Beating dark-dark solitons in Bose-Einstein condensates

D. Yan, J.J. Chang, C. Hamner, M. Hoefer, P.G. Kevrekidis, P. Engels, V. Achilleos, D.J. Frantzeskakis and J. Cuevas (pdf copy 2.0 Mb.)

Abstract:

Motivated by recent experimental results, we study beating dark-dark solitons as a prototypical coherent structure that emerges in two-component Bose-Einstein condensates. We showcase their connection to dark-bright solitons via SO(2) rotation, and infer from it both their intrinsic beating frequency and their frequency of oscillation inside a parabolic trap. We identify them as exact periodic orbits in the Manakov limit of equal inter- and intra-species nonlinearity strengths with and without the trap and showcase the persistence of such states upon weak deviations from this limit. We also consider large deviations from the Manakov limit illustrating that this breathing state may be broken apart into dark-antidark soliton states. Finally, we consider the dynamics and interactions of two beating dark-dark solitons in the absence and in the presence of the trap, inferring their typically repulsive interaction.

Journal of Physics B: Atomic, Molecular and Optical Physics 45 (2012) 115301. doi: 10.1088/0953-4075/45/11/115301