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Fundamental question: For which kinds of initial spatially extended
states can we expect formation of persistent localized modes in a
Hamiltonian lattice after long times ?

Answer requires a statistical-mechanics description of the model.
(Rasmussen et al., PRL 84, 3740 (2000); Rumpf, PRE 69, 016618 (2004), for 1D DNLS)

Here: Extend to general DNLS models, higher dimensions +
connection to Klein-Gordon models

1 NLDD05 Sevilla, March 3-4, 2005



A: 1D General Discrete Nonlinear Schrödinger (DNLS) equation :

iψ̇m + C(ψm+1 + ψm−1) + |ψm|2σψm = 0.

Let σ > 0 and C > 0. (C < 0 ⇔ ψm → (−1)mψm)

σ = 1: cubic DNLS with many well-known applications, e.g.:

• Describes generically slow small-amplitude dynamics of weakly
coupled anharmonic oscillators (e.g. Kivshar, Phys. Lett. 173, 172 (1993)).

• Nonlinear optics: Discrete spatial solitons in waveguide arrays.
(e.g. Sukhorukov et al. IEEE J. Quantum Electron. 39, 31 (2003))

• Coupled Bose-Einstein condensates (BECs), e.g. in external
periodic potentials. (e.g. Smerzi/Trombettoni, Chaos 13, 766 (2003))

Example: Nonlinear standing-wave phonons in DNLS
Q = 12π/55 (Johansson et al., EPJ B 29, 279 (2002) ) Q = 68π/89
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Two main motivations to study σ �= 1:
• Some effects of higher dimensionality captured in 1D models with
σ = 2 or σ = 3. E.g., there is an excitation threshold for creation of
localized excitations when σD ≥ 2. (Flach et al., PRL 78, 1207 (1997))

• For BECs in optical lattices, 1D DNLS models with 0 < σ < 1 may
account for dimensionality of the condensates in each well:
σ = 2/(2 + d), for d = 0, 1, 2, or 3. (Smerzi/Trombettoni, Chaos 13, 766 (2003))

The DNLS equation has 2 conserved quantities:

• Hamiltonian (energy):
H =

∑
m

[
C(ψmψ∗

m+1 + ψ∗
mψm+1) + |ψm|2σ+2

σ+1

]

• Excitation number (norm, power, number of particles,...):
A =

∑
m |ψm|2.

Canonical transformation ψm =
√

Ameiφm (action-angle variables) :

H =
PN

m=1

“
2C

√
AmAm+1 cos(φm − φm+1) +

Aσ+1
m

σ+1

”
, A =

PN
m=1 Am.

For extended solutions, use intensive quantities h = H
N ; a = A

N
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• Staggered (q = π) stationary plane wave ψ
(min)
m =

√
aeimπeiΛt

(with Λ = −2C + aσ) minimizes h at fixed a for all σ:

h(min) = −2Ca + aσ+1

σ+1 (Global min for a(min) = (2C)
1
σ .)

To predict macroscopic average values in the thermodynamic limit
(N → ∞), we use standard Gibbsian statistical mechanics.

A ↔ ’number of particles’ in grand-canonical ensemble

Grand-canonical partition function:

Z =
∫ ∞

0

∫ 2π

0

N∏
m=1

dφmdAme−β(H+µA)

β ≡ 1/T ↔ ’inverse temperature’

µ ↔ ’chemical potential’

Integrating over the phase variables φm yields

Z = (2π)N

Z ∞

0

Y
m

dAmI0(2βC
p

AmAm+1)e
−βAm

„
Aσ

m
σ+1 +µ

«
,

with I0(z) modified Bessel function of first kind.
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Possible to use ’transfer integral operator’ to obtain (numerically)
thermodynamic quantities for N → ∞, with 1-1 correspondance
between a regime in (a, h)-space and well-defined µ and β > 0.

But this regime is bounded by ’infinite-temperature’ line β = 0, and
does not cover all phase-space!

Line β = 0 associated with singularity of partition function,
signalling transition into phase of formation of localized structures.

(For β < 0 and finite µ the probability density e
−βAm

„
Aσ

m
σ+1 +µ

«
would

favour large Am. But then integral diverges for A → ∞...)

