Quantum Lattices

Chris Eilbeck

Heriot-Watt University
Edinburgh

Outline

- Introduction- Solitons and Breathers

Outline

- Introduction- Solitons and Breathers

The DNLS and A-L equations

Outline

- Introduction- Solitons and Breathers
- The DNLS and A-L equations
- QDNLS and Quantum Breathers

Outline

- Introduction- Solitons and Breathers
- The DNLS and A-L equations
- QDNLS and Quantum Breathers

Solitons and Breathers in Lattices

- Soliton. Strongly localized package (lump) of energy, can move large distances with no distortion, very stable even under collisions or perturbations.

Solitons and Breathers in Lattices

- Soliton. Strongly localized package (lump) of energy, can move large distances with no distortion, very stable even under collisions or perturbations.
- Breather. A more complicated form of nonlinear wave which can often occur in discrete systems. It looks like a soliton modulated by an internal carrier wave.

soliton collision

Start animation

soliton collision 2

Solitons and Breathers in Lattices

Breathers, DNLS

For simplicity we focus on two models, firstly the Discrete Nonlinear Schrödinger (DNLS) equation.

$$
\mathrm{i} \frac{d A_{j}}{d t}+\left(A_{j-1}-2 A_{j}+A_{j+1}\right)+\gamma\left|A_{j}\right|^{2} A_{j}=0
$$

where $A_{j}(t)$ is the complex oscillator amplitude at the j th lattice site. DNLS Hamiltonian:

$$
H=\sum_{j=1}^{f}\left[\frac{\gamma}{2}\left|A_{j}\right|^{4}-A_{j}^{*}\left(A_{j-1}+A_{j+1}\right)\right]
$$

A-L equation

The second model we consider is the classical Ablowitz-Ladik system

$$
\begin{aligned}
\mathrm{i} \frac{d A_{j}}{d t}+ & \left(A_{j+1}-2 A_{j}+A_{j-1}\right)+ \\
+ & \frac{1}{2} \gamma\left|A_{j}\right|^{2}\left(A_{j+1}+A_{j-1}\right)=0
\end{aligned}
$$

This is an integrable system.

Breathers, DNLS equation

This is a stationary breather on a larger lattice. The amplitude goes to zero exponentially as $|n| \rightarrow \infty$.

Breathers, DNLS equation

Simulations:

- Stationary breather
- Mobile breather
- Colliding breathers

Exact breather solutions?

Exact Breathers, DNLS equation?

In 1991, Henrik Feddersen (Springer Lect. Notes. in Phys., 393, 159) made a numerical study of the DNLS equation using the ansatz

$$
A_{n}(t)=\phi(n-c t) e^{i(k n-\omega t)} .
$$

He found branches of localized solutions to high accuracy, but the existence of such solutions is still an open question.

Quantum breathers

Quantum DNLS (boson Hubbard) Hamiltonian in 1D, nearest neigbour interactions:

$$
\hat{H}=-\frac{\gamma}{2} \sum_{j=1}^{f} b_{j}^{\dagger} b_{j}^{\dagger} b_{j} b_{j}-\sum_{j} b_{j}^{\dagger} b_{j+1}
$$

\hat{H} conserves the number of quanta

$$
\hat{N}=\sum_{j=1}^{f} b_{j}^{\dagger} b_{j},
$$

Quantum wavefunctions

The operators b_{j}, b_{j}^{\dagger} acts on number states $\left|\psi_{n}>=\left|n_{1}>\left|n_{2}>\ldots\right| n_{f}>=\left[n_{1}, n_{2}, \ldots, n_{f}\right]\right.\right.$, where $N=\sum n_{i}$.
Example: $[2,2,0,0,0,1]$ means 2 quanta on site 1, 2 quanta on site 2, 1 quanta on site 6, on a lattice with 6 sites.
Raising/Lowering operators satisfy
$b_{j}\left|n_{j}>=\sqrt{n_{j}}\right| n_{j}-1>, \quad b_{j} \mid 0>=0$,
$b_{j}^{\dagger}\left|n_{j}>=\sqrt{n_{j}+1}\right| n_{j}+1>$.
General wave function is $\left|\Psi_{N}>=\sum_{n} c_{n}\right| \psi_{n}>$.

