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SUMMARY

In model predictive control (MPC), the input sequence is computed, minimizing a usually quadratic cost
function based on the predicted evolution of the system output. In the case of nonlinear MPC (NMPC),
the use of nonlinear prediction models frequently leads to non-convex optimization problems with several
minimums. This paper proposes a new NMPC strategy based on second order Volterra series models where
the original performance index is approximated by quadratic functions, which represent a lower bound of the
original performance index. Convexity of the approximating quadratic cost functions can be achieved easily
by a suitable choice of the weighting of the control increments in the performance index. The approximating
cost functions can be globally minimized by convex optimization techniques in order to compute the input
sequence. The minimization of the performance index is carried out by an iterative optimization procedure,
which guarantees convergence to the solution. Furthermore, for a nominal prediction model, asymptotic
stability for the proposed NMPC strategy can be shown. In the case of considering an estimation error in the
prediction model, input-to-state practical stability is assured. The control performance of the NMPC strategy
is illustrated by experimental results. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Model predictive control (MPC) represents nowadays one of the most common advanced control
techniques applied to industrial processes [1–4]. In MPC, the input sequence is computed minimiz-
ing a usually quadratic cost function based on the predicted evolution of the system. The mentioned
prediction of the future evolution of the system is carried out by means of a mathematical model
of the system. Consequently, the quality of the mathematical model used to approximate the sys-
tem dynamics has a decisive influence on the control performance. In nonlinear MPC (NMPC),
the combination of a nonlinear prediction model and a quadratic cost function frequently leads to
a non-convex optimization problem, resulting in different computational problems. A non-convex
character of the cost function to be minimized gives rise to local minimums, making the minimiza-
tion of the cost function a more difficult task. A modification in the cost function [5] in order to
obtain a convex optimization problem can reduce the computational complexity.

Virtually all dynamic processes of practical importance exhibit some degree of nonlinear behavior
[6, 7]. However, the use of NMPC in industry applications is very limited due to the higher computa-
tional complexity of the oftentimes non-convex optimization problems. While linear MPC requires
in every sampling period the solution of a convex problem, usually carried out with quadratic
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programming (QP), NMPC requires (at least a partial) solution with the help of nonlinear program-
ming [8]. The difficulty of the optimization problem results in an important increase in the compu-
tation time, limiting the use of NMPC in many cases to slow processes or the consideration of small
horizons. Besides, from a more theoretical point of view, the possible non-convexity of the optimiza-
tion problem considerably complicates the study of stability and robustness. The mentioned prob-
lems account for the seldom use of NMPC in industry where only a few NMPC applications have
been reported, including the areas of refining, chemicals, polymers as well as air and gas processing
[9, 10].

Nevertheless, when the process is described by a Volterra series model, computationally efficient
solutions for the model predictive control problem can be found. As they represent a natural exten-
sion of linear convolution models, Volterra series models can be obtained from input–output data
without detailed knowledge of the process. Being linear in the parameters, widely used identification
methods, for example, least squares method, can be used to determine the model parameters. A com-
putationally efficient unconstrained NMPC strategy based on second order Volterra series models
has been proposed in [11, 12]. The unconstrained optimization is carried out by means of an iterative
algorithm based on the separation of the linear and the nonlinear terms of a Volterra series model.
The NMPC strategy consists of a conventional linear MPC extended by an auxiliary loop containing
the nonlinear dynamics in the optimization process. The proposed NMPC for second order Volterra
series models was generalized in [13] for its use in combination with higher order Volterra series
models. Analogously to the original optimization approach, the optimization problem is solved by
an iterative optimization algorithm based on the separation of the linear and nonlinear terms where
the auxiliary loop contains also third and higher-order terms. In [14], two suboptimal NMPC strate-
gies for second order Volterra series models have been presented. These strategies are based on the
assumption of constant increments in the input signal over the entire control horizon, that is, the
resulting input sequence has a constant slope, or a step-like control where the input signal is assumed
to be constant along the control horizon. In both NMPC strategies, depending only on one sole
decision variable (constant slope or constant input signal), the resulting one-dimensional optimiza-
tion problem, which can still be non-convex, can be easily minimized with respect to the decision
variable. Recently, [15] presented a robust NMPC based on a Volterra series model with a low com-
putational complexity. The use of terminal constraints guarantees convergence to a neighborhood
around the setpoint in presence of disturbances.

With respect to the stability of NMPC strategies, it is important to have in mind that Volterra
series models represent a generalization of finite impulse response (FIR) models and can be con-
sidered as stable fading memory systems. For MPC strategies based on linear FIR models, several
authors have proven closed-loop stability, among others [16–18]. The use of terminal constraints to
ensure stability of nonlinear controllers has been proposed [19–21]. Other publications, especially
in the area of economic NMPC [22–24], point out that general stability can be proven under certain
conditions using Lyapunov functions. In spite of the mentioned propositions, stability of NMPC
strategies based on Volterra series models is an open field with few results.