We can obtain analytic expressions for thermodynamic expectation
values of h and a close to β → 0+ by approximating I0 ≈ 1.
(equivalent to C → 0; ’thermalized independent units’)

Close to limit β → 0, µ → ∞ with βµ ≡ γ constant, we obtain:

1
N

lnZ 	 ln(2π) − ln(βµ) − βΓ(σ + 1)
(βµ)σ+1 ,

with Γ(σ + 1) = σ! for integer σ;
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h = 1
N

(
µ
β

∂
∂µ − ∂

∂β

)
lnZ 	 Γ(σ+1)

(βµ)σ+1 , a = − 1
Nβ

∂ lnZ
∂µ 	 1

βµ

∵ h = h(c)(a; σ) ≡ Γ(σ + 1)aσ+1 defines relation between energy and
number densities at transition-line β = 0!

Phase diagram for σ = 1 (h(c) = a2) (Rasmussen et al, PRL 84, 3740 (2000))

• ’Normal’ regime h < h(c): Typical initial conditions thermalize
according to Gibbsian equilibrium distribution at µ, β > 0;
log p(Am) ∼ −γAm − βAσ+1

m /(σ + 1), β → 0

• ’Anomalous’ regime h > h(c): Typical distribution functions p(Am)
for finite systems after long but finite integration times: Positive
curvature favours creation of high-amplitude localized excitations!
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Heuristic explanation for localization for h > h(c)

At fixed, finite A, a localized breather uniquely maximizes H.
(e.g. Weinstein, Nonlinearity 12, 673 (1999))

For large A, it localizes essentially at one site, and H(max) 	 Aσ+1

σ+1 .

In microcanonical ensemble (fixed A,H and N) entropy (logarithm of
number of microstates) is a well-defined function S(H,A, N).

Varying H, S = 0 for H = Nh(min)(A, N), increases towards its
maximum when H = Nh(c) (since β ≡ ∂S

∂H |A,N = 0), and then again
decreases towards zero at H(max)(A).

∵ In microcanonical ensemble, temperature T = 1
β is well-defined,

and T < 0 for h > h(c).

In grand-canonical ensemble, a part of the system with
(microcanonical) T < 0 may increase its entropy by decreasing H at
(almost) fixed A. Can transfer superfluous energy into localized
breathers, which absorb large H but only small A!

(’overheated’ system with T < 0 ’cools itself off’ by creating breathers as

’hot spots’ of localized energy).
7 Johansson and Rasmussen. NLDD05 Sevilla, March 3-4, 2005



Proposed as general mechanism for energy localization in systems
with two conserved quantities. (e.g. Rumpf/Newell,Physica D 184, 162 (2003))

Used to explicitly calculate the thermodynamic properties of the
DNLS model in limit of small a. (Rumpf, PRE 69, 016618 (2004))

(Phase space then naturally divides into a small-amplitude ’fluctuation’

part and a large-amplitude ’breather’ part which only interact weakly).

Yields equilibrium state maximizing total entropy for h > h(c)

consisting of one single breather, with rest of the lattice at normal
Gibbsian T = ∞ distribution.

Argument also valid for large a???
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Localization transition for particular families of initial conditions

1. Travelling waves: ψm =
√

aeiqmeiΛt (with Λ = 2C cos q + aσ);

h = 2Ca cos q +
aσ+1

σ + 1
.

Modulationally unstable for |q| < π/2 and linearly stable for
π/2 < |q| ≤ π. (e.g. Smerzi/Trombettoni, Chaos 13, 766 (2003))

Transition at h = h(c) yields:

a(c) =
[

2(σ+1)C cos q
Γ(σ+2)−1

] 1
σ
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∵ For |q| < π/2 statistical localization expected for a < a(c)(q; σ).

(Evidently, if initial condition is exact no thermalization or localization

occurs, but perturbed unstable solutions thermalize rapidly when a > a(c).

Even for linearly stable solutions thermalization is expected, but extremely

slow through Arnol’d diffusion.)

