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[1] In this paper it is shown for the first time that a novel transition may occur for dominant
(quasi transverse electromagnetic (quasi-TEM)) leaky modes on microstrip line, between a
leaky mode that leaks into the TM0 surface wave mode and one that leaks both into the
surface wave and into space. The modal evolution of leaky modes as a function of frequency
is studied by means of a full-wave spectral domain approach, and it is shown that such
transitions occur on microstrip lines that have a critical strip width, which is relatively large.
When the strip width is equal to the critical value, a transition frequency will exist at
which the attenuation constant of the leaky mode drops exactly to zero and the leaky mode
has a real propagation wave number exactly equal to the free-space wave number. At this
frequency, the leaky mode transitions from one that leaks into only the surface wave to
one that also leaks into space. In a frequency neighborhood of the transition frequency,
very large spurious effects may be produced because of interference between the
fundamental quasi-TEM mode and the continuous spectrum current.
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1. Introduction

[2] The study of leaky modes on printed-circuit lines
has received considerable attention in recent years,
because of their role in the representation and explana-
tion of spurious transmission effects [see, e.g.,
Shigesawa et al., 1988; Freire et al., 1999; Langston et
al., 2001; Mesa et al., 2001; Mesa and Jackson, 2002a].
Such undesirable effects include power loss, spurious
transmission dips due to interference between the fun-
damental quasi transverse electromagnetic (quasi-TEM)
bound mode current and the leaky mode current, and
crosstalk with adjacent lines or circuits.
[3] As is known, two types of leaky modes may

generally exist on printed-circuit lines, that is, surface
wave leaky modes (SFWLM) and space wave leaky

modes (SPWLM). The former radiate while propagating
along the line into one or more surface waves supported
by the background planar structure; the latter, which may
exist on vertically unshielded structures only, radiate
both into surface waves and directly into space [Oliner,
1987; Das and Pozar, 1991; Bagby et al., 1993].
[4] Until now, it has never been observed that one type

of leaky mode may transition into the other type for the
quasi-TEM mode on microstrip line, and in fact, such a
transition was not even thought possible [Mesa et al.,
2002]. (Transitions from real improper modes to
SPWLMs were reported by Rodrı́guez-Berral et al.
[2004] for microstrip lines with an upper dielectric
half-space.) It is shown here for the first time that under
certain conditions, such a transition will occur. The
required condition is a critical strip width, the value of
which depends on the substrate permittivity and thick-
ness. The critical strip width is fairly wide (as shown
later, a strip width of about three times the substrate
thickness is typical). For this critical strip width there
will exist a transition frequency where one type of leaky
mode transitions into the other type. At the transition
frequency, the attenuation constant of the leaky modes
drops exactly to zero.
[5] In addition to being an interesting new phenome-

non, this discovery has practical significance as well. It is
demonstrated here that severe spurious effects may be
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observed in the current that is excited by a practical
source when operating near the transition frequency, due
to the extremely large continuous spectrum (CS) current
that interferes with the bound mode (BM) current. The
nature of the CS current near the transition frequency is
explored here, and it is shown that the CS current is
dominated by a leaky mode (LM) current for frequencies
that are near, but not too near, to the transition frequency.
Significant spurious effects then occur because of the
low attenuation constant of the leaky mode [Mesa and
Jackson, 2002a]. When the frequency is extremely close
to the transition frequency, it is shown that the CS current
is dominated by a ‘‘residual wave’’ (RW) current [Mesa
et al., 2001], and this current is then responsible for the
spurious effects.
[6] The geometry assumed here is a microstrip line

with strip width w, on a grounded dielectric slab of
thickness h and relative permittivity �r. The strip con-
ductor is assumed to be infinitesimally thin and perfectly
conducting, and the substrate is assumed to be lossless in
all of the results. The axis of the strip is assumed to be
the z axis, and the x direction is along the interface,
perpendicular to the strip. For the case of a source
excitation, a 1 V gap voltage source is placed on the
line at z = 0.

2. Background

[7] In order to calculate numerically the complex
propagation constant and the modal current of a given
mode with the method of moments in the spectral
domain, it is necessary to adopt a particular integration
path in the complex plane of the transverse spectral
variable kx, depending on the type of mode being sought
(BM, SFWLM, SPWLM) [Mesa et al., 1999]. The three
possible paths corresponding to modal solutions that may
yield physical solutions are shown in Figure 1a. The real
axis path, called C0, is used to find the (real) wave
number of the bound mode, which is always physical.
The path C1 detours around the TM0 poles of the layered-
media Green’s function, and is used to find the wave
number of the SFWLM solution. This solution will be
physical when the phase constant of the mode is greater
than k0 and less than kTM0