In this work, a new NMPC strategy based on second order Volterra series models is presented.
The proposed strategy uses approximating quadratic functions that represent lower bounds of the
original cost function. For these approximating quadratic functions, convexity can be achieved eas-
ily by adding a weighting of the input sequence increments. After determining a first approximating
function, global minimization of this function is carried out in order to compute a first candidate
input sequence. With the first candidate input sequence, a new approximating function can be com-
puted. An optimization algorithm computes a new candidate input sequence by minimizing the
pointwise maximum of all approximating functions. This procedure is repeated until a certain accu-
racy criterion is satisfied. The convergence of the proposed procedure can be shown because the
difference between the approximated and the original cost is strict monotonically decreasing. Fur-
thermore, with the pointwise maximum of the approximated convex cost functions being a convex
function, the minimization of the pointwise maximum leads to a global minimization of the original
cost function. Besides, the proposed NMPC strategy guarantees asymptotic stability in the case of
a nominal prediction model. Also, under consideration of an estimation error as a consequence of a
model mismatch, input-to-state practical stability is proven.
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The paper is organized as follows: Section 2 presents the problem description and the notation
used in this work. Section 3 presents the general concept of using an approximating cost function
to guarantee convexity and its use in combination with second order Volterra series models. The
resulting control law, a procedure for global minimization that exploits the convex character of the
approximating functions, is presented in Section 4. Stability of the proposed NMPC strategy is
proven in Section 5, and experimental results of the control strategy applied to a nonlinear process
are presented in Section 6. Finally, in Section 7, the major conclusions are drawn.

2. PROBLEM DESCRIPTION

Considering a fading memory system [25], a non-autoregressive second order Volterra series model
is defined as [26]

y.k/ D y0 C

NtX
iD1

aiu.k � i/C

NtX
iD1

NtX
jDi

bi;ju.k � i/u.k � j / (1)

where y.k/ denotes the model output and u.k/ is the model input subject to the constraints u.k/ 2
U , Œumin; umax�. The model parameters y0, ai , and bi;j represent the offset, the linear term
parameters, and nonlinear term parameters‡, respectively. The truncation orders for the linear and
nonlinear part of the model can be different, but for the sake of simplicity and without loss of
generality, Nt will be used as a common truncation order for both parts§. It can be seen easily
from the model (1) that the output y.k/ in the sample k depends only on the past input values
u.k � i/ along the truncation orders (with 1 6 i 6 Nt ). For the prediction of the future output
values, a known estimation error representing a measurable disturbance will be considered. Hence,
the prediction model based on a second order Volterra series model can be written as

y.k C j jk/ D y0 C

NtX
iD1

aiu.k C j � i jk/C

NtX
iD1

NtX
lDi

bi;lu.k C j � i jk/u.k C j � l/C d.k/ (2)

where y.k C j jk/ represents the output prediction for k C j made at the sampling period k and
d.k/ is the measurable disturbance in k.

The second order Volterra series model with the measurable disturbance (2) can be used as
prediction model in a general quadratic cost function [2]:

J.u/ D

NX
jD1

.y.k C j jk/ � r.k//2 C �

Nu�1X
jD0

.u.k C j jk/ � ur.k//
2 (3)

where the future input sequence u 2 RNu computed at k is given by u D Œu.kjk/; : : : ; u.k C
Nu � 1jk/�

T . The upper limits N and Nu denote the considered prediction and control horizons,
respectively. For stability reasons, it is assumed that the chosen horizons and the truncation order
satisfy N > Nt CNu. Besides, the parameter � is used as a weighting factor for the control effort.
The variable r.k/ represents the setpoint for the output, and ur.k/ is the corresponding steady-state
input defined by

ur.k/ D '.r.k/ � d.k// (4)

where the function ' W R 7! R returns the nominal steady-state input for a given nominal steady-
state output, that is, uss D '.yss/ for an equilibrium of the nominal model given by .uss; yss/. It

‡The general notation for the linear and nonlinear term parameters is h1.i/ and h2.i; j / [12]. To shorten the syntax,
ai D h1.i/ and bi;j D h2.i; j / have been used.

§If different truncation orders are used, for example, N1 for the linear and N2 for the nonlinear part, the common
truncation order should be chosen as Nt D max.N1;N2/. If N1 > N2, that is, Nt D N1, the missing second order
term parameters are defined as bi;j D 0 8 i > N2 8 j > N2. In the opposite case, that is,N2 > N1 and therefore
Nt D N2, the linear term parameters are defined as ai D 0 8 i > N1.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:3546–3571
DOI: 10.1002/rnc



A CONVEX APPROACH FOR NMPC 3549

is assumed that the setpoint r.k/ is chosen so that the resulting steady-state input satisfies ur.k/ 2
U for any possible value of d.k/. Note that the disturbance d.k/ can be easily computed as the
difference between the process output and the output of the nominal model (1).

As usual in NMPC, the control action for the system is calculated minimizing the cost
function (3):

u� D arg min
u
J.u/

s.t. u.k C i jk/ 2 U; i D 0; : : : ; Nu � 1
u.k C i jk/ D ur.k/; i D Nu; : : : ; N � 1

(5)

considering input constraints along the control horizon. The solution of the optimization problem is
applied using a receding horizon strategy, habitual in all predictive control schemes [2].

