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Fundamental question: For which kinds of initial spatially extended

states can we expect formation of persistent localized modes in a
Hamiltonian lattice after long times 7

Answer requires a statistical-mechanics description of the model.

Here: Extend to general DNLS models, higher dimensions +

connection to Klein-Gordon models
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Two main motivations to study o # 1:

e Some effects of higher dimensionality captured in 1D models with
o=2or c=3. E.g., there is an excitation threshold for creation of
localized excitations when oD > 2.

e For BECs in optical lattices, 1D DNLS models with 0 < ¢ < 1 may
account for dimensionality of the condensates in each well:
oc=2/(24+d), ford=0,1,2, or 3.

The DNLS equation has 2 conserved quantities:

e Hamiltonian (energy):
2042
H= 5, [CWmthis + Ohtbma) + L2l

e Excitation number (norm, power, number of particles,...):

Canonical transformation 1, = \/A,,e!%m (action—angle variables) :

H = Zi\i:l (20\/AmAm+1 COS(Cbm — Qbm—f—l) 0'—|—1 ) A Zm 1

H., A
N'@= N

For extended solutions, use intensive quantities h =
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e Staggered (¢ = m) stationary plane wave zpﬁnmm) = JaemT Mt
(with A = —2C + a%) minimizes h at fized a for all o:

pimin) — _9Cq + C;:rll (Global min for a(™™) = (20)%)

To predict macroscopic average values in the thermodynamic limit
(N — o0), we use standard Gibbsian statistical mechanics.

A < ‘number of particles’ in grand-canonical ensemble

Grand-canonical partition function:

00 2w N
Z = / / dpp,dA,, e~ PHTHA)
0 J0 T]L;Il

B =1/T < ’inverse temperature’

1t < 'chemical potential’

Integrating over the phase variables ¢,, yields

AO‘
—BAm (U—fbl-Hb)

z = (@2n)" /OOO [T dAnTo (280 A Amir)e ,

with Iy(z) modified Bessel function of first kind.
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Possible to use ’transfer integral operator’ to obtain (numerically)
thermodynamic quantities for N — oo, with 1-1 correspondance
between a regime in (a, h)-space and well-defined p and G > 0.

But this regime is bounded by ’infinite-temperature’ line 3 = 0, and
does not cover all phase-space!

Line 8 = 0 associated with singularity of partition function,
signalling transition into phase of formation of localized structures.
AO'

—BAm (o.—_m‘F/i

(For 8 < 0 and finite p the probability density e ) would

favour large A,,. But then integral diverges for A — c0...)

We can obtain analytic expressions for thermodynamic expectation
values of h and a close to 3 — 07 by approximating Iy ~ 1.

(equivalent to C' — 0; ’thermalized independent units’)

Close to limit 3 — 0, u — oo with Su = v constant, we obtain:
Bl (o + 1)
(B

1
N InZ ~In(27) — In(Bu) —

with I'(o 4+ 1) = o! for integer o;
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' h=ha;0) =T (0 +1)a’t! defines relation between energy and

number densities at transition-line 3 = 0!

PhaSe diagram fOI' o = 1 (h(C) — CL2) (Rasmussen et al, PRL 84, 3740 (2000))

FIG. 1. Parameter space (a,h), where the shaded area is in-
accessible. The thick lines represent the 8 = = (T = 0) and
B = 0 (T = ) lines and thus bound the”Gihbsia.n regime. 'I_'he
dashed line represents the h = 2a + 3a® line along which
the reported numerical simulations are performed (pointed by
the symbols).
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FIG. 2. Distribution of A = |¢|? for three cases under (and on)
the transition line. The solid lines show the results of simulations
and the symbols are given by the transfer operator. Curves are
vertically shifted to facilitate visualization.

-%- <A> =15 (N = 1024)

—a— <A> = 25 (N = 2048)

< <A> =25 (N = 8192)

/'*‘ *. A

0 10 20 30 40 50
A
FIG. 3. Distribution of A = |¢|* for parameters (k,a) above
the transition line (triangles and stars as in Fig. 1. Dotted line
indicates random initial condition). Note labels are arranged in
order of increasing system size.

e 'Normal’ regime h < h{®): Typical initial conditions thermalize

according to Gibbsian equilibrium distribution at u, 3 > 0;
log p(Am) ~ —vAm — 5A%+1/(U +1), 8 —0
e 'Anomalous’ regime h > h(¢): Typical distribution functions p(A4,,)

for finite systems after long but finite integration times: Positive

curvature favours creation of high-amplitude localized excitations!
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Heuristic explanation for localization for h > h(®

At fized, finite A, a localized breather uniquely mazimizes H.
(e.g. Weinstein, Nonlinearity 12, 673 (1999))

For large A, it localizes essentially at one site, and H(™®) ~ “i:rll

In microcanonical ensemble (fixed A, H and N) entropy (logarithm of

number of microstates) is a well-defined function S(H, A, N).

