NON LÍNEAR DOUBLE DAY, SEVILLA 2004

Low Temperature Reconstructive Transformations Low Temperature Reconstructive Transformations

MD Alba, JM Trillo and M Naranjo

SILICATE MINERALS

Libeau classification

Q ⁿ	Anion group	Silicate Family	Example	Structure
Q^0	(SiO ₄) ⁴⁻	nesosilicate	Forsterite (Mg ₂ SiO ₄) TEOS: (CH ₃ CH ₂) ₄ SiO ₄	X
Q ¹	(Si ₂ O ₇) ⁶⁻	Soro- or disilicate	Lu ₂ Si ₂ O ₇	X
Q ²	$(\mathrm{Si}_{n}\mathrm{O}_{2n+n})^{2n-1}$	cyclosilicate	Beryl: Al ₂ Be ₃ Si ₆ O ₁₈	Å
	(SiO ₃) ²⁻	inosilicate	Enstatite: Mg ₂ Si ₂ O ₆	5
Q ³	(Si ₄ O ₁₀) ⁴⁻	phyllosilicate	Saponite: $Na_x[Si_{8-x}Al_x][Mg_6]O_{20}(OH)_4$ Muscovite: $K_2[Si_4Al_2][Al_4]O_{20}(OH)_4$	
Q ⁴	SiO ₂	tectosilicate	Silica gel: SiO ₂	

SILICATE MINERALS: Phyllosilicates

BUILDING BLOCKS

Tetrahedral Layer (Si_{6+x}Al_{2-x}O₂₀)¹⁰⁻

SILICATE MINERALS: Phyllosilicates

Layer	Layer Charge (X)	Group	Species	
Туре			Dioctahedral member	Trioctahedral member
1:1	x=0	Kaolinite- serpentine	Kaolinite Halloysite	Chrisotile
	x=0	Pyrophyllite-Talc	Pyrophyllite	Talc
	0.2?x ?0.6	Smectite	Montmorillonite Beidellite nontronite	Saponite Hectorite
2:1	0.6 ?x ?0.9	Vermiculite	Dioctahedral vermiculite	Trioctahedral vermiculite
	x=1	Mica	Muscovite Paragonite	Phlogopite Biotite
	x=2	Brittle mica	Margarite	Clintonite Mica-4

SOLID-SOLID TRANFORMATIONS

* **Displacive Transformation:** It involves only small adjustements to the crystal structure. Generally, no bonds are broken, but the angles between the atoms may change slightly.

* **Reconstructive Transformation:** It involves extensive rearrangement of the crystal structure and requires breaking of chemical bonds and reassembling the atoms into a different crystal structure.

α-quartz Tridymite **B**-quartz

* Order-Disorder Transformation: It involves the state of order or disorder in a crystal structure. ²⁹Si MAS NMR

Day, Sevilla 2004.

Sample	Site	δ (ppm)	/
NAT001†	Si2(3AI)	-87.6	0.668
	Si1(2AI)	-95.2	0.332
NAT002†	Si2(4AI)	-83.6	.082
	Si2(3AI)	-87.6	.512
	Si1(3AI)	-90.0	.051
	Si2(2AI)	-92.1	.044
	Si1(2AI)	-95.1	.260
	Si2(1AJ)	-97.6	.052

RECONSTRUCTIVE TRANFORMATION: Phyllosilicates

Laver	Layer Charge (X)	Group	Species	
Туре			Dioctahedral member	Trioctahedral member
1:1	x=0	Kaolinite- serpentine	Kaolinite Halloysite	Chrisotile
	x=0	Pyrophyllite-Talc	Pyrophyllite	Talc
	0.2?x ?0.6	Smectite	Montmorillonite Beidellite nontronite	Saponite Hectorite
2:1	0.6 ?x ?0.9	Vermiculite	Dioctahedral vermiculite	Trioctahedral vermiculite
	x=1	Mica	Muscovite Paragonite	Phlogopite Biotite
	x=2	Brittle mica	Margarite	Clintonite Mica-4

RECONSTRUCTIVE TRANFORMATION: Smectite

RECONSTRUCTIVE TRANFORMATION: Phyllosilicates

Laver	Layer Charge (X)	Group	Species	
Туре			Dioctahedral member	Trioctahedral member
1:1	x=0	Kaolinite- serpentine	Kaolinite Halloysite	Chrisotile
	x=0	Pyrophyllite-Talc	Pyrophyllite	Talc
	0.2?x ?0.6	Smectite	Montmorillonite Beidellite nontronite	Saponite Hectorite
2:1	0.6 ?x ?0.9	Vermiculite	Dioctahedral vermiculite	Trioctahedral vermiculite
	x=1	Mica	Muscovite Paragonite	Phlogopite Biotite
	x=2	Brittle mica	Margarite	Clintonite Mica-4

RECONSTRUCTIVE TRANFORMATION: Muscovite

