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8 [1] This work presents a new implementation of the mixed potential integral equation
9 (MPIE) for planar structures that can include ferrite layers arbitrarily magnetized. The
10 implementation of the MPIE here reported is carried out in the space domain. Thus it will
11 combine the well-known numerical advantages of working with potentials as well as the
12 flexibility for analyzing nonrectangular shape conductors with the additional ability of
13 including anisotropic layers of arbitrarily magnetized ferrites. In this way, our approach
14 widens the scope of the space domain MPIE and sets this method as a very efficient and
15 versatile numerical tool to deal with a wide class of planar microwave circuits and
16 antennas.

18 Citation: Mesa, F., and F. Medina (2007), Numerical implementation of the mixed potential integral equation for planar

19 structures with ferrite layers arbitrarily magnetized, Radio Sci., 42, XXXXXX, doi:10.1029/2006RS003466.

21 1. Introduction

22 [2] The use of microwave ferrite materials is well
23 known to provide the nonreciprocal characteristics
24 required in some microwave devices as well as tuning
25 capabilities through the application of an external mag-
26 netic field [Baden Fuller, 1987; Schuster and Luebbers,
27 1996; Xie and Davis, 2001]. The inclusion of ferrite
28 layers in planar transmission lines, planar circuits and
29 planar antennas has been object of attention by a number
30 of researchers [Pozar and Sanchez, 1988; Pozar, 1992;
31 Yang, 1994; Fukusako and Tsutsumi, 1997; Tsang and
32 Langley, 1998; Oates and Dionne, 1999; How et al.,
33 2000; Nurgaliev et al., 2001; León et al., 2001, 2002].
34 Unfortunately, most of the common computer tools
35 currently employed for the analysis and design of planar
36 printed circuits and antennas cannot be applied to struc-
37 tures whose layered substrate includes nonisotropic
38 materials. Nevertheless, a spectral domain implementa-
39 tion of the electric field integral equation (EFIE) [see,
40 e.g., Pozar, 1992; León et al., 2002] is available to deal
41 with planar structures loaded with ferrite layers. Indeed,

42the inclusion of nonisotropic layers is relatively straight-
43forward in the spectral domain frame since spectral
44domain Green’s functions have been developed for
45general linear media, including ferrites. However, a clear
46disadvantage of the spectral domain approach lies on its
47inability to handle efficiently with nonrectangular shape
48conductors. This limitation can be very important in
49practice and strongly reduces the versatility of the
50numerical tools based on that approach.
51[3] The incorporation of nonrectangular shaped con-
52ductors requires to use space domain formulations,
53which are suitable for using basis functions that can
54match any geometry. Thus a possible solution of the
55aforementioned problem could be the implementation of
56the corresponding EFIE in the space domain after
57performing the necessary inverse Fourier transformations
58to obtain the space domain counterpart of the spectral
59domain Green’s dyadic. However, the space domain
60Green’s dyadic required to solve the EFIE (for both
61isotropic and/or anisotropic structures) presents hyper-
62singularities [Bressan and Conciauro, 1985; Tai, 1971],
63which are further transferred to the reaction integrals
64appearing after application of the method of moments
65(MOM) to solve the integral equation [Arcioni et al.,
661997]. The presence of these hypersingularities in the
67reaction integrals clearly degrades the numerical perfor-
68mance of the method and makes it necessary a lot of
69previous analytic preprocessing. This preprocessing has
70been already carried out in the case of using only
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71 isotropic and/or some kind of nonisotropic substrates (for
72 example, uniaxial dielectrics). In such situations the
73 above hypersingularities have been conveniently treated
74 by the authors, thus making the space domain EFIE as
75 competitive numerical tool as the alternative mixed
76 potential integral equation (MPIE) in those circumstan-
77 ces [Plaza et al., 2002; Mesa and Medina, 2002].
78 Unfortunately, the techniques reported by Plaza et al.
79 [2002] and Mesa and Medina [2002] cannot be easily
80 extended to deal with more general types of anisotropy.
81 In particular, it has been the considerable difficulty to
82 find a closed-form expression for the quasi-static part of
83 the spectral domain Green’s dyadic in the case of general
84 anisotropy what has precluded the obtaining of explicit
85 and closed-form expressions for the hypersingular terms
86 of the corresponding EFIE space domain Green’s dyadic
87 [Plaza et al., 2002].
88 [4] Nevertheless, there is still another possibility.
89 Indeed, a convenient solution to the problem under
90 discussion would be the implementation in the space
91 domain of a MPIE (which is free of hypersingularities)
92 that could also deal with complex nonisotropic layers.
93 This purpose seems to be feasible, at least for planar
94 structures whose layered substrate presents any type
95 of magnetic anisotropy, once a numerical method to
96 compute the required space domain Green’s functions
97 associated with the MPIE has been reported [Mesa and
98 Medina, 2004]. Thus, starting from the Green’s functions
99 reported by Mesa and Medina [2004], the present paper
100 will extend the work of Mesa and Medina [2005]
101 presenting the details of the explicit implementation
102 and numerical solution of the MPIE for planar structures
103 having metallizations of arbitrary shape and layers of
104 isotropic/uniaxially anisotropic dielectrics and/or ferrites
105 magnetized by an external biasing field arbitrarily
106 oriented. The power of the method is illustrated by
107 means of the simulation of planar filters printed on
108 magnetized ferrite substrates.

