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Integrable systems

@ Solitons are spatially localized excitations that arise in continuum and integrable
nonlinear systems.

e Example of integrable equations:

o Korteweg-de Vries (KdV) equation (hydrodynamics):
Up + 6Uly + Uyyy = 0

o Nonlinear Schrodinger (NLS) equation (BECs without trap, nonlinear optical fibers):
it + glul*u + ey = 0

o sine-Gordon equation (long Josephson junctions):

Uy +sinu — uy =0
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Integrable systems

@ Soliton are considered quasi-particles — the function that describes them do not
change after interaction.

niversidad de Sevilla)



Solitons and discrete breathers 2-H
Solitons
The DNLS equation
Klein-Gordon lattices

Non-integrable systems

@ In non-integrable systems, solitons do not behave as quasi-particles:

o Their profile and velocity can change after interaction.
o They could even get trapped after collision.
o Example of non-integrable continuum system — ¢* model:

U412 — U — e =0
@ Nonlinear lattices are non-integrable (except for the Ablowitz-Ladik and Toda
lattices).
o In this talk, we will consider two different kinds of lattices:
o Generalized DNLS lattices:

.du
1 dt” +f(lunlz)un + C(“n+l —Up—1— 21/1”) =0
o Klein-Gordon lattices:
dzun ’
an + V' () — Cttys1 — thy—1 —2u,) =0
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The Discrete Nonlinear Schrodinger (DNLS) Equation

o In the mean-field approximation, the dynamics of a Bose-Einstein Condensate can
be described by the Gross-Pitaevskii (GP) equation:
iy + gluPu 4 V(x)u+ iy =0
o In the case that V(x) is a deep periodic potential (optical lattice), the GP equation
can be approximated by the cubic DNLS equation [Alfimov, Kevrekidis, Konotop and
Salerno. PRE 66 (2002) 046608]:
du
d—tn + |t Ptan 4 C(ttyy1 — thy—1 — 2un) =0
@ Stationary discrete solitons or breathers are localized solutions of the form:

i

1y () = vy exp(iAt), A=—y, ,,li,r{lf lon] =0

@ Discrete moving breathers are generated by adding a momentum to a stationary
breather:

1y (0) = v, exp(iqn)
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The Discrete Nonlinear Schrodinger (DNLS) Equation

@ The DNLS equation possesses two conserved quantities:
o Norm (also number of particles or power): P = Z” |14 |?
o Hamiltonian: H = — Zn [Clutn — g1 |* + |un]*/2]

o Effects of non-integrability:
o Existence of Peierls—Nabarro barrier (PNB):

@ Energy difference between on-site and inter-site solitons with the same norm.

@ Itis related with the minimum momentum needed for put breathers into movement.

@ Itis unbounded (grows with P) — Moving breathers exist only for small norms.
o Breathers radiate when moving.
o Collision scenario is complex (breathers are not quasi-particles).
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The DNLS Equation with saturable nonlinearity

o The saturable DNLS equation (SDNLS) arises as trivial discretization of the
Vinetskii-Kukhtarev model for photorefractive media:

.du u

@ One of the features of this equation is that the PNB is bounded (8 = 2):
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o Moving breathers exist even for high norms.

o There are values of the norm at which the PNB vanishes — Moving breathers without
radiation can be found [Melvin, Champneys, Kevrekidis and Cuevas. PRL 97 (2006)
124101]

%“ﬁ“
o For small norms, this equation can be approximated by the cubic DNLS Us
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Breathers in Klein—-Gordon lattices

o Klein-Gordon chains are described by the equation:
d?u,

de
@ This equation possesses a conserved quantity, the Hamiltonian:

H= Z |:; <d;tn >2 + V(uy) + C(uy — un+1)2

o Discrete Klein-Gordon models describe the dynamics of crystals, biomolecules,
pendulum and Josephson—junction arrays, . ..

+ VI(”") - C(un+1 —Uy—1— 2”;1) =0

@ Stationary breathers are solutions in the form:

wy () = 20 + 22 2K cos(kawpt), ,,ll)mf |26 = 0 vk
k

o They exist as long as no integer multiple of their frequency wj, coincide with the
frequency of a linear mode [MacKay and Aubry. Nonlinearity 7 (1994) 1263]
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Breathers in Klein—-Gordon lattices

@ Moving breathers are also found by adding a momentum g:
u, (0) = | 20 + 22 25 | cos(qn)

duy, _
dt( = |z, +22 sin(gn)

o Stationary breathers are generic for all potential with convex parts.

