 325 325 325 325 325 0.0

10 27 46 416 356 407 366 380 398 382 358 352 348 344 330.6
11 27 51 355 339 364 346 357 350 332 328 317 311 303 292.2
12 12 25 302 302 364 275 281 283 283 275 275 275 275 8.4
13 22 45 424 443 501 406 424 427 417 409 395 395 395 12.4
14 13 23 560 573 655 645 566 560 516 506 458 458 448 111.8
15 10 28 592 560 560 544 551 564 556 548 544 544 536 13.1
16 7 21 102 102 112 102 100 104 102 100 100 100 100 2.6
17 7 21 58 58 58 58 58 58 58 58 58 58 58 0.0
18 8 28 131 131 149 127 131 131 129 127 127 127 127 9.2
19 8 28 93 91 91 91 93 91 91 91 91 91 91 0.0
20 9 36 168 170 174 164 167 174 172 164 164 164 164 1.5
21 11 11 57 63 63 63 55 63 57 55 55 55 55 1.1
22 11 22 125 123 125 123 123 125 125 123 121 121 121 51.5
23 11 33 168 158 165 156 163 164 158 156 156 156 156 6.1
24 11 44 207 204 204 200 202 206 204 202 200 200 200 18.3
25 11 55 241 237 237 233 244 239 239 237 235 233 233 186.3

Average Deviation 7.2% 5.6% 13.9% 3.9% 4.4% 6.6% 3.4% 1.4% 0.2%
Worst Deviation 22.3% 25.1% 43.0% 40.8% 23.6% 22.3% 12.7% 10.5% 1.9%
Number of Optima 2 3 1 12 5 3 5 13 18
Number of Best 2 3 2 12 5 3 5 13 20
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Synchronized Arc Routing Problem for Snow Plowing
Operations

Given a network of streets and a fleet of snow plowing vehicles based at
a depot, the SyARP consists of finding a set of routes such that all
streets, some of which have multiple lanes, are plowed by using
synchronized vehicles, and the completion time of the longest route is
minimized.
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The street segments have one or two directions.

The number of lanes goes from 1 to 3 in each direction.

All lanes belonging to the same segment (in the same direction)
must be plowed simultaneously.

Deadheading is allowed.
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Figure 1: City map and synchronized routes for three vehicles.
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Optimization Model

Decision Variables

xkijr =


1 if arc (i, j) is traversed by vehicle r and appears

in the kth position of the route while deadheading
0 otherwise.

ykijr =


1 if arc (i, j) is serviced by vehicle r and appears

in the kth position of the route
0 otherwise.

tkijr is the starting time of service or traversal of arc (i, j) by

vehicle r and this arc appears in the kth position of the route.
wkijr is the waiting time of vehicle r after service or traversal of

arc (i, j) when it appears in the kth position of the route.
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Optimization Model

Parameters

tij is the servicing time of arc (i, j)
t′ij is the traversing time of arc (i, j)

R is the set of available vehicles
e is the maximum number of arcs included in any route r ∈ R
nij is the number of lanes on arc (i, j)

Artificial vertex 0′

This vertex represents the artifical depot, used as the end point of all
routes. It is needed because any route may pass through the depot
several times.
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Optimization Model

Makespan Minimization

Min z = max
r∈R,k∈K

{
tk00′r

}
All vehicles start and end at a depot 0′

x10′0r + y10′0r = 1 r ∈ R∑
(0,j)∈A

x20jr + y20jr = 1 r ∈ R

∑
k∈K

xk00′r + yk00′r = 1 r ∈ R
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Optimization Model

All lanes should be plowed

∑
k∈K

∑
r∈R

ykijr = nij , (i, j) ∈ A

Time

(tkijr + tij)y
k
ijr + (tkijr + t′ij)x

k
ijr + wkijr =

∑
(j,h)∈A∪(0,0′)

tk+1
jhr (xk+1

jhr + yk+1
jhr )

r ∈ R, (i, j) ∈ A; k ∈ K \ {1, e}
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Optimization Model