109 2. Analysis

110 [5] The problem of a printed planar structure with a
111 layered substrate that can include isotropic/uniaxial-
112 anisotropic dielectrics and arbitrarily magnetized ferrites
113 is posed in terms of the following MPIE for the
114 tangential electric field, Et, on the surface of the
115 conductors:

Etjcond ¼ �jwAt J½ � � rtF
r � J
jw

� �
¼ 0: ð1Þ

117 where J is the surface current density on the conductors
118 which are assumed perfect. An harmonic time dependence
119 of the type exp(jwt) is assumed throughout the paper.

120[6] The method of moments (MOM) is now used to
121solve the above integral equation after expanding the
122surface current density, J, as

J ¼
XN
n¼1

anJn; ð2Þ

123where Jn are basis functions defined in subsectional
125triangular regions in order to be able of modeling any
126conductor shape. The application of the MOM leads to
127the following system equation:

hJm;Eti ¼
XN
n¼1

an Wmn þ�mnð Þ;

m ¼ 1; . . . ;N ð3Þ

129where

Wmn ¼ �jwhJm;GA  Jni ð4Þ

�mn ¼
1

jw
hJm;rF qn½ �i; ð5Þ

133with qn = r � Jn, h�,�i accounts for inner product, GA

134denotes the space domain Green’s dyadic that relates the
135magnetic vector potential with the current density, and 
136means convolution product.
137[7] The application of the divergence theorem to the
138reaction integrals�mn allows us to express equation (5) as

�mn ¼
1

jw

Z
C

FnJmn̂ dl

�
�
Z
S

qmF qn½ �dS
�
; ð6Þ

140where n̂ is the unit vector normal to the path C that
141surrounds the surface region S where the basis function
142Jm is defined. The contribution of the linear integral term
143in equation (6) can be ignored since either it gets null at
144the exterior edges of the conductor boundaries or it is
145eventually canceled out by an opposite term in the
146interior edges. Thus the finally relevant contribution of
147equation (6) can be expressed as

�mn ¼ � 1

jw
hqm;GF  qni; ð7Þ

149where GF is the space domain Green’s function that
150relates the scalar potential with the surface charge.
151[8] If the well-known triangular subdomain RWG
152functions [Rao et al., 1982] are employed as basis
153functions, it is found that qm � qn = 2, and the reaction
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154 integrals (4) and (7) can be readily obtained from the
155 following integrals:

Wpq
ab ¼ � jw

hahb

Z
Tp

dS ra rð Þ �
Z
T 0
q

dS0 GA r� r0ð Þ � rb r0ð Þ

ð8Þ

�pq
ab ¼ � 4

jwhahb

Z
Tp

dS

Z
T 0
q

dS0 GF jr� r0jð Þ; ð9Þ

159 where Ts denotes the triangular subdomain s, and the
160 other geometrical quantities can be referred, for example,
161 to Mesa and Medina [2002, Figure 2].
162 [9] Before to deal with the computation of the above
163 reaction integrals, the vector potential and the scalar
164 potential Green’s functions have to be obtained. This topic
165 has been widely treated in the literature [Michalski and
166 Zheng, 1990a, 1990b; Sercu et al., 1995] but not for the
167 case of arbitrarily magnetized ferrite layers. Only recently
168 [Mesa and Medina, 2004] a method able to compute the
169 MPIE Green’s functions for the case of planar structures
170 with magnetic anisotropic layers has been reported. In that
171 work, the space domain MPIE Green’s functions were
172 computed by performing an inverse double Fourier trans-
173 form of the corresponding spectral domain counterparts,
174 which in turn were derived from the EFIE dyadic Green’s
175 function. Following [Mesa andMedina, 2004], the regular
176 parts of the MPIE Green’s functions have to be computed
177 by means of an intensive double numerical Fourier inte-
178 gration whereas the singular parts of these functions can
179 be expressed in closed form as

GA;sing r;8ð Þ ¼ G 8þ p=2ð Þ
2pr

ð10Þ

GF;sing rð Þ ¼ Y
2pr

; ð11Þ

183where r, 8 are the polar coordinates in the tangential
184plane, and G and Y are related to the asymptotic values of
185the spectral domain Green’s functions in the following
186way:

G xð Þ ¼ lim
kr!1

kr
eGA kr; x

� 	
ð12Þ

Y ¼ lim
kr!1

kreGF kr
� 	

ð13Þ

190(kr and x are the radial and the angular spectral variables
191respectively).
192[10] The decomposition of the Green’s functions in
193regular and singular parts is further translated to the
194computation of the reaction integrals, which allows us to
195write

Wpq
ab ¼ Wpq

ab;reg þ Wpq
ab;sing ð14Þ

�pq
ab ¼ �pq

ab;reg þ�pq
ab;sing : ð15Þ

199The regular parts above are numerically computed by
200means, for example, of appropriate Stroud triangular
201quadratures [Stroud, 1971; Graglia, 1993], adjusting the
202number of quadrature points in function of the distance
203between the triangular subdomains Tp and Tq. In our
204computer codes, a single quadrature point is used if the
205distance between subdomains is larger than l0 (free-
206space wavelength), three points are used if that distance
207ranges between 0.1l0 and lo and seven points if the
208triangular subdomains are closer than 0.1l0. The double
209surface integrals related to the singular part of the scalar
210Green’s function,

�pq
ab;sing ¼ � 4

jwhahb

Z
Tp

dS

Z
T 0
q

dS0
1

R
; ð16Þ

212(R is the modulus of vector R in Figure 1) can be
213computed following, for example, the procedures pre-
214sented by Wilton et al. [1984], Graglia [1993], Arcioni et
215al. [1997], and Rossi and Cullen [1999]. The singular
216integrals related to the vector potential Green’s function
217can be expressed as

Wpq
ab;sing ¼ � jw

hahb
I
pq
ab ; ð17Þ

219where

I
pq
ab ¼

Z
Tp

dS ra rð Þ �
Z
T 0
q

dS0
Q 8ð Þ
R

� rb r0ð Þ; ð18Þ

Figure 1. Geometry related to integral Iab
pq .
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221 with Q (8) � G(8 + p/2). At this point it is interesting to
222 note that for structures with cylindrical symmetry with
223 respect to the normal-to-interfaces axis (i.e., structures
224 with layers of isotropic and uniaxially anisotropic di-
225 electrics, as well as ferrites with the external magnetiza-
226 tion along the normal axis), the singular integrals to be
227 treated are simplified forms of equation (18). In particular,
228 they are found to be of the following general type:

I
pq
ab ¼

Z
Tp

dS ra �
Z
T 0
q

dS0
1

R
rb ; ð19Þ

230 which has been conveniently treated in the literature
231 [Arcioni et al., 1997; Mesa and Medina, 2002]. In our
232 case, the presence of the dyadic appearing in the integrand
233 of equation (18) as well as it angular dependence
234 precludes the use of some of the efficient schemes (and
235 closed-form expressions) previously reported. In this way,
236 and after trying different approaches based on analytical
237 preprocessing, our most efficient procedure to compute
238 equation (18) involves to write the vector from vertex b of
239 triangle T0q (see Figure 1) as

rb ¼ mb � R ; ð20Þ

241 with mb being constant when integrating in T0q. This trick
242 allows us to express equation (18) as

I
pq
ab ¼

Z
Tp

dS ra � I4 �mb � F

 �

; ð21Þ

244 where

I4 ¼
Z
T 0
q

dS0
Q 8ð Þ
R

ð22Þ

F ¼
Z
T 0
q

dS0 Q 8ð Þ � R̂ ; ð23Þ

248where R̂ = R/R. The integrand of the surface integral F
249above always shows a smooth behavior, and thus this
250integral can be numerically performed very efficiently
251using, for example, Stroud quadratures of low order (in
252practice seven-point quadratures are found to provide
253sufficient accuracy). In order to compute the dyadic
254singular surface integral in equation (22), the following
255identity has been used:

Qij 8ð Þ
R

¼ Qij 8ð Þr � R̂ ¼ r � Qij 8ð ÞR̂

 �

; ð24Þ

257so as to turn equation (22) into a contour integral after
258applying the divergence theorem:

I4;ij ¼ �
Z
T 0
q

dS0 r0 � Qij 8ð ÞR̂

 �

ð25Þ

¼ �
Z
@T 0

q

dl0 Qij 8ð Þn̂ � R̂ : ð26Þ

263[11] Operating in the contour integral (26), and taking
264into account the geometry shown in Figure 2, I4 can be
265finally expressed as

I4 ¼ �
X3
i¼1

R0;i � n̂i
Z
side i

Q 8ð Þ
R

dl0 : ð27Þ

267Fortunately, this final form of the integral can be
268efficiently performed by means of, for example, Gauss-

Figure 2. Geometry related to the contour integrals in
each side of the triangle.