[Mesa et al., 1999]. The path
C2 detours around the TM0 poles and lies partially on the
bottom Riemann sheet of the kx plane. The cor-
responding SPWLM solution will be physical provided
the phase constant of the mode is less than k0 [Mesa et
al., 1999].
[8] The fact that different paths of integration in the kx

plane may be used for each value of kz leads to the
existence of branch points in the complex kz plane
[Chang and Kuester, 1979; Grimm and Nyquist, 1993].
A convenient tool to aid in the discussion of the paths is
the concept of a Riemann surface for the longitudinal

wave number kz. On this surface, each sheet corresponds
to a different path of integration in the kx plane for a
given value of kz. As first shown by Mesa et al. [1999],
for an unshielded microstrip line, there are two different
types of branch point singularities in the complex kz
plane: logarithmic-type branch points (where an infinite
number of sheets merge) at kz = ±k0 and algebraic-type
branch points (where two sheets merge) at kz = ±kbn,
where k0 is the free-space wave number and kbn are the
wave numbers of the background structure modes. (In
Figure 1b it is assumed that the only background mode
above cutoff is the TM0 mode; hence there are two pairs
of branch points, one at kz = ±k0 and one at kz = ±kTM0

.)

Figure 1. Spectral complex planes for an unshielded
microstrip line. (a) Complex plane of the transverse
spectral variable kx, with three integration paths shown
that give rise to different modal solutions. (b) Complex
plane of the longitudinal spectral variable kz, showing the
k0 and kTM0

branch points (and associated Sommerfeld
branch cuts), a bound mode pole kz

BM, and a leaky wave
pole kz

LM.
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[9] A convenient method for studying the importance
of leaky modes and the continuous spectrum on lines that
are excited by practical sources is the gap voltage source
excitation, as introduced by Di Nallo et al. [1998]. A 1 V
gap source is assumed to excite an infinite line at z = 0.
The resulting current on the line is expressed via an
inverse Fourier transform as

I zð Þ ¼ 1

2p

Z 1

�1
~I kzð Þe�jkzzdkz; ð1Þ

where the Fourier transform of the strip current, ~I (kz),
can be calculated in closed form for narrow strips
(assuming that a single basis function describes the
transverse variation of the current on the strip), and using
a small matrix equation for wider strips, where multiple
basis functions are used [Mesa et al., 2001]. The
integration path is along a Sommerfeld path that stays
below the real kz axis for kz < 0 and above the real axis
for kz > 0, lying on the ‘‘zero’’ sheet (the one that
corresponds to the path C0 in the kx plane). Poles in the kz
plane appear at the wave numbers of the guided modes
(bound and leaky) on the infinite microstrip line.
[10] By deforming the path of integration to a path

around the branch cuts in the fourth quadrant, the total
strip current can be decomposed into a BM current (which
is the current of the desired quasi-TEM microstrip mode)
along with a CS current that physically corresponds to a
radiating type of current, which typically becomes stron-
ger as the frequency increases. The BM current arises
mathematically from the residue at the BMpole on the real
axis in the kz plane (see Figure 1b). The CS current comes
from the integration around the branch cuts as shown in
Figure 1b (hyberbolic, or ‘‘Sommerfeld’’ branch cuts are
assumed in Figure 1b). The CS current may be further
decomposed into a LM current and a set of two RW
currents. To accomplish this, the Sommerfeld path for
the total current is deformed into a residue path around the
LM pole and a set of two steepest descent paths (SDPs),
which are the vertical paths descending from the branch
points at k0 and kTM0

. During this path deformation a LM
polewill be captured if it resides on the appropriate sheet of
the kz plane, implying that the leakymode is a physical one
[DiNallo et al., 1998;Mesa et al., 1999]. Using the change
of variables kz= k0� js in (1), the k0-RWcurrent Ik0

RW(z) has
the form

IRWk0
zð Þ ¼ �j

1

2p

Z 1

0

F sð Þ e�sz ds; ð2Þ

where

F sð Þ ¼ ~I k0 � jsð ÞjR � ~I k0 � jsð ÞjL; ð3Þ

with R denoting the right side of the SDP and L denoting
the left side. A similar change of variables may be done

to define the TM0-RW current, although the focus here
will be on the k0-RW current, since this current plays a
significant role in the behavior of the strip current near
the transition frequency.
[11] An asymptotic analysis reveals that the k0-RW

current normally behaves for large z as [Mesa et al.,
2001; Baccarelli et al., 2004]

IRWk0
� ARW

k0

e�jk0z

z2
: ð4Þ

[12] Because of the fairly rapid decay, the k0-RW current
is usually not significant at great distances from the source.
However, as will be demonstrated later, the k0-RW current
changes character for frequencies very close to the transi-
tion frequency, and consequently becomes both very
strong in amplitude and slowly decaying.
[13] The following sections in the paper are organized

as follows. In section 3 numerical examples of SFWLM-
to-SPWLM transitions are given. In section 4 a physical
explanation and necessary requirement for the occur-
rence of such a transition is given on the basis of the
reciprocity theorem. Section 5 discusses the leaky mode
and residual wave current excitation in a neighborhood
of the transition frequency for the case of a gap voltage
source. Finally, some conclusions are drawn in section 6.

