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Abstract—This paper will study the most convenient way of for-
mulating the characteristic equation for shielded, parallel-plate,
grounded, and open reciprocal/nonreciprocal planar layered
waveguides, including the possibility of different upper and lower
half-spaces. A detailed study of the suitable mapping for each kind
of waveguide will lead to the formulation of analytic characteristic
equations for shielded/parallel-plate/grounded reciprocal/nonre-
ciprocal waveguides and also for open reciprocal ones. Although
no mapping has been found to remove all the branch points of
the characteristic equation for open nonreciprocal waveguides
with different half-spaces, a robust approach will be proposed to
overcome the main drawbacks caused by the multivalued nature
of this problem. The combination of the suitable formulation
of the characteristic equation with a systematic integral-nature
root-searching strategy bears a reliable and efficient method. Some
novel numerical results will be presented for open anisotropic
reciprocal waveguides and for open magnetized ferrite slabs to
illustrate the performance of the present proposal.

Index Terms—Leaky waves, nonreciprocal wave propagation,
planar waveguides, root loci.

I. INTRODUCTION

PLANAR layered waveguides are of great interest in mi-
crowave engineering and optics because of their use as the

background structure for integrated circuitry. Hence, from early
on, much effort has been devoted to study the propagation char-
acteristics of the modal spectrum of these waveguides [1]–[27].
Additionally, that study is key to determine the characteristics of
the Green’s function involved in the solution of scattering and
propagation problems for antennas and high-frequency printed
circuits by means of the integral-equation method. Specifically,
the propagation constants of the waveguide determine the sin-
gularities of the spectral-domain Green’s function [9], and are
also required in obtaining accurate closed-form expressions for
the space-domain Green’s functions [28], [29]. Thus, numerous
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and diverse approaches have been proposed to deal with dif-
ferent kinds of planar waveguides: shielded, laterally open, and
grounded reciprocal/nonreciprocal waveguides [2]–[12], [15],
[16], [19]–[24], [27]. Planar waveguides opened to both (and
eventually different) upper and lower half-spaces, henceforth,
open planar waveguides, have also been analyzed, e.g., in [13],
[17], [18], [20], [23], [25], [26]. Nevertheless, to the authors’
knowledge, previous studies have not considered the case of
open waveguides whose layered substrate includes nonrecip-
rocal materials (the case of open reciprocal anisotropic wave-
guides treated in [26] was restricted to anisotropic dielectric
slabs in free space). The rich phenomenology provided by gy-
rotropic (e.g., magnetized ferrites) substrates in an open envi-
ronment could be of potential practical interest to design, e.g.,
new types of radiators [30]–[32].

The great variety of approaches reported in the literature to
study each specific type of planar waveguide can make it diffi-
cult to draw a general view of the problem under consideration,
and to achieve a clear understanding of the similarities and dif-
ferences existing between the application of a given approach to
each kind of waveguide. Hence, this study will attempt to col-
lect all of the possible different cases of planar layered wave-
guides, including the open nonreciprocal case, with the purpose
of giving a general perspective of them within a congruent and
efficient approach.

The problem of finding the modal propagation constants
of open planar layered waveguides will be reduced to a
root-searching procedure in a similar way as was done in [19]
for grounded structures. That paper posed a corresponding
eigenvalue problem whose characteristic equation provided a
formulation of the waveguide dispersion relation as the complex
zeros of a complex function free of poles and branch points.
The treatment of this eigenvalue problem will be extended here
to deal with the case of open waveguides with different upper
and lower half-spaces. Moreover, this paper will also study
how the peculiarities of each kind of waveguide demands to
pose its corresponding characteristic equation in a different
and more appropriate mathematical form. Specifically, the
further removal of the possible branch-point singularities of
the characteristic function will be key to build a robust and
reliable algorithm based on root-searching procedures. As is
well known, these latter procedures do not work properly in
those regions of the complex plane where the function is not
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Fig. 1. Cross section of the planar N -layers waveguide under study. The
structure is infinite in both the x- and z-directions, and can be bounded by
electric/magnetic walls or different lower and upper half-spaces.

analytic (it should be reminded that only analytic functions
are complex differentiable at every point of the region). In this
sense, a general discussion on the mappings that could succeed
in removing the possible branch points of the characteristic
function will be carried out for each kind of waveguides. As a
result, the characteristic functions proposed in this study will
be analytic for any kind of structure, except for the case of open
nonreciprocal waveguides. Nevertheless a new robust approach
will also be proposed for this latter case in spite of not having
found a mapping to unfold the associated Riemann surface. The
numerical efficiency of this proposal is also conveniently en-
hanced by the use of a integral-nature root-searching procedure
[33], [34] following the systematic strategy reported in [27].