The combination of a second order model (2) with a quadratic function (3) leads to a fourth
order cost function. The main problem of the optimization is the not necessarily convex fourth order
function, which gives rise to several minimums. Hence, the aim of this paper is to minimize the cost
by means of approximated convex cost functions. Therefore, convexity of the approximated cost
functions has to be assured.

3. CONVEXIFICATION

This section shows the concept to assure strict convexity by means of approximation for a quadratic
cost function when the model output is defined by a second order function.

3.1. General development

Consider the general quadratic cost function under consideration of the control effort

J.u; R/ D Je.u/C Ju.u; R/ (6)

with

Je.u/ D .y � r/
TQ.y � r/ D eTQe (7)

Ju.u; R/ D .u � ur/
TR.u � ur/ (8)

where y D Œy.k C 1jk/; : : : ; y.k C N jk/�T 2 RN represents the vector of the predicted system
output based on a quadratic function, r 2 RN denotes the reference sequence over the prediction
horizon, and e 2 RN is the output error with e D y � r . The vector ur 2 RNu is given by
ur D Œur.k/; : : : ; ur.k/�

T and contains the steady-state input ur.k/ defined in (4). Q and R are
diagonal semi-definite positive matrices weighting the output error and the control effort in the cost
function. Note that R has been included in the list of arguments in (6) and (8) as it represents an
important parameter in the convexification.

In first place, the function (7) is linearly approximated in the neighbourhood e.0/ of the predicted
output error in the following form:

QJe.u; e
.0// D �e.0/TQe.0/ C 2e.0/TQe (9)

with the predicted output error e defined generally as

e D p.u/C b (10)

where p.u/W RN ! RN represents a nonlinear second order function in u and b 2 RN denotes
a constant vector¶. With (10), the neighborhood of the predicted output error can be written as
e.0/ D p.u.0//C b and the approximated function (9) can be rewritten in the following form:

QJe.u; e
.0// D 2e.0/TQp.u/C 2e.0/TQb � e.0/TQe.0/ (11)

¶Note that any constant term of e is considered in b, that is, the nonlinear second order function p.u/ contains only
quadratic and linear terms in u.
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In second place, the approximated function (11) is decomposed in its quadratic and linear terms. It
can be seen easily that only the first right-hand term, that is, p.u/, depends on the control sequence
u. Therefore the term 2e.0/TQ p.u/ is decomposed in the following way:

2e.0/TQ p.u/ D uTSuC 2hT u (12)

Then using the decomposition (12) in (11), the approximated function becomes

QJe.u; e
.0// D uTSuC 2hT uC 2e.0/TQ b � e.0/TQe.0/ (13)

Finally, the approximated cost function, including the approximated function QJe.u; e.0// (13) and
the control effort Ju.u; R.0// (8) based on the initial weighting matrix R.0/, can be written as

QJ .u; e.0/; R.0// D QJe.u; e
.0//C Ju.u; R

.0//

D uT .S CR.0//uC 2.hT � uTr R
.0//uC

2e.0/TQb � e.0/TQe.0/ C uTr R
.0/ur

(14)

having the necessary form to easily check strict convexity (S C R.0/ > 0). Then, substituting R.0/

by a new weighting matrix R.1/ can be used to guarantee strict convexity of the approximated cost
function (14). The mentioned weighting matrix is computed with j D 1 in the following form:

R.j / D

´
R.j�1/ C �INu if �.j�1/min 6 0
R.j�1/ if �.j�1/min > 0

(15)

being �.j�1/min the smallest eigenvalue of S C R.j�1/, � > ��.j�1/min and INu 2 RNu�Nu denotes an
identity matrix.

With QJ .u; e.0/; R.1// being a strict convex function, it can be shown that

QJ .u; e.0/; R.1// 6 J.u; R.1// (16)

where the strict inequality holds for u ¤ u.0/ and the equality is valid in the point of approximation
u D u.0/. Hence, QJ .u; e.0/; R.1// can be considered a lower bound of the original cost function
J.u; R.1// given in (6).

Consider several convex cost functions QJ .u; e.j�1/; R.j // approximated around e.j�1/ for j D
1; : : : ; n where R.j / guarantees convexity for the cost function approximated around e.j�1/. With
the condition

R.j / > R.j�1/ (17)

the weighting matrix R.n/ assures convexity for all cost functions QJ .u; e.j�1/; R.n// with j D
1; : : : ; n. The maximum of several approximated cost functions based on the weighting matrix R.n/

is defined by

QJ
.n/
† .u; R.n// D max

jD1;:::;n

°
QJ .u; e.j�1/; R.n//

±
(18)

Using (18), the original cost function (6) with the weighting factorR.n/ is approximated around dif-
ferent points e.j�1/. It is important to mention that the pointwise maximum of these approximated
strict convex cost functions is also a strict convex function [27]. Therefore, QJ .n/† .u; R.n// represents
a convex hull of the original cost function J.u; R.n// using the weighting matrix R.n/ [28].

