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Solitons and Breathers in Lattices

Soliton. Strongly localized package (lump) of
energy, can move large distances with no
distortion, very stable even under collisions or
perturbations.

Breather. A more complicated form of
nonlinear wave which can often occur in
discrete systems. It looks like a soliton
modulated by an internal carrier wave.
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soliton collision

Start animation
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soliton collision 2
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Solitons and Breathers in Lattices
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Breathers, DNLS

For simplicity we focus on two models, firstly the
Discrete Nonlinear Schrödinger (DNLS)
equation.

i
dAj

dt
+ (Aj−1 − 2Aj + Aj+1) + γ|Aj|2Aj = 0,

where Aj(t) is the complex oscillator amplitude at
the jth lattice site. DNLS Hamiltonian:

H =

f
∑

j=1

[γ

2
|Aj|4 − A∗

j(Aj−1 + Aj+1)
]
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A-L equation

The second model we consider is the classical
Ablowitz-Ladik system

i
dAj

dt
+ (Aj+1 − 2Aj + Aj−1) +

+
1

2
γ|Aj|2(Aj+1 + Aj−1) = 0

This is an integrable system.
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Breathers, DNLS equation
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This is a stationary breather on a larger lat-

tice. The amplitude goes to zero exponentially as

|n| → ∞.
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Breathers, DNLS equation

Simulations:

Stationary breather

Mobile breather

Colliding breathers

Exact breather solutions?
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Exact Breathers, DNLS equation?

In 1991, Henrik Feddersen (Springer Lect.
Notes. in Phys., 393, 159) made a numerical
study of the DNLS equation using the ansatz

An(t) = φ(n− ct)ei(kn−ωt).

He found branches of localized solutions to high

accuracy, but the existence of such solutions is

still an open question.
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Quantum breathers

Quantum DNLS (boson Hubbard) Hamiltonian in
1D, nearest neigbour interactions:

Ĥ = −γ
2

f
∑

j=1

b†jb
†
jbjbj −

∑

j

b†jbj+1

Ĥ conserves the number of quanta

N̂ =

f
∑

j=1

b†jbj ,
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Quantum wavefunctions

The operators bj, b
†
j acts on number states

|ψn >= |n1 > |n2 > . . . |nf >= [n1, n2, . . . , nf ],
where N =

∑

ni.
Example: [2,2,0,0,0,1] means 2 quanta on site 1,
2 quanta on site 2, 1 quanta on site 6, on a lattice
with 6 sites.
Raising/Lowering operators satisfy
bj|nj >=

√
nj|nj − 1 >, bj|0 >= 0,

b†j|nj >=
√

nj + 1|nj + 1 >.

General wave function is |ΨN >=
∑

n cn|ψn >.
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Quantum Mechanics in Maple

[2,2,0,0,0,1] is represented in Maple as an
undefined function psi(2,2,0,0,0,1).
Then operator b†i are defined something like
bd:=proc(phi,i::nonnegint)

ni:=op(i,phi);
RETURN(sqrt(ni+1)*subsop(i=ni+1,phi))

end
Ĥ for QDNLS is defined along the following lines
sum(’gamma/2*bd(bd(b(b(phi,i),i),i),i)

+bd(b(phi,cyc(i+1)),i)
+bd(b(phi,cyc(i-1)),i)’, i=1..f)
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Conserved number of quanta

We can block-diagonalize the Hamiltonian matrix

H =
〈

Ψ|Ĥ|Ψ
〉

as

H =











H1 0

0 H2 0
. . . . . . . . .

. . . . . .











where each HN is the Hamiltonian for N quanta.
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Example, f = 2, N = 2

|Ψ2 > = c1[2, 0] + c2[1, 1] + c3[0, 2]

Ĥ|Ψ2 > =
[

−γ
2

(

b†1b
†
1b1b1 + b†2b

†
2b2b2

)

−

−
(

b†1b2 + b†2b1
)]

|Ψ2 >

= −γc1[2, 0] − γc3[0, 2] −
√

2c1[1, 1]−
−√

2c3[1, 1] −
√

2c2[2, 0] −
√

2c2[0, 2]
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Example, f = 2, N = 2 continued

Using [2, 0],[1, 1],[0, 2] as basis vectors, we can
write this in matrix (eigenvalue) form

H







c1
c2
c3






= −







γ
√

2 0√
2 0

√
2

0
√

2 γ













c1
c2
c3






= E







c1
c2
c3







with eigenvalues

E = −γ, −γ ±
√

γ2 + 16

2
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Rotational symmetry

If model is rotationally invariant (translations +
periodic b.c.’s) we can further block-diagonalize
HN using eigenfunctions of the translation
operator T̂ , giving states with fixed momentum k

HN =











HN,k1
0

0 HN,k2
0

. . . . . . . . .
. . . . . .











N=2 Case In this case each H2,kp
is tridiagonal.
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1D Quantum Breather – 2 quanta
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Eigenvalues E(k) for QDNLS. The lower band is
the “breather” band.
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Quantum Breather? – 2 quanta

The “breather” band has wave function

|Ψn > = [2, 0, 0, . . . ] + [0, 2, 0, . . . ] + [0, 0, 2, . . . ]+

+ · · · +O(1/γ) ([1, 1, 0, . . . ] + . . . )

So for large γ the quanta are localized (both on

the same site), but occur at all sites with equal

probability! Localized breathers in the classical

sense are not eigenstates, but decay slowly.
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2D Quan. Breather Bands – 2 quanta
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Further reading

D. B. Duncan, J. C. Eilbeck, H. Feddersen
and J. A. D. Wattis, Solitons on lattices, Physica
D 68 1–11 (1993)

A. C. Scott, J. C. Eilbeck and H. Gilhøj,
Quantum lattice solitons, Physica D 78, 194-213,
(1994)

A. C. Scott, Nonlinear Science, OUP, 1999 (2nd
ed. 2003).
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