This paper is organized as follows. Section II will briefly
outline the mathematical formulation of the problem. Sec-
tion III will expose the scheme used to deal with reciprocal
waveguides. This section will distinguish between the treatment
for parallel-plate and/or grounded waveguides and that for open
waveguides. Finally, the study of nonreciprocal structures will
be presented in Section IV, also differentiating the grounded
and open cases.

II. FORMULATION OF THE PROBLEM

The planar waveguide under consideration (see Fig. 1) is
composed of layers having the following general linear
constitutive relations:

(1)

where and are the (3 3) complex tensors accounting,
respectively, for the electric permittivity, magnetic permeability,
and optical activity. The upper and bottom boundaries of the
waveguide can be electric and/or magnetic walls, and free-space
and/or dielectric half-spaces. (The theory proposed here will
also be able to deal with any type of boundary condition sus-
ceptible to be implemented in the spectral domain by means of
impedance/admittance dyadics. This would also include, for ex-
ample, the cases of lossy conductors under the approximation of
the surface impedance, periodic boundary conditions, etc.)

Assuming a common dependence of the fields of the type
, and following

[7], [9], [19], and [35]–[37], the transverse-to- fields at the
upper and lower interfaces ( and ) can be related by

, where , and is a (4 4)

matrix that depends only on , and the characteristics
of the layered substrate. The introduction of the corresponding
upper and lower impedance/admittance boundary conditions al-
lows us to write the following characteristic equation [19]:

(2)

where the (2 2) matrix is given by

(3)

with being the (2 2) submatrices of matrix and
the upper and lower impedance matrices. (Other

equivalent formulations are possible, also involving the admit-
tance matrices instead of the impedance ones.) In the following,
and without loss of generality, the - and -axes orientation
will be chosen such that propagation always takes place along
the -direction assuming (for periodic or laterally
shielded structures, should be taken so as to satisfy the cor-
responding lateral boundary conditions). For isotropic and/or
anisotropic/gyrotropic materials with their main axis along the

-direction, the above assumption is irrelevant since the -
and -directions are completely equivalent. For more general
cases, a change in - and -axes orientation would only imply
a rotation of the characteristic tensors around the -axis.

III. RECIPROCAL WAVEGUIDES

Before discussing the formulation of the dispersion equation
for reciprocal planar waveguides, it is convenient to note that
the reciprocity of these structures causes the elements of ma-
trix to be invariant under inversion of the propagation di-
rection; namely, they are even functions of . In addition, the
uniqueness theorem assures that the fields at any point within
the multilayer are uniquely determined by the transverse fields
at the lower interface. As a consequence, the elements in ma-
trix are single-valued functions of and, therefore, the
branch points of the characteristic function (if any) will arise
from the impedance matrices. Finally, it should be recalled that
the elements of matrix do not have poles for any specific
form of the characteristic tensors [19], whereas the elements of
the impedance matrices are even functions of for half-space
boundary conditions [38].

A. Parallel-Plate and Grounded Reciprocal Waveguides

Since parallel-plate waveguides have null upper and lower
impedance matrices, the characteristic function for this case can
be written as

(4)

which is fully analytic in the complex -plane. Thus, there is
no need for a mapping in order to use other computational vari-
ables (i.e., the independent variable in which the characteristic
equation is finally posed) than —the square of the longitu-
dinal wavenumber . The root-searching strategy presented in
[27] can then be straightforwardly applied to the characteristic
function in (4). (The choice for the computational variable re-
ported in [27] would not make sense for anisotropic reciprocal
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waveguides because of the presence of ordinary and extraordi-
nary rays.)

