V International Symposium on strong Nonlinear Vibronic and Electronic Interactions in Solids

- Institute of Physics, University of Tartu, Estonia
- Max Planck Institute for Solid State Research, Stuttgart,
- Brandenburg University of Technology, Cottbus, Germany
- European Union - Regional Development Fund
The introduction of subthreshold induced defects in germanium by above threshold radiation exposure

Sergio M. M. Coelho¹, Juan F. R. Archilla² and F. Danie Auret¹

¹Physics Department, University of Pretoria, South Africa
– ²Group of Nonlinear Physics, Universidad de Sevilla, Spain

Tartu 2015
Outline

- Subthreshold damage?
- Building blocks:
 - Experimental lab – crystal
 - Introducing defects
 - Measuring of defects
- An experiment – alpha irradiation
- Results - discussion
Concept & Motivation

- High energy particle - damage
- Radiation induced defects – Cause?
- All defects created by ion solid interactions?
- Qualify then quantify
Our experimental space

- Pure single crystal – Germanium
- Low impurities – not measurable
- Only 1 to 2 µm
- Temperature above 0K – defects
- Simplest defect - vacancy
Dominant defects

- Antimony – substitutional position
- E-center – vacancy – Sb complex
Defect detection - DLTS

- Classic Deep Level Transient Spectroscopy (DLTS)
- By monitoring the change of emission rate with temperature an activation energy is obtained.
- By observing the capture rate a cross section can be obtained.

\[e_n = A \exp\left(-\frac{E}{kT}\right) \]

\[c_n = n \sigma_n V_n \]

Deep states (ideal point defects)
The experiment

- Special Ge – no subthreshold defects
- Control – standard Ge
- Evaporate Au SBDs – no defects
- Alpha irradiation through metal
- DLTS to observe defects introduced (after alphas)
Germanium without equal

- 15 eV to ICP - $E_{0.31}$ introduced
- Anneal with high T
- No subthreshold defects possible
- No $E_{0.31}$ possible
- ?

- $V_r = -1$ V
- $V_p = 1.2$ V
- $t_p = 1$ ms
- $RW = 80$ s$^{-1}$

Defect concentration (x 10^{12} cm$^{-3}$) vs Temperature (K)
Germanium without equal

- 15 eV to ICP - $E_{0.31}$ introduced
- Anneal with high T
- No subthreshold defects possible
- No $E_{0.31}$ possible
- ?

sergio@up.ac.za WITS, 2015 Slide 7
Alpha source

- Americium foil
- Sharp energy peak – 5.4 MeV
- Alpha irradiation through metal
- 30 minute exposure
- 25 µm end of range – 2 µm measurement
- DLTS to observe defects introduced
First measurements

1st DLTS on ICP Ge

TIME PASSES

2nd DLTS on “standard Ge

Brilliant result - nonsense

New defect - nice
First measurements

1st DLTS on ICP Ge

TIME PASSES

2nd DLTS on “standard Ge

Brilliant result - nonsense

New defect - nice
First measurements

1st DLTS on ICP Ge

TIME PASSES

2nd DLTS on “standard Ge

Brilliant result - nonsense

New defect - nice
24 hours later…

Control – no defects

Measurements after defect evolution

Peak height \propto defect concentration
Depth profiles - Compare

- E-center – 30% less
- \(E_{0.15} \) – -50%
- \(E_{0.20} \) - -50%
- \(E_{0.21} \) (metastable)
Discussion - conclusions

1. Subthreshold effects – substantial part of radiation damage
2. Defects involved – also observed after EBE (1.3 eV)
3. How was the energy transferred? ILMs?
 • Stationary ILM possible in Ge and Si – MD
 • Energy packets MUST move – defect sites isolated

Novel interaction with crystal – Highest purity!
Thank you

Acknowledgements

- Organizers of this Symposium
- My colleagues, Archilla & Auret
- South African NRF – Financial assistance
- You, for your attention