3.2. Application to a second order Volterra series model

After the general development to guarantee convexity (Section 3.1), the proposed approach is
applied to a second order Volterra series model. Therefore, the output prediction of the second order
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Volterra series model considering a measurable disturbance (2) is rewritten in a form similar to the
one presented in [12]:

y D GuC fnl.u/C fl.u/C c (19)

c D Hup C g.up/C y0 C d (20)

where Gu with G 2 RN�Nu represents the linear part of the output prediction, which depends on
the future input sequence u. The vectors fnl.u/ 2 RN and fl.u/ 2 RN contain the nonlinear future–
future and the linear future–past cross terms, respectively (for an exact definition of fnl.u/ and fl.u/,
see (25) and (27) as well as Appendix A). The termHup withH 2 RN�Nt represents the linear part
of the output depending on the past input values given by up D Œu.k� 1/; : : : ; u.k�Nt /�T 2 RNt .
The past–past cross terms are considered in g.up/ 2 RN . The vector y0 2 RN contains the model
offset given by y0 D Œy0; : : : ; y0�

T , and d 2 RN considers the estimation error at k defined by
d D Œd.k/; : : : ; d.k/�T . For further details on the different vectors and matrices used in (19)–(20),
see [12, 29].

In a first step, the output prediction error e D y � r can be written for the second order Volterra
series model (19)–(20) in the form given in (10):

p.u/ D GuC fnl.u/C fl.u/ (21)

b D Hup C g.up/C y0 C d � r (22)

with Gu, fnl.u/, and fl.u/ as the only terms depending on the input sequence. In a second step, the
term 2e.0/TQ p.u/ (12) has to be decomposed in a quadratic and a linear

uTSu D 2e.0/TQfnl.u/ (23)

2hT u D 2e.0/TQ .GuC fl.u// (24)

where the quadratic term fnl.u/ defines the matrix S and the linear terms Gu and fl.u/ determine
the vector h.

With the nonlinear term fnl.u/ written in a general form as

fnl.u/ D

2
6664

fnl;1.u/
fnl;2.u/

:::

fnl;N .u/

3
7775 D

2
6664
uTBnl;1u

uTBnl;2u
:::

uTBnl;Nu

3
7775 (25)

and the definition 2e.0/TQ D Œ�1�2 : : : �N �, the matrix S (23) is defined as

S D

NX
iD1

�iBnl;i (26)

Analogously, writing the linear term fl.u/ as

fl.u/ D

2
6664

fl;1
fl;2
:::

fl;N

3
7775 D

2
6664
uTpBl;1
uTpBl;2
:::

uTpBl;N

3
7775u (27)
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and defining the matrix G in the following way:

G D

2
6664
”T1
”T2

:::

”TN

3
7775 (28)

the parameter h has the form:

hT D
1

2

NX
iD1

�i
�
”Ti C u

T
pBl;i

�
(29)

The matrices Bnl;i and Bl;i for i D 1; : : : ; N used to define the terms fnl.u/ and fl.u/ are given in
Appendix A and in [29].

With S and hT , the original cost function based on a second order Volterra series model can be
approximated by (14). By means of the design parameter R, strict convexity of the approximated
cost function can be guaranteed.

4. CONTROL LAW

With the convexification procedure applied to Volterra series models (Section 3.2), a new NMPC
strategy based on an iterative control law has been developed. The approximation of the original cost
function by a convex hull generated by the approximating convex cost functions allows to calculate
the control sequence and guarantees convergence of the solution.

4.1. Iterative optimization

In a first step, an initial candidate input sequence is used to compute a convex function, which
approximates the original cost based on a second order Volterra series model. Minimizing this
approximating convex function, a new candidate input sequence can be obtained. The new input
sequence is then used to determine a second approximating convex function. The pointwise maxi-
mum of several convex functions represents a convex hull for the original cost function||. The global
minimization of the convex hull results then in a new input sequence. The difference between the
original cost function and the convex hull is reduced with an increasing number of approximating
convex functions. This procedure is repeated until the final accuracy tolerance is satisfied, that is,
the difference between the original cost and the convex hull falls below a certain level.

The initial candidate sequence at k is given by u0, and the positive semi-definite initial weighting
matrix is given asR.0/ D Rk�1 whereRk�1 is the final weighting matrix at the previous sample k�
1. Then, the iterative procedure for the optimization based on the convexification can be expressed
in the following form:

1. Define j D 0, u.0/ D u0, R.0/ D Rk�1, and calculate b.
2. Set j D j C 1 and calculate e.j�1/ D p.u.j�1//C b.
3. Determine S .j�1/ and h.j�1/ so that

2e.j�1/TQp.u/ D uTS .j�1/uC 2h.j�1/T u

4. Check if S .j�1/ C R.j�1/ > 0. If yes, define R.j / D R.j�1/. If not, calculate the smallest
eigenvalue �.j�1/min of S .j�1/ CR.j�1/ and define