For grounded structures, the determinant of matrix does
present a branch point in the complex plane at [38],
where with and being the permittivity and
permeability of the upper half-space, respectively (grounded
waveguides will be always considered to have null impedance at
the lower interface). The two-sheeted nature of the Riemann sur-
face defined in the complex plane comes from the two pos-
sible choices in the sign of the vertical wavenumber in the upper
half-space, for each value of . Taking
into account the even nature of the elements in matrices and

, it can be asserted that the mapping

(5)

will remove the branch points for reciprocal grounded wave-
guides. Thus, the following analytic characteristic function is
proposed:

(6)

where the multiplicative factor has been introduced to re-
move the pole at arising from the upper half-space
impedance matrix.

B. Open Reciprocal Waveguides

For open reciprocal waveguides, has two branch
points in the complex -plane located at and
[13], [17], [18], [20], where with and
being the lower half-space permittivity and permeability. The
reason for the new branch point comes from the ambiguity in
the sign of the vertical wavenumber in the lower half-space

. Hence, the complex -plane is now a
Riemann surface that comprises four sheets, one for each com-
bination of the signs of and . In order to find a mapping
that unfolds this Riemann surface, the new variable should be
chosen as a combination of and so that it contains all
the information concerning the signs of these two variables.
Looking for simple combinations, the product of and
must be discarded because it takes the same value for different
combination of signs, e.g., . The same
can be adduced for , which, in addition, has a singular
point at . Therefore, the following linear combination
of these two variables will be next considered and examined:

(7)

where is a given analytic function and are two com-
plex constants. For this mapping to unfold the Riemann sur-
face, there must be an unique value of both and cor-
responding to each value of . In other words, both and
must be single-valued functions of . Taking into account that

, where , mapping (7) can be
written as

(8)

which is a second-order complex polynomial in . In conse-
quence, there are two values of corresponding to each value
of unless . Thus, considering the latter relation be-
tween and , mapping (7) must have the form

(9)

thus leading to the following single-valued expression of as
a function of :

(10)

It should be noted that the sign in (10) does not indicate any
ambiguity in the sign of , but is simply the sign choice in (9).
Looking at (10), it can be concluded that an important feature to
be satisfied by function is that this function must not have
zeros for any finite value of (otherwise, would diverge be-
cause of the appearance of a singular point in the mapping). The
previous analysis involving variable can be also equivalently
carried out using variable , leading to the same requirements
for and . The expression of as a function of is
found to be

(11)

It can then be concluded that any mapping having the form
given in (9), with being an analytical function without
zeros, is regular and removes the branch points of the charac-
teristic function for open reciprocal waveguides. For example,
the family of mappings proposed in [20] is a particular case of
the general mapping in (9). Our specific choice will be

(12)

which is actually very similar to that proposed in [18]. Never-
theless, it should be pointed out that our proposal has followed
a different rationale that can complement the previous discus-
sions on this subject. Using (12), the expressions relating
and to are

(13)

(14)

(15)

which would lead to the following analytic expression of the
characteristic function for these structures:

(16)

where the determinant of matrix has been multiplied by
and in order to remove the poles at

and arising from the upper and lower impedance ma-
trices. The basic reason for our proposal (12) is that it leads to
a straightforward mapping of the different sheets of the original
Riemann surface onto the complex plane (see Fig. 2). Since
the complex logarithm is a multivalued function with an infinite
number of branches, there will be an infinite number of values
of corresponding to each pair of values of and [18],
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Fig. 2. Schematic representation of the mapping in (12) for: (a) k > k and
(b) k > k . In each zone of the region of interest of the complex �-plane,
the power flow along the vertical direction is indicated by arrows and the
exponential behavior of the fields by increasing/decreasing curves.

[20]. However, this fact does not pose any troubles provided that
the principal value of the logarithm is always taken, thus, re-
stricting the domain to . The eight zones of
Fig. 2 have been labeled in a manner similar to [18]: the arrows
represent the power flow along the vertical direction, whereas
the curves represent the exponential behavior of the fields. Note
that the mapping depends on whether or be-
cause will be respectively real or imaginary (in both cases,
the nonzero part of is chosen to be positive). Bound modes
(BMs) in lossless waveguides must have and both imag-
inary with and and, therefore, they will
be located on the segment of the
complex -plane for and on for

. As losses increase, BMs will move from their original
location to the right entering the
and zones, respectively.