At most one arc per position in each route

∑
(i,j)∈A∪{(0′,0),(0,0′)}

xkijr + ykijr ≤ 1 r ∈ R; k ∈ K

Synchronization of routes

ykijr

tkijr −∑
q∈R

∑
c∈K\{1}

tcijqy
c
ijq

 /nij = 0,

(i, j) ∈ A, r ∈ R; k ∈ K \ {1}
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Optimization Model

Routes Connectivity

∑
(i,j)∈A

(xkijr + ykijr) ≤
∑

(j,h)∈A∪(0,0′)

(xk+1
jhr + yk+1

jhr )

r ∈ R, j ∈ V ; k ∈ K \ {1, e}
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SyARP Complexity

Given an instance of the SyARP in which λ = 1, all arcs are incident to
the depot and the servicing and traversing time on any arc are such
that t0i = t′0i and ti0 = t′i0. The recognition problem consists of
determining whether there exists a solution of cost at most equal to z̄.

It is equivalent to the recognition version of a Bin Packing Problem
with |R| bins of capacity z̄ and items of sizes (t0i + ti0), which is
NP-complete. Then the SyARP is NP-hard.
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Initial solutions

Given a multigraph G = (V,A), a set R of available vehicles, and a
number λ.
Let {C1, ..., Cλ} a partition of A.
Let µl equal to l if Cl 6= ∅ and to 0 otherwise.
Assume that |R| ≥ µλ.
Since the objective function is to minimize the makespan, we try
to service the different classes simultaneously. Therefore |R|
should be at least

∑λ
l=1 µl. If it is not satisfied, we determine the

largest α such that
∑λ

l=λ−α µl ≤ |R| and we merge the classes
C1, ..., Cλ−α into a single class Cλ−α. Otherwise, α = λ− 1.
We assign vl vehicles to each class Cl such that vl must be a
multiple fl of µl and

∑λ
l=λ−α vl = |R|. As there are many ways to

satisfy this equation, there also exists several possible fleet
distributions (fλ−α, ..., fλ).
For each fleet distribution (fλ−α, ..., fλ) we build a feasible solution
of the SyARP.
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Initial solutions

G(V,A), λ = 3, and |R| = 12.
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Initial solutions

Arcs classification according to the number of lanes.

15 / 39



Problem Description Mathematical Formulation ALNS heuristic Computational Results Conclusions

Initial solutions

For each class Cl choose fl seed arcs. Suppose l = 3 and f3 = 3.
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Initial solutions

Routes extension by keeping route lengths balanced.
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Initial solutions

Assigning arcs to routes.
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Initial solutions

Assigning arcs to routes. All links are done by means of shortest
paths.
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Initial solutions

Assigning arcs to routes by minimizing the small circuits.

20 / 39



Problem Description Mathematical Formulation ALNS heuristic Computational Results Conclusions

Initial solutions

Assigning arcs to routes.
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Initial solutions

The assignment process finishes when all arcs (i, j) ∈ Cl have been
assigned.
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Routes Ending

When all arcs (i, j) ∈ Cl have been assigned, the current routes are
connected to the depot by means of shortest paths.
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Algorithm 1 Improvement phase of the ALNS heuristic
Require:

P : Initial feasible solution. Ω: Set of destroy/repair operators
Ensure: Pb: Incumbent solution

Pb ← P , Π = ∅, U(ω) = 0, S(ω) = 0, ρω = 1/|Ω|, for all ω ∈ Ω
while Stop criterion is not met do

Choose a destroy/repair operator ω ∈ Ω using the roulette wheel selection principle based on current
weights ρω
while Three consecutive non-improvement solutions are not found do

Set U(ω)← U(ω) + 1
Generate Pn from P applying operator ω.
if z(Pn) < z(P ) then

Set P ← Pn, S(ω)← S(ω) + 1
else

if z(Pn) ≤ 1.10z(Pb) then
Generate an uniform random number θ ∈ [0, 50]
if |Π| < θ < 50 then

Set P ← Pn, Π← Π ∪ Pn
end if

end if
end if
if z(Pn) < z(Pb) then

Update the incumbent solution, set Pb ← Pn
end if

end while
if the end of the search segment is reached then

ρω = 1/|Ω|
else

ρω = S(ω)/U(ω)
end if

end while
return Pb
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Repair/Destroy Operators

Arcs Sequence Removal-Insertion

A sequence of arcs is removed from the longest route and is inserted in
another route.