Varying H, S = 0 for H = Nh{™") (A, N), increases towards its
maximum when H = Nh(® (since 8 = 3—72|A,N = 0), and then again

decreases towards zero at H(™%)(A).

-+ In microcanonical ensemble, temperature T = + is well-defined,
and T < 0 for h > h(®.

ey

In grand-canonical ensemble, a part of the system with
(microcanonical) T' < 0 may increase its entropy by decreasing H at
(almost) fixed A. Can transfer superfluous energy into localized
breathers, which absorb large H but only small A!

(Coverheated’ system with T" < 0 ’cools itself off” by creating breathers as

9 9 °
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Proposed as general mechanism for energy localization in systems

With tWO COHSGI’VGd quantities. (e.g. Rumpf/Newell,Physica D 184, 162 (2003))

Used to explicitly calculate the thermodynamic properties of the

DNLS model in limit Of small a. (Rumpf, PRE 69, 016618 (2004))
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FIG. 1. Numerical integration of the DNLS with 4096 oscilla-
tors. The initial conditions are waves with the amplitude ¢,=0.3
and the wave number k=0 for (a), (b), and with &= w/2 for (c), (d).
(a) and (c) show the spatiotemporal patterns of high-amplitude
states (dark gray) in a small sector of the chain for the first 2000
time steps. (b) and (d) show the distributiions of ¢ after 2 10°
time steps.

(Phase space then naturally divides into a small-amplitude fluctuation’

part and a large-amplitude ’breather’ part which only interact weakly).

Yields equilibrium state maximizing total entropy for h > h(¢)
consisting of one single breather, with rest of the lattice at normal

Gibbsian 1" = oo distribution.
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Localization transition for particular families of initial conditions

1. Travelling waves: 1, = /ae'?e™ (with A = 2C cosq + a?);

aa—|—1

h =2C :
acosq+0+1

Modulationally unstable for |g| < 7/2 and linearly stable for

500

7T/2 < |q‘ S . (e.g. Smerzi/Trombettoni, Chaos 13, 766 (2003))
: : —

Transition at h = h(®) yields:

a(c) _ {2(0+1)C’cosqi| 4
'o+2)—1

400 -
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. For |q| < 7/2 statistical localization expected for a < al®(q; o).

(Evidently, if initial condition is exact no thermalization or localization

occurs, but perturbed unstable solutions thermalize rapidly when a > ale),
Even for linearly stable solutions thermalization is expected, but extremely

slow through Arnol’d diffusion.)

Note: For small o, localization should occur even for yery large a
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Numerics: Distribution functions for N = 10000 after t = 1.1 - 10°
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2. Standing waves (SWs):
Time-periodic non-propagating solutions, periodic or quasiperiodic in
space with wave vector ().

Particularly interesting are SWs with Q = 3: (’period-doubled states’)

VYoni1 = 0,%2,12 = (—1)"v 2ae1(2a)7t. h = Ule act1
Since 02—:1 = I'(0 + 1) if and only if ¢ = 1, this solution defines curve

of transition into phase of statistical localization only for cubic DNLS.

For 0 < o < 1 it is always in breather-forming regime, while for o > 1

always in normal thermalizing regime.
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Numerically obtained (time-averaged) distribution functions from
(unstable) /2 SW initial conditions for o = £, 1,3 (a=C=1):
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B: Generalization to higher-dimensional models are immediate!

2D quadratic lattice of N sites: « =

Z,n\é_,n 1 {26’ [\/Am,nAm+1’n cos(Pm,n — ¢m_|_1’n) + \/AmAm,n+1 cos(Ppm,n — ¢m’n+1)] U+1 Aa—i—l}

Grand-canonical partition function:

— Arnn
N N _BA’I’TL,TL O'—f—’l +/’L
m,n=1

High-temperature limit 3 — 0 again by approximating Iy ~ 1
(’thermalized independent units’ neglects all interaction terms)
h9)(a;0) =T(0 + 1)a’t! gives transition line in any dimension!
Specific example: 2D plane wave ), , = /ae!(d=m+ayn) giht

Modulationally unstable if either |g,| or |g,| smaller than /2.
aa—|—1

h = 2Ca(cos q; + cosqy) + =

o+ 1

SIE

Statistical localization for a < @), with a o721

" cos g + cos q, > 0 necessary condition for persistent breather

(c) _ |:2(0—|—1)C(cos qx+cos qy) }

formation from 2D travelling waves.
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In particular, for constant-amplitude solution (¢, = ¢, = 0) with
o = 1, threshold is a(® = 8C (compare al®) = 4C in 1D).

Numerically obtained distribution functions (N = 128 x 128):
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Time-evolution of distribution at a = 7:

e Small ¢: Smooth curve with positive curvature,
negative-temperature behaviour 8 < 0. il
e Larger t: Discontinuous curve.
Low-amplitude part: phonon bath at 7" = oo. ECE R

High-amplitude part: breathers with increasing amplitude.