The particular case of reciprocal waveguides having identical
upper and lower half-spaces must be treated separately since
mapping (9) would lead to and when

. This drawback can be overcome by choosing as
the computational variable, which would yield a Riemann sur-
face for the characteristic function comprising two unconnected
sheets [13]. This can be understood as an splitting of the char-
acteristic function into the two following functions:

(17)

Fig. 3. Normalized phase constants of the first modes of an open
anisotropic planar slab, previously analyzed in [26, Fig. 2] with h = 2

cm, " = 2:25" ; " = 4" , and the optical axis oriented with
� = 45 ; � = 60 . Solid lines: our results. Points: data in [26]. Black color
lines and points stand for proper modes, grey color for improper modes.

both of them being analytic in the entire complex -plane.
The first one, , accounts for BMs and for improper modes
whose corresponding fields grow both upwards in the upper
half-space and downwards in the lower half-space. On the other
hand, the zeroes of correspond to improper modes whose
related fields diverge only in one of the two half-spaces.

Once the fully analytic characteristic functions (4), (6), (16),
and (17) have been formulated, the root-searching strategy re-
ported in [27] can be now applied to these functions to com-
pute the propagation constant for the modes of reciprocal wave-
guides. First, our results will be checked versus some previous
results reported in the literature. A first comparison has been
carried out with the results presented in [25, Table I] (which, in
turn, compares with [14]) for the propagation constant of sev-
eral leaky modes in a four-layer open isotropic waveguide with
different upper and lower half-spaces. An excellent agreement
of more than eight identical digits has been always found be-
tween our results and those in [25].

Next, a comparison is shown in Fig. 3 for the reciprocal
anisotropic dielectric slab surrounded by free space previously
studied in [26, Fig. 2]. The slab shows uniaxial anisotropy
with permittivity along the optical axis and along any
direction perpendicular to the optical axis (the orientation of
the optical axis is shown in Fig. 3). An excellent agreement has
been also found in this case between our numerical results and
those reported in [26] for both the proper and improper modes.
This figure includes an additional fundamental mode that was
not considered in [26].

As a new case study, the proposed method will be now used
to compute the complete dispersion relation for the BMs of an
anisotropic dielectric layered waveguide with different lower
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Fig. 4. Normalized propagation constants of the BMs of an open anisotropic
reciprocal dielectric waveguide with h = h = h = h = 2 mm, " =

" ; " = 4" ; " = 2:25" ; " = 4" ; " = 9:8" ; " = 2:2" ; " =

12" ; � = � = 45 .

and upper half-spaces. Thus, the layered substrate considered
in Fig. 4 has four layers, three of them being isotropic and one
presenting uniaxial anisotropy with a tilted optical axis (the
orientation of the optical axis has been chosen arbitrarily as

). The data in Fig. 4 have been computed by
applying the root-searching algorithm presented in [27] to the
analytic characteristic function (16) along the segment of the
complex -plane between (which corresponds to

) and (i.e., ). It should be pointed
out that all the data corresponding to the 22 modes plotted in
Fig. 4 have been obtained automatically without any interaction
with the program during execution. Moreover, the algorithm is
reliable even in the zones where two or more modes are very
close, and no BM is lost in the considered frequency range. In
addition, our strategy turns out to be remarkably efficient: the
computation of the approximately 9500 values of the propaga-
tion constant plotted in Fig. 4 took approximately 11 min on a
Pentium IV platform at 2 GHz. An interesting feature of the dis-
persion curves presented in Fig. 4 is that no BMs are found for
frequencies below 2.6 GHz, although the layers of the analyzed
structure have permittivities considerably higher than those for
the lower and upper half-spaces ( and
versus and ).

The above fact can be better appreciated in Fig. 5(a), which
shows the evolution as frequency decreases from 15 to 1 GHz
of the imaginary and real parts of for the first three BMs and
an improper mode of the structure considered in Fig. 4. It can
be observed that the second and third modes that are present
at 15 GHz (the and modes, respectively) couple to-
gether for a frequency range under 13 GHz. For lower frequen-
cies, the third mode (which is now the mode as a conse-

Fig. 5. Frequency evolution of: (a) the imaginary and real parts of � and (b) the
normalized phase constant of the HE , EH , and HE modes of the open
reciprocal waveguide previously analyzed in Fig. 4. Black solid lines stand for
proper mode, black dotted lines for IRM, and grey lines for ICM.