R.j / D R.j�1/ C .��
.j�1/
min C "/INu (30)

where " > 0 is used to guarantee strict convexity.

||The different approximating functions are used in the j th iteration with the maximum weighting factor R.j/ to assure
convexity, see (17). Furthermore, the original cost function considering a weighting of the control effort is also used
with the maximum weighting factorR.j/.
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5. The sequence Qu is the solution to the optimization problem

min
Qu;#.j/

#.j /

s.t. QuT
�
S .n/ CR.j /

�
QuC 2

�
h.n/T � uTr R

.j /
�
QuC : : :

2e.n/TQb � e.n/TQe.n/ C uTr R
.j /ur 6 #.j /

Qu.k C i jk/ 2 U; i D 0; : : : ; Nu � 1

Qu.k C i jk/ D ur.k/; i D Nu; : : : ; N � 1

n D 0; : : : ; j � 1

(31)

6. Define the search direction �u D Qu � u.j�1/ and the step size t D 1 for the
backtracking line search [27]. Furthermore, calculate the gradient rJ.u.j�1/; R.j // D

2
�
S .j�1/ CR.j /

�
u.j�1/C2

�
h.j�1/T � uTr R

.j /
�T

. Then, check if J.u.j�1/Ct�u; R.j // 6
J.u.j�1/; R.j //C˛trJ.u.j�1/; R.j //T�u with ˛ 2 .0; 0:5/. If yes, set u.j / D u.j�1/Ct�u.
If not, set t D ˇt with ˇ 2 .0; 1/ and repeat the line search until the previous condition is
satisfied.

7. Check if the final accuracy tolerance ku.j / � u.j�1/k1 6 ı with ı > 0 is satisfied. If the
convergence condition is satisfied, set u� D u.j /, Rk D R.j / and apply the input sequence to
the system. Otherwise return to Step 2.

Note that the presented algorithm can be considered as a descent method with backtracking
line search, which possesses an approximately linear convergence. For an exhaustive study of the
influence of the parameters ˛ and ˇ on the convergence of the given method, see [27].

4.2. Convergence of the iterative algorithm

Consider the solution Qu of the optimization problem given in Step 5, that is, the candidate input
sequence that minimizes the convex hull defined by the pointwise maximum of the approximating
convex functions QJ .j /† .u; R.j // (18). As the approximating convex function QJ .u; R.j /; e.j�1// rep-
resents a Taylor approximation of the original cost function J.u; R.j // around the approximation
point u.j�1/, the values of these functions satisfy

J.u.j�1/; R.j // D QJ .u.j�1/; R.j /; e.j�1// (32)

and for the derivatives, holds the statement

@J.u; R.j //

@u

ˇ̌̌
ˇ̌
uDu.j�1/

D
@ QJ .u; R.j /; e.j�1//

@u

ˇ̌̌
ˇ̌
uDu.j�1/

(33)

Furthermore, the input sequence of the j th iteration is defined as

u.j / D u.j�1/ C ˇm�u (34)

where m denotes the number of repetitions of the scaling carried out in Step 6 of the proposed
optimization algorithm.

Consider the closed set U D U � U � : : : � U � RNu defined by the constraints given in Step
5 of the proposed iterative procedure. Hence, the solution to the optimization problem in Step 5
satisfies Qu 2 U . With u.j�1/ 2 U and Qu 2 U , the new candidate input sequence u.j / computed
in Step 6 by backtracking line search also satisfies u.j / 2 U . With J.u; R.j // being a continuous
function in U , it can be shown with the extreme value theorem that the cost function J.u; R.j // has
an upper and lower bound. Hence, for the original cost function exists a weighting matrix Rmax ,
which completely convexifies the function J.u; Rmax/.
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Convergence of the optimization algorithm in a finite number of iterations is then assured as
follows:

(a) If the weighting matrix in the j th iteration is equal to the one of the j � 1th iteration, that
is, R.j / D R.j�1/, the value of the cost function decreases monotonically** and satisfies the
inequality relation J.u.j /; R.j // 6 J.u.j�1/; R.j // � ˛ˇlrJ.u.j�1/; R.j //T�u [27]. As a
consequence, the result of the optimization procedure converges in a finite number of iterations.

(b) After a finite number of modifications of the weighting matrix, that is, R.j / > R.j�1/, and
under consideration of the parameter " > 0 (see Step 4 of the optimization procedure), the
statement R.j / > Rmax holds. In this case, the function J.u; R.j // is completely convexified
and a further increase in the weighting matrix is not necessary.

(c) As a direct consequence of the finite number of iterations based on the cases (a) and (b), follows
that the candidate input sequence u.j / computed in Step 6, converges in a finite number of
iterations to the solution u� of the optimization problem.