N1: The insertion point is after the arc that has the shortest path
from the initial arc of the sequence.

N2: The insertion point is randomly chosen.
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Repair/Destroy Operators

Interchange of Arc Status

N3: An arc (l,m) serviced by the longest route is randomly
chosen. If another route uses this arc just for traversal, the
statuses of this arc in these routes are interchanged.

N4: The route with the shortest ending time is chosen and an arc
(i, j) which is just traversed by the route is randomly selected.
Another route servicing the arc (i, j) is identified and an
interchange of statuses in the arc (i, j) is carried out in both
routes.
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Repair/Destroy Operators

First Traversed-First Serviced

N5: this procedure is applied to each route Pd ∈ P in such a way that
the arcs that are both serviced and traversed by Pd are reordered in an
attempt to reduce the makespan. Thus, each arc that is both serviced
and traversed by Pd will be forced to be serviced the first time it is
traversed in route Pd.
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Instances tested

The algorithm was coded in C++ and compiled on a 2592.574
MHz AMD Opteron(tm) processor 285 with 1GB of RAM under
the Linux operating system.

Three instance sets with 42, 180, and 300 vertices were generated
on same grid shape.

Figure 2: Instances shape.
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Instances features

Fifteen instances were generated for each set.

The minimum number of arcs for each set was 113, 499, and 795,
respectively.

The instances have arcs with one, two or three lanes.

The number of available vehicles for each set was 12, 18, and 25,
respectively.

29 / 39



Problem Description Mathematical Formulation ALNS heuristic Computational Results Conclusions

Table 1: Best found solutions reported by ALNS.

Instance N1 (N1,N2) N\(N4,N5) N\(N5) N
N42V12L3-1 379.78 380.81 369.68 363.21 357.45
N42V12L3-2 408.29 408.29 392.80 392.80 353.57
N42V12L3-3 377.84 377.84 369.65 361.07 365.19
N42V12L3-4 473.30 473.30 473.30 473.30 458.46
N42V12L3-5 400.90 400.90 377.02 381.08 381.21
N42V12L3-6 462.15 462.15 461.00 450.72 411.25
N42V12L3-7 381.65 378.90 369.47 361.16 358.74
N42V12L3-8 405.50 405.50 379.41 383.83 368.39
N42V12L3-9 406.33 406.33 379.16 383.58 383.92
N42V12L3-10 414.49 414.49 410.16 400.05 414.49
N42V12L3-11 379.78 380.81 369.68 363.21 357.45
N42V12L3-12 506.28 506.28 506.28 502.78 486.10
N42V12L3-13 403.69 403.69 396.94 390.08 377.10
N42V12L3-14 414.09 414.09 396.81 396.81 383.67
N42V12L3-15 379.59 380.62 352.91 352.91 368.13
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Table 2: Best found solutions reported by ALNS, instances set (180,18).

Instance N1 (N1,N2) N\(N4,N5) N\(N5) N
N180V18L3-1 753.36 713.95 606.98 606.34 593.90
N180V18L3-2 660.10 660.10 605.97 591.01 570.59
N180V18L3-3 493.95 502.65 488.60 488.60 481.39
N180V18L3-4 561.17 574.48 525.70 525.70 538.94
N180V18L3-5 559.91 566.48 506.44 506.44 488.74
N180V18L3-6 540.96 540.96 522.86 525.22 506.35
N180V18L3-7 611.79 611.79 594.95 592.75 580.13
N180V18L3-8 626.83 626.83 613.05 625.87 625.87
N180V18L3-9 653.55 653.55 634.77 634.77 593.75
N180V18L3-10 680.45 680.45 618.25 634.67 636.40
N180V18L3-11 818.47 818.47 767.47 784.63 779.30
N180V18L3-12 742.25 751.03 684.24 697.79 689.18
N180V18L3-13 680.73 680.73 673.88 673.09 669.38
N180V18L3-14 782.63 790.45 705.95 699.15 698.28
N180V18L3-15 661.36 661.36 633.71 614.67 650.06
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Table 3: Best found solutions reported by ALNS, instances set (300,25).