quence of the coupling) keeps on being a proper mode until, at
approximately 12.1 GHz, it crosses the real axis of the com-
plex plane to enter the zone [see Fig. 2(b)] where
it turns into an improper real mode (IRM). This improper mode
meets another IRM at 11.9 GHz to give rise to a pair of improper
complex modes (ICMs) with the same value of and oppo-
site values of , namely, they are complex conjugate in the

plane. As frequency decreases down to 1 GHz, this pair of
ICMs stays in the same zone of the complex plane without
any further change in the signs of the real and imaginary parts
of and . It can also be observed that the and
modes transition into IRMs at 8.1 and 2.6 GHz, respectively. It
should be highlighted that the computation of the propagation
constant in the neighborhood of a BM-to-IRM modal transition
has not raised any troubles because of the appropriate choice
of the independent variable. Otherwise, these transitions would
have implied the excursion of the modal solution into a different
Riemann sheet with the consequent complication in the tracking
procedure. This fact is illustrated in Fig. 5(b), which shows the
frequency evolution of the normalized phase constants of the
modes plotted in Fig. 5(a). This figure shows how the BM’s
transition into IRMs at , where they cross the cor-
responding branch cut in the complex -plane to go into the
improper sheet. In a similar fashion, it has been the specific
root-searching strategy employed here that has allowed for a
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Fig. 6. Normalized propagation constant<(k )=k and imaginary part of the
normalized vertical wavenumber of the upper half-space =(k )=k of the
TE and TM modes of an open isotropic dielectric slab with h = 2 mm,
" = " ; " = 4" ; " = 9:8. Black solid line denotes the BM and the grey
solid line denotes the IRM.

suitable scanning of the regions in which two or more modal
solutions have very near locations in the complex plane, e.g.,
the IRM-to-ICM transitions (splitting points) and the coupling
between BMs.

In connection with the previous discussion, it should be high-
lighted that the lack of BMs at low frequency is not directly re-
lated to either the anisotropic nature of the layered substrate or to
the specific orientation of the optical axis. Instead, the existence
of cutoff frequencies for the first two modes of the structure
should be rather related to the presence of different upper and
bottom half-spaces, as is well known to happen for the asym-
metric slab [39], [40]. In order to clarify this point, the disper-
sion curves of the and modes of a single isotropic
dielectric slab surrounded by different upper and bottom half-
spaces are studied in Fig. 6 (the structure under study is a simpli-
fication of the anisotropic layered slab previously considered).
This figure shows that both the and modes are IRMs
for low frequencies with cutoff frequencies at approximately
6.20 and 14.2 GHz, respectively. At the cutoff frequencies, it can
be observed that the imaginary part of the vertical wavenumber
in the upper half-space of the corresponding modes change its
sign, thus denoting an improper-to-proper modal transition. A
qualitative explanation of the above transition can be given by
first considering the slab surrounded by free space (a symmetric
slab). In this case, it is well known that the lower the frequency,
the larger the evanescent fields of the and modes
spread out in the upper and lower free-space regions. In con-
sequence, their corresponding normalized phase constants ap-
proach asymptotically unity for low frequencies (

as ), and these modes do not present cutoff frequencies.
If one of the half-spaces is now different from the other (say,
e.g., that ), the field is also expected to spread
out in both half-spaces. However, if , the propagation
wavenumber will eventually cross the branch point located at

in its evolution in the complex -plane, and,
when this crossing takes place, the BM will turn into an IRM.
This behavior will always be found for any values of the per-
mittivities of the half-spaces (as long as they are different) and

any composition of the layered slab. Thus, and according to the
above rationale, it can be concluded that there are not funda-
mental modes in any kind of layered slab when the upper and
lower half-spaces are different.

IV. NONRECIPROCAL WAVEGUIDES

When nonreciprocal materials are involved, the elements of
matrix are not invariant under inversion of the propagation
direction and, hence, they are no longer even functions of .
For grounded and/or open nonreciprocal waveguides, this fact
has important consequences that will be analyzed further here.
Nevertheless, the other properties of matrix mentioned at
the beginning of Section III still hold, which causes the char-
acteristic function (4) to be still analytic for shielded and par-
allel-plate nonreciprocal waveguides. Thus, the root-searching
strategy in [27] can also be applied to the characteristic function
(4) even if the structure is nonreciprocal (although the indepen-
dent variable will now be rather than ). Sections IV-A and
B will separately analyze the remaining cases of grounded and
open nonreciprocal waveguides.