Remark 1
In the case that the weighting matrix of the j th iteration is equal to the one of the j � 1th iteration,
that is, R.j / D R.j�1/, the cost monotonically decreases and converges to the optimal solution. If
the weighting matrix of the j th iteration is not equal to the one of the j � 1th iteration, the cost
can increase with respect to the cost of the previous iteration. However, the mentioned increase in
the cost is limited by the upper bound Rmax of the weighting matrix. If the weighting matrix in
the j � 1th iteration corresponds to the upper bound Rmax , the computed costs in the following
iterations are always monotonically decreasing because a further increase of the weighting in order
to convexify the cost function is not necessary.

5. ROBUST STABILITY

Input-to-state practical stability of the NMPC strategy based on the iterative convexification
approach (Section 4.1) can be shown. In the case of a nominal model, that is, the estimation error sat-
isfies d.k/ D 0, the control strategy is asymptotic stable. The stability proof requires a reformulation
of the optimization problem in a state-space-like representation.

5.1. Optimization problem in state-space representation

The prediction model based on a second order Volterra series model considering an estimation
error (2), can be expressed in a state-space form (see Appendix B for the detailed model
transformation) by

x.k C i C 1jk/ D Ax.k C i jk/C Bu.k C i jk/

y.k C i jk/ D l.x.k C i jk//C d.k/
(35)

where x.k/ 2 RNt 8 k, x.kjk/ D x.k/, d.k/ D y.k/ � l.x.k//. Furthermore, all assumptions
made for (2) hold for the model in state-space representation, and the state variables are defined as

xi .k/ D u.k � i/ for i D 1; : : : ; Nt (36)

where xi .k/ represents the i th element of x.k/. Note that the evolution of the states is given by a
linear model and that the nonlinearity affects only the system output by means of the function l.�/.
With respect to the nominal model, the output prediction considering the current estimation error is
defined by

y.k C i jk/ D Qy.k C i jk/C d.k/ (37)

**If u.j/ D u.j�1/, the condition of a monotonic decrease in the cost is not satisfied. However, in this case, the final
accuracy tolerance of Step 7 is fulfilled and the optimization algorithm terminates with the input sequence u� D u.j/.
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with Qy.k C i jk/ being the nominal model output given by:

Qy.k C i jk/ D l.x.k C i jk// (38)

Then, with the Volterra series model (35) in state-space representation considering an estimation
error, the optimization problem (5) of the NMPC strategy can be expressed as

u� D arg min
u
J.u; R.j //

s.t. u.k C i jk/ 2 U; i D 0; : : : ; Nu � 1
u.k C i jk/ D ur.k/; i D Nu; : : : ; N � 1
x.k C i jk/ 2 X ; i D 1; : : : ; N

(39)

where X D U � U � : : : � U � RN is the set of admissible states. Note that the constraint
x.kC i jk/ 2 X is in fact redundant because of the constraint u.kC i jk/ 2 U and the relation (36)
between states and past input values. However, the explicit constraint in the state vector has been
included in the problem (39) to follow the standard formulation for stability of MPC (see [3] for
more information on this topic).

Taking into account the future input sequence u, the steady-state signal ur.k/, and the estimation
error d.k/, the cost function used in (39) is defined as

J.u; R.j // D

Nu�1X
iD0

L.x.k C i jk/; u.k C i jk/; d.k/; R.j //C

NX
iDNu

Lh.x.k C i jk/ (40)

with the quadratic stage costs L.�; �; �; �/ and Lh.�/ given by

L.x.k C i jk/; u.k C i jk/; d.k/; R.j // D kl.x.k C i jk//C d.k/ � r.k/k2QC

ku.k C i jk/ � ur.k/k
2
R.j/

Lh.x.k C i jk/ D kl.x.k C i jk//C d.k/ � r.k/k
2
Q

(41)

where the function l.�/, defined in (60) in the Appendix B, represents the output nonlinearity of the
Volterra series model in state-space representation.

5.2. Feasibility of the shifted solution

Consider the input sequence

u�.k/ D Œu�.kjk/; u�.k C 1jk/; : : : ; u�.k CNu � 1jk/�
T (42)

being at k, the optimal solution for the NMPC problem (39) with the associated minimum cost
J.u�.k/; R.j //. Furthermore, consider the shifted sequence uf .k C 1/ 2 RNu for k C 1:

uf .k C 1/ D Œuf .k C 1jk C 1/; : : : ; uf .k CNujk C 1/�
T (43)

with the elements based on the optimal solution in k and the steady-state input for k C 1:

uf .k C i jk C 1/ D

²
u�.k C i jk/ for i D 1; : : : ; Nu � 1
ur.k C 1/ for i D Nu

(44)

Note that the first Nu � 1 elements of the shifted sequence uf .k C 1/ are feasible as they have
been computed at k with the optimal solution to the problem (39). Then, with the steady-state input
signal ur.k C 1/ being feasible by definition, the shifted sequence uf .k C 1/ is a feasible solution
to the optimization problem (39) at k C 1.
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5.3. Convergence

Consider the cost J �.x.k/; RkC1/ at k based on the control effort weighting RkC1 and the optimal
solution u�.k/minimizing the problem (39). Furthermore, consider the cost J �.x.kC1/; RkC1/ at
kC1 associated to the weighting matrixRkC1. Convergence of the NMPC using the convexification
approach can be guaranteed if the cost for kC1 is monotonically decreasing with respect to the cost
for k.