Quantum Mechanics in Maple

[$2,2,0,0,0,1$] is represented in Maple as an undefined function psi ($2,2,0,0,0,1$). Then operator b_{i}^{\dagger} are defined something like bd:=proc (phi,i::nonnegint) ni:=op (i,phi) ;
RETURN (sqrt (ni+1) *sulosop (i=ni+1, phi)
end
\hat{H} for QDNLS is defined along the following lines
sum (' gamma / 2 *bd (bd (b (b (phi, i) , i) , i) , i) +bd(b (phi, cyc (i+1)), i)
+bd(b(phi, cyc(i-1)), i)', i=1..f)

Conserved number of quanta

We can block-diagonalize the Hamiltonian matrix

$$
H=\langle\Psi| \hat{H}|\Psi\rangle \text { as }
$$

$$
H=\left(\begin{array}{cccc}
H_{1} & 0 & & \\
0 & H_{2} & 0 & \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots
\end{array}\right)
$$

where each H_{N} is the Hamiltonian for N quanta.

Example, $f=2, N=2$

$$
\begin{aligned}
\mid \Psi_{2}>= & c_{1}[2,0]+c_{2}[1,1]+c_{3}[0,2] \\
\hat{H} \mid \Psi_{2}>= & {\left[-\frac{\gamma}{2}\left(b_{1}^{\dagger} b_{1}^{\dagger} b_{1} b_{1}+b_{2}^{\dagger} b_{2}^{\dagger} b_{2} b_{2}\right)-\right.} \\
& \left.\quad-\left(b_{1}^{\dagger} b_{2}+b_{2}^{\dagger} b_{1}\right)\right] \mid \Psi_{2}> \\
= & -\gamma c_{1}[2,0]-\gamma c_{3}[0,2]-\sqrt{ } 2 c_{1}[1,1]- \\
& \quad-\sqrt{ } 2 c_{3}[1,1]-\sqrt{ } 2 c_{2}[2,0]-\sqrt{ } 2 c_{2}[0,2]
\end{aligned}
$$

Example, $f=2, N=2$ continued

Using $[2,0],[1,1],[0,2]$ as basis vectors, we can write this in matrix (eigenvalue) form
$H\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=-\left[\begin{array}{ccc}\gamma & \sqrt{ } 2 & 0 \\ \sqrt{ } 2 & 0 & \sqrt{ } 2 \\ 0 & \sqrt{ } 2 & \gamma\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=E\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$
with eigenvalues

$$
E=-\gamma, \quad \frac{-\gamma \pm \sqrt{\gamma^{2}+16}}{2}
$$

Rotational symmetry

If model is rotationally invariant (translations + periodic b.c.'s) we can further block-diagonalize H_{N} using eigenfunctions of the translation operator \hat{T}, giving states with fixed momentum k

$$
H_{N}=\left(\begin{array}{cccc}
H_{N, k_{1}} & 0 & & \\
0 & H_{N, k_{2}} & 0 & \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots
\end{array}\right)
$$

$\mathrm{N}=2$ Case In this case each $H_{2, k_{p}}$ is tridiagonal.

1D Quantum Breather - 2 quanta

Eigenvalues $E(k)$ for QDNLS. The lower band is the "breather" band.

Quantum Breather? - 2 quanta

The "breather" band has wave function

$$
\begin{aligned}
\mid \Psi_{n}>= & {[2,0,0, \ldots]+[0,2,0, \ldots]+[0,0,2, \ldots]+} \\
& +\cdots+O(1 / \gamma)([1,1,0, \ldots]+\ldots)
\end{aligned}
$$

So for large γ the quanta are localized (both on the same site), but occur at all sites with equal probability! Localized breathers in the classical sense are not eigenstates, but decay slowly.

2D Quan. Breather Bands - 2 quanta

Further reading

- D. B. Duncan, J. C. Eilbeck, H. Feddersen and J. A. D. Wattis, Solitons on lattices, Physica D 68 1-11 (1993)
- A. C. Scott, J. C. Eilbeck and H. Gilhøj, Quantum lattice solitons, Physica D 78, 194-213, (1994)
- A. C. Scott, Nonlinear Science, OUP, 1999 (2nd ed. 2003).