Figure 3. Layout of the coupled line filter printed on a
ferrite substrate analyzed by León et al. [2004] and used
for comparison purposes.
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269 Kronrod quadratures of low order. Note that point O0

270 might be a point of the side i. In case O0 belongs to side i,
271 it has been found very convenient to split the integration
272 interval into two intervals so as to avoid the associated
273 quasi-singularity appearing in the integrand.

274 3. Numerical Results

275 [12] In this section some results will be shown to
276 validate the accuracy of the present approach and to
277 illustrate its potential as a useful tool to analyze rela-

278tively complex structures containing layers of magne-
279tized ferrites.
280[13] The validation of the present approach will be
281done by comparing our results with those previously
282obtained by León et al. [2004] for a coupled line micro-
283strip filter fabricated on a layer of magnetized ferrite. The
284layout of the filter is shown in Figure 3. The analysis of
285León et al. [2004] is carried out in the spectral domain,
286for which the structures there studied only involved
287rectangular-shaped conductors. In particular, the compar-
288ison in Figure 4 shows that our results for the return and

Figure 4. Return (jS11j) and insertion (jS21j) losses of coupled line microstrip filter printed
on a normally magnetized ferrite with (see Figure 3) w = 0.38 mm, s = 0.19 mm, g = 0.76 mm,
l = 7.8 mm, h = 0.625 mm, "r = 15, m0Ms = 0.178 T, m0H0 = 0.01 T, and m0DH = 0.001 T.
Open and solid squares correspond to the results reported by León et al. [2004].

Figure 5. Top view of a pair of SRRs printed on a grounded ferrite slab and excited by a microstrip
line. For structural parameter of the substrate, h = 0.49 mm, "r = 15, m0Ms = 0.8 T, m0H0 = 0.2 T, and
m0DH = 0.001 T; for the microstrip line, w = 0.3 mm; and for the SRR, R = 2.2 mm, ws = 0.14 mm,
s = 0.25 mm, and l = 4.25 mm.
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289 insertion losses of the filter printed on a normally biased
290 ferrite agree reasonably well with those reported by León
291 et al. [2004, Figure 3]. The same agreement has been
292 found (although not explicitly shown) for other values of
293 the external magnetizing field. Differences can be attrib-
294 uted to the different meshing schemes used in the
295 compared methods. This favorable comparison means
296 that the computer code based on the new space domain
297 formulation presented in this paper can be used with
298 confidence.
299 [14] Once our approach has been validated for the case
300 of rectangular shaped structures, it is now used to study a

301geometrically more complex nonrectangular planar cir-
302cuit. In particular we will study the possibilities of
303external tunability of the characteristics of a compact
304dual-band microstrip filter built up with split ring reso-
305nator (SRR) particles. Our study will focus on the
306analysis of a pair of SRRs excited by a microstrip line
307as shown in Figure 5.
308[15] This basic structure is a derivation on a filter
309previously reported by Martel et al. [2004], with the
310difference that our structure does not have a window in
311the ground plane. The structure under analysis behaves
312as a nonoptimized dual-band filter, and it could be the

Figure 6. (top) Return and (bottom) insertion losses (in dB) of a pair of SRRs excited by a
microstrip line. The structural parameters are given in Figure 5.
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313 basis for more practical designs containing SRR particles
314 after applying an optimization process (this topic is
315 beyond the scope of the present work, although the
316 method here presented should be a convenient tool for
317 this purpose). Thus Figure 6 shows the effect of an
318 external magnetic field biasing the structure in two
319 orthogonal directions (along the microstrip direction,
320 z axis, and normally to the interfaces, y axis) on the
321 return and insertion losses of the structure. These results
322 are shown together with those corresponding to the same
323 SRR configuration but with the ferrite substrate replaced
324 by a simple dielectric with er = 15. It can be observed
325 how the external magnetization field clearly provides a
326 method to tune the passbands of the filter. Tuning can be
327 carried out by adjusting the intensity of the magnetic
328 field or its direction with respect to the normal to the
329 ferrite substrate.

330 4. Conclusions

331 [16] This paper has presented a new implementation of
332 the MPIE in the space domain able to deal with planar
333 structures containing anisotropic magnetic layers and
334 conductors of arbitrary shape. The corresponding space
335 domain Green’s functions (previously developed by the
336 authors) are the kernel of the integral equation, whose
337 solution by means of the MOM gives rise to a new type
338 of reaction integrals that are here treated and their
339 computation optimized. Some results are shown to
340 validate our proposal, and finally some new results are
341 presented for a pair of split ring resonators printed on a
342 grounded ferrite excited by a microstrip line. This
343 structure can be an example of the potentiality of the
344 method for the design of tunable filters and other devices
345 by means of an external biasing magnetic field.

346 [17] Acknowledgments. This work has been supported by
347 the Spanish Ministry of Education and Science and FEDER
348 funds (project CICYT TEC2004-03214).
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