3. Transition From Space Wave to Surface

Wave Leakage

[14] Figure 2 shows the dispersion diagram for a
microstrip line with substrate permittivity er = 10.2,
substrate thickness h = 1 mm, and strip width w =
3 mm, in a frequency range from 0 to 30 GHz. This
strip width happens to be the critical strip width for this
particular substrate. Three modes of the microstrip are
reported: the fundamental quasi-TEM EH0 mode (black
solid line with circles), a space wave leaky mode
(SPWLM) calculated with the C2 path in the kx plane
(gray solid line), and a surface wave leaky mode
(SFWLM) calculated with the C1 path in the kx plane
(black solid lines). The TM0 and TE1 modes of the
background substrate are also reported (thin dash-dotted
lines).
[15] The SPWLM (gray solid line) is physical when its

normalized phase constant is less than one, that is, from
19.3 to 23.29 GHz. At f = ft 	 23.29 GHz the associated
pole in the kz plane passes through the k0 branch point,
and above this frequency the SPWLM evolves into a
nonphysical mode that has a negative attenuation con-
stant. The path of integration must be changed smoothly
in order to track the pole as it passes through the branch
point, resulting in a nonphysical path above 23.29 GHz,
which is different from either C1 or C2. This path is one
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that would be labeled as (�1; 0; 0) in the notation of
Mesa and Jackson [2002b]. The solution is not shown
above 23.29 GHz.
[16] On the other hand, the SFWLM (black solid line)

is physical when its normalized phase constant is greater
than one but less than the normalized phase constant of
the TM0 mode of the substrate, that is, between 16.7 and
18 GHz and above 23.29 GHz. In the range between
22.17 and 23.29 GHz its attenuation constant (not shown
here) is negative, and the mode is obtained with the
nonphysical path (1; 0; 0) [Mesa and Jackson, 2002b].
[17] The transition from SPWLM to SFWLM can be

observed in the enlarged diagram reported in Figure 3,
which only shows the physical parts of the dispersion
curves of the involved modes. At the transition frequency,
ft, the normalized phase constants of both modes are
equal to one, while their attenuation constants are equal
to zero, so that the associated poles in the complex kz
plane merge at the k0 branch point.
[18] In order to illustrate the features of the above

transition, Figure 4 shows the kz pole trajectories
corresponding to the SPWLM (gray solid line) and the
SFWLM (black solid line) reported in Figure 2 for three
different values of the strip width, that is, w = 2.9 mm,
w = wc = 3 mm, and w = 3.1 mm. The solutions
corresponding to the nonphysical paths are also shown
with dashed lines. It can be observed that when the strip

width is equal to the critical value, wc, both poles pass
through the k0 branch point at the transition frequency ft,
resulting in a transition from a space wave to a surface
wave leaky regime.
[19] However, by changing the strip width away from

the critical value, the kz poles fail to pass through the
branch point, and a direct transition no longer occurs.
The SPWLW and SFWLW pole trajectories still cross, at
a point slightly below the real axis in the kz plane, but
since the poles are on different sheets, they do not
actually intersect on the Riemann surface. In this case,
there may or may not be a spectral gap region (i.e., a
frequency range where none of the two leaky modes is
physical), depending on the frequencies at which the
physical poles cross the vertical line <e{kz} = k0.
[20] Physical continuity between the two leaky modes

is to be expected for values of the strip width in a
neighborhood of the critical width. To illustrate,
Figure 5 shows the transverse profile of the amplitude
of the longitudinal component of the modal current as a
function of the normalized transverse coordinate x/w for
both the SPWLM and the SFLWM, at different frequen-
cies below and above the transition frequency, respec-
tively. It can be observed that the shape of the modal
current is similar to that of the fundamental quasi-TEM
EH0 mode, although the current amplitude exhibits two
zeros for the frequencies immediately below and above
the transition frequency. Hence, very near the transition
frequency, the shape of the current is more similar to that
of an EH2 mode. The curves corresponding to these two
frequencies (black solid line and gray dashed line) are
superimposed on the plot, verifying the expected phys-
ical continuity of the two modal solutions.
[21] Another dispersion diagram is shown in Figure 6

for a microstrip line with a lower substrate permittivity

Figure 3. Enlarged plot of the dispersion curves of the
SPWLM and SFWLM modes in Figure 2, in a
neighborhood of the transition frequency.