A. Grounded Nonreciprocal Waveguides

If mapping (5) were now employed, there will be two pos-
sible values of for each value of the
computational variable . This fact was irrelevant for the case
of reciprocal waveguides since the elements of matrices and

were even functions of . Nevertheless, for nonreciprocal
waveguides, this latter parity is lost and, consequently, the am-
biguity in the sign of leads to a two-valued characteristic
function with a pair of branch points at . Due to
the similarity of this situation with that arising for the case of
open reciprocal waveguides, the same rationale exposed in Sec-
tion III-B can be applied here to arrive at the following general
mapping:

(18)

Similar to Section III-B, the above mapping will make the deter-
minant of matrix be single-valued and regular provided that

is analytic and that it does not have zeros. In this case, our
particular choice will be

(19)

which leads to

(20)

(21)

(22)

The following characteristic function is then proposed:

(23)

which present neither poles, nor branch points in the complex
-plane. The reason for choosing this new variable is again that
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Fig. 7. Schematic representation of the mapping in (19) showing the power
flow through the longitudinal and vertical directions (arrows), as well as the
exponential behavior of the fields (curves) in each zone of the region of interest
of the complex �-plane.

the mapping of the sheets of the original or Riemann
surfaces onto the complex -plane is easy to handle (see Fig. 7).
As in Section III-B, the domain of the real part of is newly
restricted to in order to deal only with the
principal value of the complex logarithm. In this case, BMs of
lossless waveguides are located on the
segment for forward propagation and on the

segment for backward propagation (here, forward/backward
propagation stands for propagation along the positive/negative

-axis). The effect of losses will be a migration of the forward
and backward BMs into the and

zones, respectively.
It is interesting to note that the well-known steepest descent

mapping [38], , used in [19] and elsewhere, can
be viewed as a particular case of the general mapping in (18).

B. Open Nonreciprocal Waveguides

The situation arising for open nonreciprocal waveguides is
certainly the most involved. As in the case of open reciprocal
waveguides, four-valued characteristic functions in the complex

-plane have to be dealt with. Nevertheless, the nonreciprocity
of the structure causes that no mapping of the form given in
(9) manages to unfold the corresponding Riemann surface. It
should be noted that, in the present case, two possible values of

will be associated with each value of and , namely,

. If the same rationale as
in Section III-B was followed, next step would be to study the
following linear combination:

(24)

in order to infer the conditions under which and are
single-valued functions of . One can proceed by writing both

and in terms of and then eliminating the square roots
to obtain a fourth-order complex polynomial in . However, it
has been found that the coefficients of the second-, third-, and
fourth-order terms cannot simultaneously get null and, hence, a
mapping as (24) is unable to unfold the Riemann surface.

After studying different possibilities, our best suggestion
is to choose mapping (12) to pose the characteristic function
as in (16), although will now be a two-valued function

Fig. 8. Schematic representation of the region of interest in the complex
�-plane for open nonreciprocal waveguides when: (a) k > k and (b) k > k .
The branch points correspond to k = 0 and the branch cuts are defined as
<(k ) = 0.

without poles. The corresponding complex -plane will then
be a two-sheeted Riemann surface with branch points at

or, equivalently, ,
corresponding to . Taking the branch cuts lying along
the loci, the upper sheet will define forward propa-
gation , whereas the lower sheet will correspond to
backward propagation . The resulting two-sheeted
Riemann surface is depicted in Fig. 8.

Note that either in (18) or a linear combination of and
could also have been chosen as the computational variable.

Nevertheless, these latter choices would have led to inconve-
nient Riemann surfaces with branch points at and

, respectively. These two points are of great interest
when performing a root searching since some modal propaga-
tion constants are expected to appear in their neighborhood. For
example, the transitions from IRMs to BMs in lossless wave-
guides take place at for and at for

(in other words, these are precisely the cutoff points).
Another disadvantage of the above variables would have been
the rather probable situation of a mode crossing a branch cut
and entering the other sheet of the Riemann surface during its
possible evolution. This fact would have considerably compli-
cated the tracking of the modal solutions, e.g., in a frequency
sweep. On the contrary, the proposed mapping (12) makes the
neighborhood of the corresponding branch points be regions of
scarce physical interest (no modes are generally expected in the
vicinity of ), which will greatly help to simplify the
root-searching procedure. In addition, the choice of the branch
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Fig. 9. Dispersion curve 
(k ) of the surface-wave mode in [8, Fig. 1]
(
 = !=! ; ! = 4�M ). The slab ferrite is characterized by
" = 15:4" ; 4�M = 1760 G, H = 2640ẑ(Oe), and a height of
h = 0:15c=! . Solid lines: our results. Points: data in [8].