Note: For small σ, localization should occur even for very large a.
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Numerics: Distribution functions for N = 10000 after t = 1.1 · 106

σ = 0.4 σ = 3
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2. Standing waves (SWs):
Time-periodic non-propagating solutions, periodic or quasiperiodic in
space with wave vector Q. (e.g. Morgante et al., PRL 85, 550 (2000) )

Particularly interesting are SWs with Q = π
2 : (’period-doubled states’)

ψ2n+1 = 0, ψ2n+2 = (−1)n
√

2aei(2a)σt; h = 2σ

σ+1aσ+1

Since 2σ

σ+1 = Γ(σ + 1) if and only if σ = 1, this solution defines curve
of transition into phase of statistical localization only for cubic DNLS.

For 0 < σ < 1 it is always in breather-forming regime, while for σ > 1
always in normal thermalizing regime.
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Numerically obtained (time-averaged) distribution functions from
(unstable) π/2 SW initial conditions for σ = 2

3 , 1, 3 (a=C=1):
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B: Generalization to higher-dimensional models are immediate!

2D quadratic lattice of N sites: H =

P√
N

m,n=1

j
2C

»q
Am,nAm+1,n cos(φm,n − φm+1,n) +

q
AmAm,n+1 cos(φm,n − φm,n+1)

–
+ 1

σ+1 Aσ+1
m,n

ff

Grand-canonical partition function:

Z = (2π)N
Z ∞
0

√
NY

m,n=1
dAm,nI0(2βC

q
Am,nAm+1,n)I0(2βC

q
Am,nAm,n+1)e

−βAm,n

 
Aσ

m,n
σ+1 +µ

!

High-temperature limit β → 0+ again by approximating I0 ≈ 1

(’thermalized independent units’ neglects all interaction terms)

h(c)(a; σ) ≡ Γ(σ + 1)aσ+1 gives transition line in any dimension!

Specific example: 2D plane wave ψm,n =
√

aei(qxm+qyn)eiΛt

Modulationally unstable if either |qx| or |qy| smaller than π/2.

h = 2Ca(cos qx + cos qy) +
aσ+1

σ + 1
⇒

Statistical localization for a < a(c), with a(c) =
h

2(σ+1)C(cos qx+cos qy)

Γ(σ+2)−1

i 1
σ .

∵ cos qx + cos qy > 0 necessary condition for persistent breather
formation from 2D travelling waves.
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In particular, for constant-amplitude solution (qx = qy = 0) with
σ = 1, threshold is a(c) = 8C (compare a(c) = 4C in 1D).

Numerically obtained distribution functions (N = 128 × 128):
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Time-evolution of distribution at a = 7:
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• Small t: Smooth curve with positive curvature,
negative-temperature behaviour β < 0.

• Larger t: Discontinuous curve.
Low-amplitude part: phonon bath at T = ∞.
High-amplitude part: breathers with increasing amplitude.

∵ Phase space separation also for large a!?
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Extension to travelling waves in 3D cubic lattice,
ψmx,my,mz =

√
aei(qxmx+qymy+qzmz)eiΛt, is immediate: just add

cos qz everywhere!

⇒ For a constant-amplitude solution in 3D with σ = 1, critical value
becomes a = 12C.

Numerical integration to t = 5 · 106 for N = 64 × 64 × 64:
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Klein-Gordon correspondence to DNLS phase transition line

For small amplitudes ε and weak coupling CK , find quantities
approximately corresponding to DNLS Hamiltonian and norm!

Use wellknown ideas of expanding over multiple time-scales.
(e.g. Daumont et al., Nonlinearity 10, 617 (1997); Morgante et al., Physica D 162, 53 (2002) )

KG Hamiltonian H: H =
PN

n=1

ˆ
1
2
u̇2

n + V (un) + 1
2
CK(un+1 − un)2

˜
,

with on-site potential V (u): V (u) = 1
2u2 + αu3

3 + β′ u4

4 + . . . .

