Quantum Lattices

Chris Eilbeck

Heriot-Watt University

Edinburgh

Introduction- Solitons and Breathers

Introduction- Solitons and Breathers
The DNLS and A-L equations

Outline

Introduction- Solitons and Breathers
The DNLS and A-L equations
QDNLS and Quantum Breathers

Outline

Introduction- Solitons and Breathers
The DNLS and A-L equations
QDNLS and Quantum Breathers

Solitons and Breathers in Lattices

Soliton. Strongly localized package (lump) of energy, can move large distances with no distortion, very stable even under collisions or perturbations.

Solitons and Breathers in Lattices

Seliton. Strongly localized package (lump) of energy, can move large distances with no distortion, very stable even under collisions or perturbations.

Breather. A more complicated form of nonlinear wave which can often occur in discrete systems. It looks like a soliton modulated by an internal carrier wave.

soliton collision

Start animation

soliton collision 2

Quantum Lattices – p.5/22

Solitons and Breathers in Lattices

Breathers, DNLS

For simplicity we focus on two models, firstly the Discrete Nonlinear Schrödinger (DNLS) equation.

$$i\frac{dA_j}{dt} + (A_{j-1} - 2A_j + A_{j+1}) + \gamma |A_j|^2 A_j = 0,$$

where $A_j(t)$ is the *complex* oscillator amplitude at the *j*th lattice site. DNLS Hamiltonian:

$$H = \sum_{j=1}^{f} \left[\frac{\gamma}{2} |A_j|^4 - A_j^* (A_{j-1} + A_{j+1}) \right]$$

A-L equation

The second model we consider is the classical Ablowitz-Ladik system

$$i\frac{dA_j}{dt} + (A_{j+1} - 2A_j + A_{j-1}) + \frac{1}{2}\gamma |A_j|^2 (A_{j+1} + A_{j-1}) = 0$$

This is an *integrable* system.

Breathers, DNLS equation

This is a stationary breather on a larger lattice. The amplitude goes to zero exponentially as $|n| \rightarrow \infty$.

Breathers, DNLS equation

Simulations:

- Stationary breather
- Mobile breather
- Colliding breathers

Exact breather solutions?

Exact Breathers, DNLS equation?

In 1991, Henrik Feddersen (Springer Lect. Notes. in Phys., **393**, 159) made a numerical study of the DNLS equation using the ansatz

$$A_n(t) = \phi(n - ct)e^{i(kn - \omega t)}$$

He found branches of localized solutions to high accuracy, but the *existence* of such solutions is still an open question.

Quantum breathers

Quantum DNLS (boson Hubbard) Hamiltonian in 1D, nearest neigbour interactions:

$$\hat{H} = -\frac{\gamma}{2} \sum_{j=1}^{f} b_j^{\dagger} b_j^{\dagger} b_j b_j - \sum_j b_j^{\dagger} b_{j+1}$$

 \hat{H} conserves the *number* of quanta

$$\hat{N} = \sum_{j=1}^{f} b_j^{\dagger} b_j \; ,$$

Quantum wavefunctions

The operators b_j , b_j^{\dagger} acts on *number states* $|\psi_n \rangle = |n_1 \rangle |n_2 \rangle \dots |n_f \rangle = [n_1, n_2, \dots, n_f]$, where $N = \sum n_i$. Example: [2,2,0,0,0,1] means 2 quanta on site 1, 2 quanta on site 2, 1 quanta on site 6, on a lattice with 6 sites. Raising/Lowering operators satisfy

 $b_j |n_j \rangle = \sqrt{n_j} |n_j - 1 \rangle, \quad b_j |0 \rangle = 0,$ $b_j^{\dagger} |n_j \rangle = \sqrt{n_j + 1} |n_j + 1 \rangle.$ General wave function is $|\Psi_N \rangle = \sum_n c_n |\psi_n \rangle.$

Quantum Mechanics in Maple

[2,2,0,0,0,1] is represented in Maple as an undefined function psi(2,2,0,0,0,1). Then operator b_i^{\dagger} are defined something like bd:=proc(phi,i::nonnegint) ni:=op(i,phi); RETURN(sqrt(ni+1)*subsop(i=ni+1,phi) end \hat{H} for QDNLS is defined along the following lines sum('gamma/2*bd(bd(b(phi,i),i),i),i),i) +bd(b(phi,cyc(i+1)),i)+bd(b(phi,cyc(i-1)),i)', i=1..f)

Conserved number of quanta

We can block-diagonalize the Hamiltonian matrix $H = \left\langle \Psi | \hat{H} | \Psi \right\rangle$ as

where each H_N is the Hamiltonian for N quanta.

Example, f = 2, N = 2

$$\begin{aligned} |\Psi_{2}\rangle &= c_{1}[2,0] + c_{2}[1,1] + c_{3}[0,2] \\ \hat{H}|\Psi_{2}\rangle &= \left[-\frac{\gamma}{2} \left(b_{1}^{\dagger}b_{1}^{\dagger}b_{1}b_{1} + b_{2}^{\dagger}b_{2}^{\dagger}b_{2}b_{2} \right) - \\ &- \left(b_{1}^{\dagger}b_{2} + b_{2}^{\dagger}b_{1} \right) \right] |\Psi_{2}\rangle \\ &= -\gamma c_{1}[2,0] - \gamma c_{3}[0,2] - \sqrt{2}c_{1}[1,1] - \\ &- \sqrt{2}c_{3}[1,1] - \sqrt{2}c_{2}[2,0] - \sqrt{2}c_{2}[0,2] \end{aligned}$$

Example, f = 2, N = 2 continued

Using [2,0],[1,1],[0,2] as basis vectors, we can write this in matrix (eigenvalue) form

$$H\begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix} = -\begin{bmatrix}\gamma & \sqrt{2} & 0\\\sqrt{2} & 0 & \sqrt{2}\\0 & \sqrt{2} & \gamma\end{bmatrix}\begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix} = E\begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix}$$

with eigenvalues

$$E = -\gamma, \quad \frac{-\gamma \pm \sqrt{\gamma^2 + 16}}{2}$$

Rotational symmetry

If model is rotationally invariant (translations + periodic b.c.'s) we can further block-diagonalize H_N using eigenfunctions of the translation operator \hat{T} , giving states with fixed momentum k

N=2 Case In this case each H_{2,k_p} is tridiagonal.

1D Quantum Breather – 2 quanta

Eigenvalues E(k) for QDNLS. The lower band is the "breather" band.

Quantum Breather? – 2 quanta

The "breather" band has wave function $|\Psi_n \rangle = [2, 0, 0, ...] + [0, 2, 0, ...] + [0, 0, 2, ...] + \dots + O(1/\gamma) ([1, 1, 0, ...] + ...)$

So for large γ the quanta are *localized* (both on the same site), but occur at *all* sites with *equal* probability! Localized breathers in the *classical* sense are not eigenstates, but decay slowly.

2D Quan. Breather Bands – 2 quanta

Further reading

- D. B. Duncan, J. C. Eilbeck, H. Feddersen and J. A. D. Wattis, *Solitons on lattices*, Physica D 68 1–11 (1993)
- A. C. Scott, J. C. Eilbeck and H. Gilhøj, *Quantum lattice solitons*, Physica D 78, 194-213, (1994)
- A. C. Scott, *Nonlinear Science*, OUP, 1999 (2nd ed. 2003).