Figure 2. Normalized phase (bz/k0) and attenuation (az/
k0) constants as a function of frequency for three modes
of a microstrip line with er = 10.2, h = 1 mm, and w =
3 mm: the quasi-TEM fundamental EH0 mode and two
leaky modes (SPWLM and SFWLM). Normalized phase
constant of the EH0 mode, thick solid line with circles;
normalized phase constant of the leaky modes, thick
solid lines; normalized phase constants of the real
improper modes, thick dotted lines; normalized attenua-
tion constants of the leaky modes, thick dashed lines; and
normalized phase constants of the TM0 and TE1 modes
of the substrate, thin dash-dotted lines.
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er = 2.2, substrate thickness h = 1 mm, and strip width
w = wc = 3.26 mm, which corresponds to the critical strip
width for this substrate. Once again a transition from
space wave leakage to surface wave leakage can be
observed. The choice of a lower dielectric constant for
the substrate has the effect of increasing the transition
frequency from about 23.29 GHz to about 61.83 GHz;
moreover, the critical strip width is now slightly larger
than in the previous case.
[22] In Table 1 the normalized critical strip width wc/

h and the normalized transition frequency h/l0 cor-
responding to different values of er are shown. Normal-
ized in this way, the results are valid for any substrate
thickness (although the value of h = 1 mm was used in
the numerical calculation). For convenience, this table
also shows the value of wc/l0 = (wc/h)(h/l0). The table
shows that wc/h is fairly independent of er, but that h/l0
is not, and increases as er decreases. As this table
demonstrates, both the substrate thickness and the strip
width must be fairly large in terms of a wavelength for a
transition to occur. For a substrate permittivity of 10.2,
the normalized substrate thickness is 0.077 l0 and the
strip width is 0.23 l0. As the substrate permittivity
decreases to a small value of 1.05, these values change
to 1.0 l0 and 3.3 l0, respectively. Hence this transition

Figure 5. Amplitude of the longitudinal component of
the modal current of the SPWLM (f = 22 GHz and f =
23.28 GHz) and of the SFWLM (f = 23.3 GHz and f =
25 GHz) as a function of the normalized transverse
coordinate x/w.

Figure 4. Pole trajectories in the complex kz plane for a
microstrip as in Figure 2 with three different values of
the strip width w: (a) w = 2.9 mm, (b) w = wc = 3 mm,
and (c) w = 3.1 mm. (1; TM0; 0) pole, gray solid line; (0;
TM0; 0) pole, black solid line; (1; 0; 0) pole, black dotted
line; and (�1; 0; 0) pole, gray dotted line.
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effect is most likely to be observed at the higher
microwave and millimeter wave frequencies, although
there does not seem to be any simple quantitative
criterion to accurately predict the value of the transition
frequency. Also shown in the table is the quasi-static
characteristic impedance for each permittivity and criti-
cal strip width.
[23] A discussion about the occurrence of a SFWLM-

to-SPWLM transition and its relation to the strip width
will be presented in the next section.

4. Analysis of the Modal Currents Via the

Reciprocity Theorem

[24] In order for a physical SPWLM to evolve into a
physical SFWLM, the SPWLM pole trajectory in the kz
plane must evolve according to one of the following two
possible scenarios: (1) the pole approaches the branch
point at k0, and after coalescing with the branch point, it
re-emerges as a SFWLM solution; that is, it changes
sheets on the kz Riemann surface at the branch point;
(2) the pole crosses the Sommerfeld branch cut on the
real axis at some point kz < k0, and at this point it changes

sheet. These two cases are considered next. The first one
is the actual scenario that is observed, but the second
possibility is also considered to illustrate why it is
unlikely to ever happen.

4.1. Branch Point Crossing

[25] At a transition frequency ft, we have kz = k0. For
the leaky mode at this frequency, the transverse wave
number of the TM0 mode on the background structure
(into which leakage is occurring) is

kTM0

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2TM0

� k20

q
: ð5Þ

The angle of leakage, q0 (see Figure 7a), is given by

tan q0 ¼
kTM0
x

kz
¼ kTM0

x

k0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂2TM0

� 1

q
; ð6Þ

where k̂TM0
= kTM0

/k0 and kTM0
is calculated at f = ft. It

should be noted that equation (6) is exact when the pole
is at the branch point, since az = 0 at this point.

Table 1. Normalized Critical Strip Width wc/h and the

Normalized Transition Frequency h/l0 for Different Values of

the Substrate Relative Permittivity era

Permittivity er wc/h h/l0 wc/l0 Zc, W

1.05 3.30 1.00 3.30 64.6
2.2 3.26 0.21 0.67 48.4
4.2 3.15 0.13 0.41 37.2
10.2 3.00 0.077 0.23 25.3

aAlso included is the value of wc/l0 at the transition frequency and
the quasi-static characteristic impedance Zc for each case.