cuts along will also prevent the appearance of special
difficulties when tracking a modal solution. Certainly, the modes
are not expected to change their forward/backward nature in
their possible evolution and, therefore, the roots of the charac-
teristic function are not expected to cross the branch cuts. Thus,
by choosing as the computational variable, one only needs to
select forward/backward propagation and the application of the
root-searching procedure described in [27] to the characteristic
function will be rather effective and reliable in spite of
the presence of the branch points.

It should be mentioned that, in those cases where nonre-
ciprocity is induced by an external biasing field, the searching
for forward- and backward-propagating modes can be circum-
scribed to just one of the sheets of the Riemann surface. If
this sheet is chosen as the forward-propagation one, the back-
ward-propagating modes can be readily computed by simply
reversing the biasing field. Due to this fact, and taking into
account that the presence of the branch points/cuts will only
exceptionally pose any problem to the tracking process, it has
been possible to find a quite similar procedure to deal with
open layered waveguides involving magnetized ferrites as that
for open dielectric waveguides.

Previous to using the current approach to study some novel
structures, a comparison of our results with those reported in
[8] for the surface-wave dispersion curves of a ferrite slab sur-
rounded by free space is first presented in Fig. 9. This figure
shows a good agreement between the two sets of data (relative
differences smaller than 0.1%), which confirms the suitability
of the current method to study open nonreciprocal structures.

Our approach is now applied to study some details of the
modal evolution in the same ferrite slab previously analyzed in
Fig. 9, although now with an upper dielectric half-space of per-
mittivity . Thus, Fig. 10 shows the behavior of the normalized
phase constants of both the forward and backward first modes as
the relative permittivity of the upper half-space varies
from unity up to the value corresponding to the ferrite slab. The
propagation constants of the backward modes are computed in
the forward-propagation sheet of the Riemann surface by simply

Fig. 10. Behavior of the magnitude of the normalized propagation constant
for the forward and backward first modes of an open ferrite slab as the relative
permittivity of the upper half-space (" =" ) is varied. Structural parameters:
" = " ; " = 15:4;4�M = 1760 G, H = 2640 ẑ (Oe); h = 1:45
mm, and Freq = 20 GHz. Black color stands for proper modes and grey
color for improper ones. (� � �): Reciprocal mode (ReM), (�����):
Nonreciprocal backward Mode (NReBM), (————): Nonreciprocal forward
mode (NReFM).

changing the sign of the and components of the biasing field
(namely, using instead of for the biasing magnetic field).
For the case of the symmetric slab , two pairs of
forward/backward proper modes are found. The pair of modes
with the smaller propagation constant is, in fact, a reciprocal
mode (ReM) (dotted line), and then it shows the same magnitude
of the propagation constant for both the forward and backward
modes. As increases, the propagation constant of this mode
touches the curve of at (in
the complex -plane, the solution touches the branch point
associated with the upper half-space), where this proper mode
turns into an IRM. (The proper/improper nature of the modes
is marked by black/grey color of the corresponding curve.) At
low values of , there also appears another pair of non-
reciprocal modes, which increases its nonreciprocity for larger
values of . The curve corresponding to the nonreciprocal for-
ward mode (NReFM) (solid line) touches the curve at

to transition, at this point, into an IRM. As for the
nonreciprocal backward mode (NReBM) (dashed line), its dis-
persion curve touches the curve at where
the mode transitions into an IRM to further meet another IRM
at to give rise to a complex leaky mode.