@ On the contrary, moving breathers exist only in some special potentials:

o Morse potential: V(i) = (exp(—u) —1)2/2
e sine-Gordon potential: V(1) =1 — cos(u)
o ¢* (double well) potential: V(u) = (u? —1)2/4
o For breather frequencies close to the linear modes band, the Klein-Gordon
equation can be approximated by the cubic DNLS.
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Collisions in cubic DNLS

@ Breather collisions were considered in [Papacharalampous, Kevrekidis, Malomed and
Frantzeskakis. PRE 68 (2003) 046604].

@ We focus on incoming breathers with the same phase and velocity. Two main
regimes are observed:

e For small g: A bound state is formed.
o For high g: Breathers are refracted.

@ This behavior resembles the collision of two quasi-particles into an attractive .
effective potential. When the breather velocity is above the escape velocity, the u"@“
bound state is not formed.
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Breather trapping

sidad de Sevilla) te breather c



Breather collisions in DN Cubic DNLS
Saturable DNLS

Breather refraction

idad de Sevilla)



Breather collisions in DN Cubic DNLS
Saturable DNLS

Outline

9 Breather collisions in DNLS lattices

@ Saturable DNLS

idad de Sevilla)




Breather collisions in DNLS lattices Cubic DNLS
Saturable DNLS

Collisions in saturable DNLS

@ Breather collisions were considered in [Cuevas and Eilbeck. PLA 358 (2006) 15].
@ For small norms, the outcome is similar to the cubic DNLS.
@ For high norms, the scenario is as follows:

o For small g, the breathers are trapped (bound state)

o For intermediate g, breathers are refracted

o For high g, a bound state is created apart from the refracted breathers. The energy of the
bound state is smaller than that of the refracted breathers.
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Breather refraction + trapping

idad de Sevilla)



Breather collisions in Klein-Gordon lattices

Outline

@ Breather collisions in Klein-Gordon lattices

idad de Sevilla)



Breather collisions in Klein-Gordon lattices

Collisions in Klein—-Gordon lattices

@ We considered breather collisions in Klein-Gordon lattices with Morse potential
[Alvarez, Romero, Cuevas and Archilla. PLA 372 (2008) 1256].

o For wy, = 0.95 (small nonlinearity), the behaviour is similar to the cubic DNLS
equation.

@ For wy, = 0.8 (high nonlinearity), two main regimes are observed:

o Breathers can be refracted
o Abound state is created apart from the refracted breathers.

@ There are no critical values of q separating both regimes.

@ The only pseudo-critical value of g indicates a threshold for a possible appearance
of reflection without trapping.
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Collisions in Klein—-Gordon lattices

o Examples of different regimes:
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Breather refraction + high-energy trapping
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Breather refraction + low-energy trapping
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Breather refraction
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Conclusions

@ The breather collision scenario in cubic DNLS, saturable DNLS and Klein—-Gordon
lattices has been reviewed.

@ Three main regimes have been observed when two identical breathers collide:

o Breather trapping (formation of a bound state)
o Breather refraction
o Mixed regime: Breather refraction + trapping

@ Some of these features may be explained through energy balances
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Outlook

@ We are finishing the study of discrete breathers interaction in Klein-Gordon
lattices with other potentials:

o ¢* hard potential
e sine-Gordon potential

@ We are also examining with more detail the effect of the relative phase on the
collision.

@ We still lack a clear explanation of the complex scenario, specially in the case of
high nonlinearity.
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Thanks for your attention

Localized Excitations in Nonlinear Complex Systems
(LENCOS)

Seville (Spain). July 14-17, 2009
http://aleph.eii.us.es/LENCOS
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Collisions in Klein—-Gordon lattices. Interpretation

@ Roughly speaking, the moving breathers can be considered as quasiparticles.
o Neglecting the phonon radiation, it must be fulfilled that

2Eincoming = utrapped + 2Eoutgoing

@ For a given C, the static breather energy has a maximum E corresponding to the
minimum frequency
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Collisions in Klein—-Gordon lattices. Interpretation
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@ It can be supposed that Utrapped < E. In this case, if Eincoming > E/2—
Eoutgoing > 0 — there is an exceeding energy.

@ The last relation is fulfilled for wp, = 0.8 but not for wp, = 0.95.

@ This analysis is not valid for the saturable DNLS as the energy of stationary
breathers is not bounded. un,f

e breather collisi



	Solitons and discrete breathers
	Solitons
	The DNLS equation
	Klein--Gordon lattices

	Breather collisions in DNLS lattices
	Cubic DNLS
	Saturable DNLS

	Breather collisions in Klein--Gordon lattices
	Summary and Outlook