Figure 7. Illustration of the reciprocity theorem applied
to the case of a direct SPWLM-SFWLM transition.
(a) Branch point crossing (q0 is the angle of leakage in
the xz plane of the TM0 surface wave). (b) Branch cut
crossing (q0

TM0 is the angle of leakage in the xz plane of the
TM0 surface wave and q0

k0 is the angle of leakage into
space).

Figure 6. Same as in Figure 3 but for a microstrip with
er = 2.2, h = 1 mm, and w = 3.26 mm.
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[26] Next, it should be enforced that there is no
leakage at this frequency, since az = 0. This means
that the current of the leaky mode on the strip
(corresponding to a mode on an infinite strip) does
not radiate into the TM0 mode. By reciprocity, this
also means that the reaction between the field of a
TM0 mode propagating at the angle q0 and the current
on the strip will be zero. The tangential electric field
(i.e., x and z components) of the TM0 mode will lie in
a direction parallel to the angle of leakage. Hence,
assuming for convenience that x > 0,

ETM0

t ¼ ûETM0

u ; ð7Þ

where

û ¼ x̂kTM0

x þ ẑkz
� �

=kTM0
¼ x̂ sin q0 þ ẑ cos q0: ð8Þ

[27] By virtue of the reciprocity principle, at the
transition frequency ft, when kz = k0, we must have
(since there is no leakage)Z þw=2

�w=2

JS � ETM0

t dx ¼ 0; ð9Þ

where Et
TM0 is the tangential component of the field of a

TM0 surface wave mode propagating at an angle q0
inward toward the strip (i.e., propagating in the negative
x and negative z directions). The above integral in
equation (9) can be rewritten as

cos q0

Z þw=2

�w=2

Js;z xð Þ ejk
TM0
x x dx

þ sin q0

Z þw=2

�w=2

Js;x xð Þ ejk
TM0
x x dx ¼ 0 ; ð10Þ

or, equivalently, as

~Js;z kTM0
x

� �
~Js;x kTM0

x

� � ¼ � tan q0; ð11Þ

where the tilde indicates Fourier transform with respect
to the transverse x variable.
[28] Equation (11) is a necessary condition that would

enable a SPWLM to transition into a SFWLM after
passing through the branch point at k0. This result seems
to indicate that such a transition is not likely to occur for
narrow strips, since the transverse current ~J s,x(kx

TM0) on
the microstrip line would be in this case very small, and
therefore equation (11) could not be satisfied since its
right-hand side is not expected to be very large (a further
discussion of this is provided in Appendix A). However,
for wide strips, where both components of the current

can be significant, it is certainly possible, as was shown
in section 3.

4.2. Branch Cut Crossing

[29] In this case, there would be a particular frequency
for which kz = bz < k0 (at which the SPWLM pole crosses
the branch cut on the real axis in the kz plane). Following
similar reasoning as above, the following condition
should then be satisfied:

~Js;z kTM0
x

� �
~Js;x kTM0

x

� � ¼ � tan qTM0

0 ; ð12Þ

where now

kTM0

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2TM0

� bz
2

q
ð13Þ

and the angle of surface wave leakage at the substrate
interface (see Figure 7b) is

tan qTM0

0 ¼ kTM0
x

bz
: ð14Þ

[30] Moreover, there cannot be leakage into space in
any direction, either for TMz or TEz waves (since az = 0),
and thus the following two conditions should be also
satisfied:

TM : � sin qk00 ~Js;z k0x
� �

þ cos qk00 cosf~Js;x k0x
� �

¼ 0

ð15Þ

TE : sinf ~Js;x k0x
� �

¼ 0; ð16Þ

where

k0x ¼ k0 sin q
k0
0 cosf ð17Þ

and

cos qk00 ¼ bz
k0

: ð18Þ

[31] The angle q0
k0 is the angle that the cone of leakage

into space makes with respect to the z axis (see
Figure 7b). The angle f is the azimuthal rotation angle
on the leakage cone, with f = 0 corresponding to a
leakage direction in the xz plane.
[32] Both equations (15) and (16) must be valid for all

angles f in order to have no power leakage at any angle
f (in other words, at any direction on the leakage cone).
Equation (16) implies that ~J s,x(kx) = 0 over a range of
values for kx (jkxj < k0 sin q0

k0). Equation (15) implies that
~J s,z(kx) = 0 over the same range of kx. Mathematically,
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this cannot happen, at least for any reasonable current
distribution. Therefore it is concluded that a transition
from a SPWLM to a SFWLM by virtue of the pole
trajectory crossing the real axis at a point bz < k0 is not
possible (or at least extremely unlikely for any reason-
able strip dimensions).