Instance N1 (N1,N2) N\(N4,N5) N\(N5) N
N300V25L3-1 784.43 784.43 773.04 773.04 757.99
N300V25L3-2 688.14 663.25 655.85 656.51 612.86
N300V25L3-3 628.78 628.78 627.58 627.58 627.84
N300V25L3-4 606.63 606.63 573.61 560.50 590.84
N300V25L3-5 727.14 727.14 659.31 665.66 636.86
N300V25L3-6 734.79 734.79 663.94 669.32 649.29
N300V25L3-7 819.86 824.62 728.61 746.52 721.98
N300V25L3-8 554.75 567.06 549.41 549.20 536.06
N300V25L3-9 651.10 651.10 612.13 627.78 601.26
N300V25L3-10 651.61 651.61 615.25 627.99 641.52
N300V25L3-11 836.55 841.59 731.04 784.10 777.29
N300V25L3-12 769.25 766.82 733.32 743.99 735.74
N300V25L3-13 738.86 738.86 680.16 672.21 656.34
N300V25L3-14 663.34 673.93 599.67 593.91 577.23
N300V25L3-15 578.13 578.13 516.40 506.39 493.04
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Instances (42,12)
gap(%) N1 (N1,N2) N\(N4,N5) N\(N5) N
Min 3.00 3.24 0.00 0.00 0.00
Ave 7.23 7.24 3.80 2.97 0.76
Max 15.47 15.47 12.10 11.09 4.31

Instances (180,18)
gap(%) N1 (N1,N2) N\(N4,N5) N\(N5) N
Min 1.70 1.70 0.00 0.00 0.00
Ave 9.17 9.27 2.07 2.22 1.04
Max 26.85 20.21 6.91 6.91 5.76

Instances (300,25)
gap(%) N1 (N1,N2) N\(N4,N5) N\(N5) N
Min 0.19 0.19 0.00 0.00 0.00
Ave 9.79 9.86 2.31 3.05 1.09
Max 17.26 17.26 7.01 7.26 6.33
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Table 4: Computation time for all instance sets.

ALNS Average Time (s)

Instances Initial N1 (N1,N2) N\(N4,N5) N\(N5) N

N42V12L3 0.36 8.73 12.47 8.40 8.13 13.67
N180V18L3 2.20 232.00 275.13 202.87 202.00 698.87
N300V25L3 9.31 1372.53 1443.40 1018.93 998.40 4843.00
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Table 5: Average percent improvement of the improvement phase over the
construction phase in our ALNS heuristic.

Instances % Improvement

N42V12L3 46.78
N180V18L3 21.91
N300V25L3 16.13

The average improvement ranges from 16.13% in the largest instance
set (N300V25L3) to 46.78% in the smallest instance set (N42V12L3).
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Figure 3: Case study: Dieppe, New Brunswick, Canada has approximately
144 km of roads to plow, representing 363 lane-km.
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Dieppe instance

The Dieppe street network contains 430 vertices and 1056 arcs
which have one or two lanes.

We have studied the case where there are eight available vehicles
traveling and servicing at a speed of 48 and 12 km/h, respectively.

Results

Our ALNS heuristic was able to generate in 538 seconds a set of routes
with a makespan of 3 hours and 28 minutes.
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Synchronized Routes

Figure 4: Synchronized vehicles for servicing two-lane streets.
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Conclusions

1 We have introduced a synchronized arc routing problem for snow
plowing operations.

2 A mixed integer non-linear model has been presented.

3 A solution procedure based on adaptive large neighborhood search
metaheuristic was proposed.

4 Five destroy/repair operators were developed.

5 The performance of the proposed ALNS procedure was evaluated
over large instances.

6 In addition, the performance of our ALNS procedure was
evaluated on a real-world instance.
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