Using the general definition of the cost function (40), the cost J �.x.k/; RkC1/ at k can be
written as

J �.x.k/; RkC1/ D

Nu�1X
iD0

L.x�.k C i jk/; u�.k C i jk/; d.k/; RkC1/
X
iDNNu

Lh.x
�.k C i jk/ (45)

where x�.kC i jk/ with i D 0; : : : ; N is the state variable associated to the optimal solution u�.k/.
The following theorem characterizes the cost difference between the costs J �.x.k/; RkC1/ at

k and J �.x.k C 1/; RkC1/ at k C 1 based on the optimal input sequences u�.k/ and u�.k C
1/, respectively. This theorem shows the convergence of the proposed control law under certain
conditions and will be used to prove input-to-state practical stability.

Theorem 1
Consider the cost J �.x.k/; RkC1/ associated to the control effort weighting RkC1 and the optimal
solution u�.k/ calculated at k minimizing the optimization problem (39). Furthermore, consider the
cost J �.x.k C 1/; RkC1/ at k C 1. The cost difference �J �.k C 1/ D J �.x.k C 1/; RkC1/ �
J �.x.k/; RkC1/ is bounded by

J �.x.kC 1/; RkC1/�J
�.x.k/; RkC1/ 6 �L.x�.kjk/; u�.kjk/; d.k/; RkC1/C cd � k�dk (46)

if there is a Ok such that R Ok D Rk 8 k > Ok and cd is a positive and constant parameter.

Proof
See Appendix C. �

With the upper bound (46) of the cost difference �J �.k C 1/, the terms
�L.x�.kjk/; u�.kjk/; d.k/; RkC1/ < 0 and cd � k�dk > 0 ensure that the cost based on the solu-
tion u�.k C 1/ decreases as long as the condition L.x�.kjk/; u�.kjk/; d.k//; RkC1/ > cd � k�dk
is satisfied. Hence, the system is steered into the set

‰d D ¹x
�.kjk/ W L.x�.kjk/; u�.kjk/; d.k/; RkC1/ 6 cd � k�dkº (47)

from any arbitrary x. However, if the state evolves out of ‰d , the system will remain in another
set from which it will evolve back to the set ‰d . Taking into account the inequality relation
�L.x�.kjk/; u�.kjk/; d.k/; RkC1/ 6 0 for any x�.kjk/, (46) can be written as

J �.x.k C 1/; RkC1/ 6 J �.x.k/; RkC1/C cd � k�dk (48)

Then, for any x.k/ 2 ‰d , the statement:

J �.x.k/; RkC1/C cd � k�dk 6 max
x2‰d

J �.x; RkC1/C cd � k�dk D ˇd (49)

holds. From (48) and (49), follows directly that:

J �.x.k C 1/; RkC1/ 6 ˇd ; 8x.k/ 2 ‰d (50)

Whenever the state enters into ‰d , it evolves into the set

‰ˇ D ¹x W J
�.x; RkC1/ 6 ˇd º (51)
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Finally, the system may evolve out of ‰d , but will remain in the set ‰ˇ . From the set ‰ˇ , the sys-
tem will be steered again into ‰d and so on. As a consequence, the state is ultimately bounded, and
the system is stabilized using the feasible solution. Hence, the NMPC strategy based on a second
order Volterra series model using the proposed convexification approach is input-to-state practical
stable and maintains the system inside the set ‰ˇ .

6. EXPERIMENTS

The proposed NMPC strategy based on the iterative convexification approach was applied to a con-
tinuous stirred tank reactor (CSTR). The following sections give a description of the used process,
the identification of the process dynamics by a second order Volterra series, and the implementation
of the control strategy. The control performance will be illustrated by means of experimental results.

6.1. Process description

The pilot plant shown in Figure 1 is used to emulate a CSTR and contains several means to cool
or to heat the fluid in the reactor. The main elements of the system are the tank reactor, an electric
resistance, a cooling jacket, a valve to manipulate the flow rate through the cooling jacket, and a
water tank.

The pilot plant is operated with water, both in the reactor and the cooling jacket. The reactor has
an electric resistance in its interior with a maximum power of 14:4 kW and can be used to supply
caloric energy to the water in the reactor. On the other hand, the cooling jacket is used to reduce
the caloric energy of the reactor content. The heat dissipation can be regulated by the aperture v8 of
the valve manipulating the flow rate through the cooling jacket. The cooling fluid, water, circulating

Figure 1. Pilot plant used to apply the proposed nonlinear model predictive control strategy based on the
convexification approach.
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through the cooling jacket is taken from a tank with a capacity of 1m3. After circulating through
the jacket, the cooling fluid returns to the tank. To maintain the temperature of the cold water in
a certain interval, the tank has an auxiliary cooler controlled by a thermostat, which maintains the
tank temperature between 18 ıC and 19 ıC.