4.3. Validation of the Zero Surface Wave
Excitation Condition

[33] In order to verify if the zero surface wave excita-
tion condition of equation (11) for a direct SPWLM-
SFWLM transition holds for the cases presented in
section 3, we have considered the magnitude of the
following quantity:

A fð Þ ¼
~Js;z kTM0

x

� �
~Js;x kTM0

x

� � þ tan q0: ð19Þ

[34] Equation (11) is satisfied when the quantity A( f ) in
equation (19) is zero,which is a necessary condition for the
SPWLM-SFWLM transition to occur at a frequency f = ft.
In Figure 8 we have plotted the magnitude of A( f ) in
equation (19) versus frequency in a neighborhood of ft, in
order to verify that it does indeed approach zero at f = ft.
Results are reported in Figures 8a and 8b for the structures
considered in Figures 2 and 6 (high-permittivity and low-
permittivity cases, respectively). It can be observed that, as
expected, the excitation of the TM0 surface wave field is
zero at the transition frequency ft in both cases.
[35] In Figure 8c, thew =wc = 3mm case from Figure 8a

is replotted, along with results for a narrower strip (w =
2 mm) and a wider strip (w = 4 mm). This comparison is
made in order to demonstrate that the SPWLM-SFWLM
transition occurs only for a critical strip width. It is not too
surprising that a transition cannot occur for a narrow strip
width, since condition (11) requires a significant trans-
verse current, which is increasingly unlikely as the strip
width decreases, as explained in more detail in Appendix
A. For strip widths that are wider than the critical strip
widths shown in Figures 8a and 8b, it is not obvious
whether or not additional transitions may occur. The w =
4mmcase shows that a transition frequency does not occur
for this wider strip, at least for the frequency range shown.
Thus, while it cannot be ruled out that more than one
critical strip width may exist, this has not been found for
the practical ranges investigated.

5. Excitation of the Microstrip Line by a

Finite Source

[36] The effects of the excitation of either the SPWLM
or SFWLM in a neighborhood of the transition frequency
have been studied by considering the current excited on

Figure 8. Magnitude of the function A( f ), defined in
equation (19), versus frequency, which measures the
degree of surface wave excitation. (a) Microstrip as in
Figure 2. (b) Microstrip as in Figure 6. (c) Same case
as in Figure 8a shown together with w = 2 mm and w =
4 mm.
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an infinite microstrip line by a gap voltage source. The
analysis has been performed by means of a spectral
domain moment-method approach as in the work by Di
Nallo et al. [1998].
[37] Figure 9 shows the amplitudes of the total

current (TC) and BM current as a function of the
normalized distance z/l0 from the source for a micro-
strip with parameters as in Figure 2 at different
frequencies. The amplitude of the BM current (i.e.,
the fundamental quasi-TEM EH0 mode) does not
depend on the distance from the source, and it also
remains relatively constant with respect to frequency in
the considered frequency range. The TC, in contrast,
clearly shows large oscillations about the BM current
as the distance increases, due to the interference with
the CS current. Such oscillations decay with the
distance from the source, corresponding to the decay
of the CS current. However, such decay tends to

disappear as the transition frequency is approached,
as evidenced in parts (b) and (c).
[38] In order to clarify the reason for this behavior of

the CS current, it is convenient to consider its two
essential constituents separately, that is, the LM current
(due to either the SPWLM or the SFWLM) and the k0-RW
current (the integral contribution from the vertical SDP
through the k0 branch point). In Figure 10 three frequen-
cies are considered above the transition frequency.
Figure 10a shows the CS currents, which are seen to
persist to larger distances as the frequency approaches
the transition frequency. The CS current is seen to be very
well accounted for by the LM currents alone (Figure 10b)
since the RW currents are negligible (Figure 10c).
[39] The fact that the decay of the CS current with

distance decreases as the transition frequency is
approached corresponds to the fact that the attenuation
constant of the relevant leaky mode (the SFWLM in

Figure 9. Amplitude of the current excited on an infinitely long microstrip line, with physical
parameters as in Figure 2, by a gap voltage source: (a) f = 22 GHz, (b) f = 23.2 GHz, (c) f =
23.5 GHz, and (d) f = 25 GHz. TC, black solid line; BM current, gray solid line.
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Figure 10) tends to zero in this limit. However, consid-
ering frequencies above but extremely close to ft, an
interesting phenomenon can be observed, as seen in
Figure 11: the LM current decreases in amplitude as ft
is approached, whereas the RW current increases in
amplitude, and it also decays more slowly with distance.