Next, Fig. 11 shows another study example that analyzes the
evolution in the complex -plane of a proper mode of an open
ferrite slab for frequencies ranging from 1 to 50 GHz. In this
case, the external magnetizing field does not coincide with any
of the Cartesian axes of the structures. This situation is well
known to complicate the posing of a closed-form characteristic
equation; in fact, this equation is usually found numerically after
the transverse matrix method is employed (see, e.g., [19]). The
root searching has been carried out in the sheet and,
hence, the modes plotted in Fig. 11 propagate forward along the

-direction. As frequency decreases from 50 GHz, it can be ob-
served that the proper mode crosses the real axis at 32.7 GHz and
enters the zone to become an improper mode. As
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Fig. 11. (a) Evolution in the complex �-plane of two modal solutions of the
depicted open nonreciprocal waveguide. (b) Closer view of the evolution of
the two plotted modes near 1 GHz. The parameters of the structure are " =

4" ; " = " ; h = 0:635 mm, " = 15" ; 4�M = 800 G, H = 500 Oe,
� = 90 , and � = 45 . The branch cuts are also shown and the arrows point
in the direction of decreasing frequencies.

long as this mode has , it is an IRM. Another IRM
has been plotted for frequencies below 10 GHz. Both IRMs meet
together at 6.77 GHz, giving rise to a pair of complex modes:
the mode having is a downward-leaky mode (i.e., a
mode that leaks into the lower half-space), while the other one is
its corresponding complex conjugate in the -plane. For lower
frequencies, this pair of -complex-conjugate modes further
evolve in the complex -plane until, at approximately 1.68 GHz,
they cross the line and the imaginary axis, respec-
tively [see the closer view in Fig. 11(b)]. At this frequency, the
right-most mode transitions into a upward-leaky mode, whereas
the former downward-leaky mode now becomes the -com-
plex-conjugate of the new upward-leaky mode. It should be
highlighted that the choice of a suitable independent variable
together with a proper definition of the branch cuts has greatly
simplified the computation of the modal solutions in the near
vicinity of the latter modal transitions (the modal solutions have
not crossed any branch cut in their evolution in the complex
-plane). Concerning the splitting point (IRM-to-ICM transi-

tion), the specific root-searching strategy has again allowed for
a straightforward tracking of both modal solutions as they get
closer to each other.

Finally, Fig. 12 shows the normalized phase constant of the
forward modes in Fig. 11 in the vicinity of the splitting point

Fig. 12. Detail of the splitting point of Fig. 11 also showing a backward IRM.

appearing at 6.77 GHz. In addition, the magnitude of the nor-
malized phase constant of a backward IRM is also shown (its
phase constant is negative). It can be observed how both the for-
ward and backward modes are almost indistinguishable (i.e., the
effect of the nonreciprocity is almost negligible) for frequencies
beyond 8 GHz. However, for lower frequencies, their behaviors
are clearly different. Specifically, the forward mode transition
into an ICM, whereas the backward mode does not go through
any splitting point and, hence, does not suffer any transition in
this frequency range.

V. CONCLUSION

This paper has addressed the general problem of posing the
transcendental equations of planar layered waveguides in its
most convenient form. Since the root-searching methods work
more efficiently when dealing with analytic functions, a gen-
eral theoretical discussion on the most suitable mapping (if any)
for each type of waveguides: shielded, parallel-plate, grounded,
and open reciprocal/nonreciprocal waveguides (including the
case of different upper and lower half-spaces) has been pre-
sented. For shielded and parallel-plate waveguides, the charac-
teristic function formulated here is directly analytic when the
wavenumber along the propagation direction is used as the in-
dependent variable. If the structure under study is a grounded
reciprocal/nonreciprocal waveguide or an open reciprocal wave-
guide, an appropriate mapping that unfolds the longitudinal-
wavenumber Riemann surface is proposed, and a corresponding
analytic characteristic function is formulated in each case. For
the case of open nonreciprocal waveguides, no mapping has
been found to unfold the Riemann surface. Nevertheless, an ef-
fective approach has been proposed to deal with these struc-
tures. In particular, the case of open layered waveguides con-
taining magnetized ferrites has been set up in a similar fashion
as the case of dielectric waveguides. Thus, the modal solutions
will not cross any branch cut in their evolution with respect to
some parameter of the structure and, hence, their tracking is
rather straightforward even if they transition into different na-
ture modal solutions. The combination of the proposed formula-
tion of the characteristic equation with a convenient integral-na-
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ture root-searching method makes possible the systematic anal-
ysis of a given region of the complex plane. This allows for an
automatic searching for the roots within the region, even when
modal couplings and splitting points appear. Some numerical re-
sults have been presented for reciprocal and nonreciprocal open
waveguides to show the good performance of the proposed for-
mulation.
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