*.» Phase space separation also for large a!?
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Extension to travelling waves in 3D cubic lattice,
Vg, my,m, = Vae!dzmetaymy+aamz) oiht g immediate: just add

cos ¢, everywhere!

= For a constant-amplitude solution in 3D with o = 1, critical value

becomes a = 12C.

Numerical integration to t = 5 - 10° for N = 64 x 64 x 64:
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Klein-Gordon correspondence to DNLS phase transition line

For small amplitudes € and weak coupling C'x, find quantities
approximately corresponding to DNLS Hamiltonian and norm!

Use wellknown ideas of expanding over multiple time-scales.

(e.g. Daumont et al., Nonlinearity 10, 617 (1997); Morgante et al., Physica D 162, 53 (2002) )
KG Hamiltonian H: H =Y0_, [242 + V(un) + 2Ck (ung1 — un)?],
with on-site potential V(u): V(u) = su® + a% + ﬁ’“{ + ...,
Expand u,(t) as un(l) =), a'Peirwrt assume al?) ~ €? for p > 0,

a') ~ €2, Cx ~ €2, and a slow time-dependence a(p)(
general DNLS equatlon to O(e°): (N = —-1a” +33)

t), gives

2iwpal) + (1 —wi)alld — O (all), +al” | =248+ N 1al Pall) = 04+ O(°).

Its two conserved quantities can be expressed as:

= or Sl lal P H = Gl B, | Ox(anan”” +alllial) — lal)!
In the KG model, the quantities A/N and ‘H/N correspond to
quantities of order unity with time variation ~ f(e*t), i.e., two orders
of magnitude slower than the typical time scale for a( ).
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Calculate A and 'H explicitly in terms of time-averages of different
contributions to the KG Hamiltonian H:

N Uy Uy,
A=l (< S > 42 <y atn >) + O(eh);

3

2 2
A/ u u xu
H__|02| lH—<ZnTn > —(1+20K) < T, 2 >-1 <y, Xn >1+o(e2)-
K

(non-unique expression!)
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Numerical integration of KG Morse chain with Cx = 0.005, N = 200, and
randomly perturbed constant-amplitude initial condition u,(0) = 0.05. (a)
Time evolution of local energy density (note logarithmic time scale). (b)
Main figure: H/N vs. A/N for the simulation in (a). Time runs from right
to left (i.e. A/N decreases). Lowest curve is the localization transition line.
Inset in (b) shows the ratio of time-averaged cubic to quartic energies

versus time, compared to the DNLS prediction (lower line).
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Thermalization of a quartic KG chain (o« = 0, g/ = 1) with Cg = 0.01, N = 800, coupled to a

thermal bath at temperature T/ = 0.005 with dissipation constant n = 0.1. (a) Time-averaged total
-2

kinetic energy < >, U“Tn >. (b) H/N vs. A/N for the simulation in (a). Each dot represents a

time-average over the interval [t — 100, t] at 15382 different times t. Line in (b) is the localization
transition line. Larger points in (b) show the locations of the initial conditions used below.
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(c) Example of a breather appearing in the microcanonical integration of an initial condition
represented by the lower large point in (b). (d),(e) (Non-normalized) velocity distribution functions
p(tpn) obtained from long-time numerical microcanonical integrations (points) compared to
Maxwellian distributions P (%) ~ (271'T/)_1/2 exp(—ql2/2T/) (lines) at the estimated temperature.
In (d) the initial condition is the same as for (c), the temperature is T/ &~ 0.00494 and the
integration time is 1.2 - 106. (e) corresponds to the upper large point at (0.704, —0.471) in (b) with
T ~ 0.00485, and integration time 0.6 - 106.
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Remarks and perspectives

e The statistical mechanics description yields explicit necessary conditions
for formation of persistent localized modes, in terms of average values of
the two conserved quantitities H and A.

e The approach approximately describes situations with non-conserved but

slowly varying quantities, e.g. explains formation of long-lived breathers

from thermal equilibrium in weakly coupled Klein-Gordon chains.

e In contrast to the condition for existence of an energy threshold for
creation of a single breather, ¢ and D work in opposite directions for the
statistical localization transition. The energy threshold affects the

approach to equilibrium, not the nature of the equilibrium state.

e Can localization transition be experimentally observed with BEC’s in

optical lattices, or with optical waveguide arrays??

eCan the hypothesis of separation of phase space in low-amplitude
'fluctuations’ and high-amplitude ’breathers’ in the equilibrium state be

put on more rigorous ground, also for large a?

eWhat determines the time-scales for approach to equilibrium in
breather-forming regime? Are equilibrium states physically relevant, if
they can only be reached after ¢ ~ 10°°...?
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