Thus, for frequencies extremely close to the transition
frequency, the RW component accounts almost entirely
for the behavior of the CS current.
[40] The same considerations apply for frequencies

lower than ft, where the SPWLM is involved. Figure 12
shows three frequencies that are close (but not extremely
close) to ft, in which the LM current is dominant. In
Figure 13 three frequencies extremely close to ft are

Figure 10. Amplitude of the CS current and its
constituent parts as a function of the normalized distance
z/l0, for the same structure as in Figure 9, at three
different frequencies above ft: (a) CS current, (b) LM
current, and (c) k0-RW current.

Figure 11. Same as in Figure 10 but at three
frequencies extremely close to ft.
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reported, where the RW current becomes dominant.
From Figures 10–13 it can be concluded that, in a small
neighborhood of ft, the RW current replaces the LM
current as the dominant current. This latter fact is
confirmed in Figure 14, where the amplitude of the
CS current, the k0-RW current, and the LM current at
a fixed distance z = l0 from the source are reported as
a function of frequency. It can be clearly observed that

while the amplitude of the LM current has a dip at f =
ft, the k0-RW current has a local maximum, such that
their sum produces a CS current that varies smoothly
with frequency.
[41] To explore the nature of the RW current near

the transition frequency from a more mathematical
perspective, Figure 15 shows a plot of the magnitude

Figure 12. Same as in Figure 10 but at three
frequencies below ft.

Figure 13. Same as in Figure 12 but at three
frequencies below and extremely close to ft.
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of the F(s) function (see equation (3)) versus s (the
distance along the SDP from the k0 branch point) for
various frequencies close to the transition frequency.
For frequencies that are not too close, the F(s)
function exhibits a behavior of s (i.e., a linear func-
tion) for small s [Baccarelli et al., 2004]. As shown
by Jackson et al. [2000] and Baccarelli et al. [2004],
Watson’s lemma directly relates the asymptotic behav-
ior of the F(s) function near s = 0 with the asymptotic
behavior of the RW current for large z. In particular,
the linear behavior of the F(s) function corresponds
with a RW current that behaves asymptotically as 1/z2

[Mesa et al., 2001; Baccarelli et al., 2004]. This is the
usual expected asymptotic behavior of the k0-RW
current on a microstrip line [Mesa et al., 2001;
Baccarelli et al., 2004].
[42] However, as the frequency approaches near to the

transition frequency, the behavior of the F(s) function
begins to change. For frequencies close to the transition
frequency, the F(s) function exhibits a growing behavior,
similar to (but not exactly equal to) a 1/s behavior. This
in turn implies that the behavior of the RW current with
distance z is very different, and in particular, much more
slowly decaying, than a 1/z2 behavior. However, ex-
tremely close to the branch point (i.e., for extremely
small s), the F(s) function always changes its behavior
and assumes a linear variation. This transition region,
where the F(s) function changes nature, occurs for
smaller s as the frequency gets closer to the transition
frequency. This implies that for frequencies that are
extremely close to the transition frequency, the RW
current will decay very slowly out to an extremely large
distance before the behavior finally changes to a 1/z2

behavior. This slowly decaying behavior is evident in
Figures 11c and 13c at the frequencies of 23.2918976
and 23.2918975 GHz, respectively (the transition region

in z where the RW current changes to a 1/z2 behavior is
very large and is off the scale of these plots.)

6. Conclusion

[43] In this paper examples have been reported of a
new modal transition between surface wave and space
wave leaky modes on a microstrip line. This transition
occurs at a particular transition frequency when the strip
has a critical strip width, which is fairly wide. This
transition has been explained by means of the reciprocity
theorem, showing that at the transition frequency the
leaky mode current on the line does not radiate into the
surface wave. The analysis has also revealed that such a
direct transition is only likely to occur on microstrip lines
with a wide strip.
[44] By considering a microstrip line excited by a gap

voltage source, it has been shown that interference
between the continuous spectrum current and the bound
mode current may give rise to noticeable spurious effects
close to the transition frequency. An analysis of the
continuous spectrum current has shown that it is domi-
nated by a physical leaky mode current for frequencies
that are near, but not too near, the transition frequency. In
a very small frequency range around the transition
frequency, the leaky mode is weakly excited and the
residual wave current assumes the dominant role in
determining the continuous spectrum current, and hence
in explaining the interference effects.

Appendix A: Discussion of the Transition

Condition for Small Width

[45] The transition equation (11) is a necessary condi-
tion for the SPWLM-SFWLM transition to occur. Fur-

Figure 14. Amplitude of the CS current, the LW
current, and the k0-RW current, at a fixed distance z = l0
from the source, for the same structure as in Figures 9–
13, as a function of frequency.