Expand un(t) as un(t) =
∑

p a
(p)
n eipωbt, assume a

(p)
n ∼ εp for p > 0,

a
(0)
n ∼ ε2, CK ∼ ε2, and a slow time-dependence a

(p)
n (ε2t), gives

general DNLS equation to O(ε5): (λ′ ≡ − 10
3

α2 + 3β′)

2iωbȧ
(1)
n +(1−ω2

b )a(1)
n −CK(a

(1)
n+1 +a

(1)
n−1−2a(1)

n )+λ′|a(1)
n |2a(1)

n = 0+O(ε5).

Its two conserved quantities can be expressed as:
A = |λ′|

CK

PN
n=1 |a(1)

n |2, H = |λ′|
C2

K

P
n

h
CK(a

(1)
n+1a

(1)∗
n + a

(1)∗
n+1a

(1)
n ) − λ′

2
|a(1)

n |4
i

In the KG model, the quantities A/N and H/N correspond to
quantities of order unity with time variation ∼ f(ε4t), i.e., two orders
of magnitude slower than the typical time scale for a

(1)
n .
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Calculate A and H explicitly in terms of time-averages of different
contributions to the KG Hamiltonian H:

A = |λ′|
CK

“
<

PN
n=1

u2
n
2

> + 19
30

<
P

n α
u3

n
3

>
”

+ O(ε4);

H = − |λ′|
C2

K

"
H− <

P
n

u̇2
n
2 > −(1 + 2CK) <

P
n

u2
n
2 > − 1

2 <
P

n
αu3

n
3 >

#
+ O(ε2).

(non-unique expression!)
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Numerical integration of KG Morse chain with CK = 0.005, N = 200, and

randomly perturbed constant-amplitude initial condition un(0) = 0.05. (a)

Time evolution of local energy density (note logarithmic time scale). (b)

Main figure: H/N vs. A/N for the simulation in (a). Time runs from right

to left (i.e. A/N decreases). Lowest curve is the localization transition line.

Inset in (b) shows the ratio of time-averaged cubic to quartic energies

versus time, compared to the DNLS prediction (lower line).
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Thermalization of a quartic KG chain (α = 0, β′ = 1) with CK = 0.01, N = 800, coupled to a
thermal bath at temperature T ′ = 0.005 with dissipation constant η = 0.1. (a) Time-averaged total

kinetic energy <
P

n
u̇2

n
2 >. (b) H/N vs. A/N for the simulation in (a). Each dot represents a

time-average over the interval [t − 100, t] at 15382 different times t. Line in (b) is the localization
transition line. Larger points in (b) show the locations of the initial conditions used below.
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(c) Example of a breather appearing in the microcanonical integration of an initial condition
represented by the lower large point in (b). (d),(e) (Non-normalized) velocity distribution functions
p(u̇n) obtained from long-time numerical microcanonical integrations (points) compared to

Maxwellian distributions P (u̇) ∼ (2πT ′)−1/2 exp(−u̇2/2T ′) (lines) at the estimated temperature.
In (d) the initial condition is the same as for (c), the temperature is T ′ ≈ 0.00494 and the
integration time is 1.2 · 106. (e) corresponds to the upper large point at (0.704, −0.471) in (b) with
T ′ ≈ 0.00485, and integration time 0.6 · 106.

17 Johansson and Rasmussen. NLDD05 Sevilla, March 3-4, 2005



Remarks and perspectives

• The statistical mechanics description yields explicit necessary conditions

for formation of persistent localized modes, in terms of average values of

the two conserved quantitities H and A.

• The approach approximately describes situations with non-conserved but

slowly varying quantities, e.g. explains formation of long-lived breathers

from thermal equilibrium in weakly coupled Klein-Gordon chains.

• In contrast to the condition for existence of an energy threshold for

creation of a single breather, σ and D work in opposite directions for the

statistical localization transition. The energy threshold affects the

approach to equilibrium, not the nature of the equilibrium state.

• Can localization transition be experimentally observed with BEC’s in

optical lattices, or with optical waveguide arrays??

•Can the hypothesis of separation of phase space in low-amplitude

’fluctuations’ and high-amplitude ’breathers’ in the equilibrium state be

put on more rigorous ground, also for large a?

•What determines the time-scales for approach to equilibrium in

breather-forming regime? Are equilibrium states physically relevant, if

they can only be reached after t ∼ 1060...?
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