Figure 15. Plot of the magnitude of the F(s) function
versus the normalized distance s/k0 along the SDP
from the k0 branch point, for the same structure as in
Figures 9–13.
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ther physical insight can be gained by studying the left-
hand side of this equation in the limit of a small strip
width.
[46] Consider first the Fourier transform of the z

component of the current,

~Js;z kxð Þ ¼
Z w=2

�w=2

Js;z xð Þ ejkxx dx

¼ 2

Z w=2

0

Js;z xð Þ cos kxxð Þ dx ; ðA1Þ

where Js,z(x) has been assumed to be an even function of
x. Next, a normalized shape function Nz(�x), defined on
the interval �x 2 (0, 1), is introduced to account for the
shape of the Js,z(x) function. This normalized function
can be roughly viewed as a basis function for the z
component of current (if this function is allowed to
change with frequency and w, then no approximation is
being made). By writing

Js;z xð Þ ¼ Az Nz �xð Þ ðA2Þ

and using the substitution �x = (2/w)x, we have

~Js;z kxð Þ ¼ wAz

Z 1

0

Nz �xð Þ cos kx
w

2

� �
�x

h i
d�x

¼ wAz
~N cos
z kx

w

2

� �
; ðA3Þ

where ~Nz
cos(x) is the cosine-Fourier transform of Nz(�x).

For the x component of the current, we can follow a
similar procedure by expressing

Js;x xð Þ ¼ Ax Nx �xð Þ : ðA4Þ

[47] Since this current component is an odd function,
we can write

~Js;x kxð Þ ¼ jwAx
~N sin
x kx

w

2

� �
; ðA5Þ

where ~Nx
sin(x) is the sine-Fourier transform of Nx(�x).

Note that as x (and hence w) becomes small, the sine
transform tends to zero. Hence it is useful to write

~N sin
x xð Þ ¼ x

Z 1

0

�x Nx �xð Þ sinc x�xð Þ d�x : ðA6Þ

[48] Let us define the sinc transform of Nx as

~N sinc
x xð Þ ¼

Z 1

0

�x Nx �xð Þ sinc x�xð Þ d�x ðA7Þ

so that

~N sin
x xð Þ ¼ x ~N sinc

x xð Þ : ðA8Þ

[49] The transition condition in equation (11) can be
then expressed as

Ax

Az


 �
kTM0

x w
� � ~N sinc

x kTM0
x w=2

� �
~N cos
z kTM0

x w=2
� �

" #
¼ j cot q0: ðA9Þ

[50] Note that in this normalized expression, the main
effect of varying the strip width w has been taken outside
the integral, and put into the product kx

TM0w. Certainly,
the ratio of the normalized transforms (the rightmost
fraction on the left-hand side of equation (A9)) varies
with w, since the shapes of the normalized currents will
vary somewhat with w. However, this variation should
not be too large, and in fact, this latter ratio should
approach a constant as w becomes small. Therefore
equation (A9) implies that the transition can only occur
when

Ax

Az


 �
k0 w ¼ O 1ð Þ: ðA10Þ

[51] Equation (A9) gives some physical insight into
how wide the strip has to be for the SPWLM-SFWLM
transition to occur. It is shown below that the ratio Ax/Az

approaches zero as k0w becomes small, at least as fast as
the product k0w. Hence the left-hand side of equation
(A9) becomes small at least as fast as (k0w)

2. Therefore it
is extremely difficult for a SPWLM-SFWLM transition
to occur for narrow strips.
[52] Next we explore how the ratio Ax/Az depends on

w, for small w. The surface divergence condition implies
that the current components are related to the charge
density rs on the strip as

@Js;x
@x

þ @Js;z
@z

¼ �jw rs: ðA11Þ

[53] (In this equation the charge density rs is actually
the sum of the charge densities on both sides of the strip.)
Equation (A11) can be written as

Ax

2

w


 �
@Nx �xð Þ
@�x

� j kz Az Nz �xð Þ ¼ �jw rs: ðA12Þ

[54] The propagation wave number can be written as
kz = k0

ffiffiffiffiffiffiffi
eeffr

p
, and it is concluded that

j
2

w


 �
Ax

Az


 �
@Nx �xð Þ
@�x

¼ w rs
Az

� k0 Nz �xð Þ
ffiffiffiffiffiffiffi
eeffr

q
ðA13Þ
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or, equivalently,

Ax

Az


 �
¼ k0 w

2


 �
�jNz �xð Þ
N 0
x �xð Þ


 �
c rs
Js;z

�
ffiffiffiffiffiffiffi
eeffr

q� �
; ðA14Þ

where c is the speed of light. The term within the square
brackets is exactly zero if the mode is a TEM mode. For
a quasi-TEM leaky mode, we can make the assumption
that the current density on the strip becomes more TEM-
like as w becomes smaller. In this case, the above term
approaches zero as w becomes small. Hence the ratio Ax/
Az must approach zero as w approaches zero even faster
than k0w for a quasi-TEM leaky mode, as claimed above.
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