The sensors and actuators of the plant are connected to a Schneider M340 programmable
automation controller (Schneider Electric, Rueil-Malmaison, France). The M340 is connected by
Ethernet to a personal computer that runs the Unity Pro software package. The proposed control
strategy can be implemented directly in Matlab/Simulink (MathWorks, Natick, MA, USA), and the
communication with Unity Pro is performed using the object linking and embedding for process
control protocol. Hence, both the Unity Pro environment and the controller implemented in Mat-
lab/Simulink run on the same personal computer based on a Pentium 4 processor (Intel Corporation,
Santa Clara, CA, USA) with 3GHz using a Windows XP operating system.

6.2. Emulated chemical reaction

The pilot plant is used to emulate an exothermic chemical reaction based on temperature changes
as performed in [30]. For the emulation, the energy generated by the chemical reaction is calculated
with a mathematical model of the reaction and supplied by the electric resistance. The use of a
resistance has the advantage that no chemical reaction takes place in the reactor while real industrial
instrumentation and equipment are used.

The emulated chemical reaction considered in this document represents a refinement process
where a reactant A is transformed to a substance B generating caloric energy. The reaction is gen-
erally defined by A! B and was used previously by several authors [31, 32]. The evolution of the
temperature T in the reactor is described by the mathematical model

dT

dt
D �

Fj

V
.Tj;in � Tj;out /C

.��H/V

MCp
k0 e

�E
RT C 2A (52)

where the first term considers the heat dissipation by the cooling jacket and the second term denotes
the heat generated by the exothermic chemical reaction. The variables Fj , Tj;in y Tj;out represent
the flow rate through the cooling jacket and the temperature of the cooling fluid entering and leav-
ing the cooling jacket, respectively. The concentration of the reactant CA in the reactor content is
defined by

dCA
dt
D
Ff

V
.CA;in � CA/ � k0 e

�E
RT C 2A (53)

where the first term represents changes in the reactant concentration because of the feed and the
outflow and the second term considers the reduction of the concentration as a result of the reactant
consumption by the chemical reaction. The variables Ff and CA;in denote the feed and the reactive
concentration in the feed. The caloric energy generated by the emulated reaction is given in the
following form:

P D CpM
dT

dt
(54)

being Cp the specific heat capacity of the reactor content and M is the corresponding mass. Hence,
(52), (53), and (54) are employed for emulation purposes where (52) is only used to compute the
temperature gradient necessary to determine the amount of caloric energy generated by the emulated
exothermic reaction. Finally, the necessary energy is supplied to the plant by adjusting the duty
cycle of the electric resistance in accordance to the power (54). The parameters used in (52)-(54)
are given in Table I, for further details on the plant and the emulated reaction see [29].

6.3. Identification

A simple input sequence (pseudo random multilevel sequence [33, 34]) with three different levels
for the recirculation valve was applied to the pilot plant in order to collect suitable input/output data
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Table I. Model parameters of the emulated
exothermic chemical reaction.

Name Value

k0 1:265 � 1017 l/mol s
Cp 4:18 kJ/K kg
�H �105:57 kJ/mol
CA;in 1:2 mol/l
M 25 kg
Ff 0:05 l/s
Tj;in 291:15 K
E=R 13 550 K
V 25 l

Figure 2. Comparison of the experimental data (solid line) used for the identification and the model output
of the Volterra model (dashed line). From top to bottom: tank temperature T , aperture of the valve v8, and

reactant concentration CA.

for the parameter identification of the second order Volterra model. The periods of the chosen input
sequence were long enough to observe the reaction of the pilot plant (Figure 2).

The parameter identification for the second order Volterra model was carried out with the least
squares method using the obtained experimental input/output data. During the identification process,
it was observed that the election of a sampling time of tm D 60 s represents a good compromise
between the goodness of the identification and the number of identified parameters. In order to
reduce the number of parameters to be identified, a diagonal model was used, that is, bi;j D 0
for i ¤ j . Finally, the second order diagonal Volterra model was identified with a truncation of
N1 D 60 linear and N2 D 30 s order parameters and a delay of 1 sampling period (Figure 3).
A comparison of the measured tank temperature and the output of the identified model is given in
Figure 2.

6.4. Results

The proposed NMPC control strategy (Section 4) based on the identified Volterra series model
(Section 6.3) was implemented in Matlab/Simulink. Sequential quadratic programming (SQP)††

was used to minimize the approximated cost (31) and to compute the input sequence. A prediction
horizon ofN D 80, a control horizon ofNu D 15, and a final accuracy of ı D 10�3 have been used
for the proposed control strategy. Furthermore, the input constraints

5 6 u.k C i jk/ 6 100; i D 0; : : : ; 14
�20 6 �u.k C i jk/ 6 20; i D 0; : : : ; 14

(55)

††Note that the solution to the optimization problem can be found by standard convex optimization algorithms.
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Figure 3. Identified parameters ai and bi;i for the diagonal second order Volterra series model approximat-
ing the pilot plant emulating an exothermic chemical reaction.

Figure 4. Setpoint tracking experiment. From top to bottom: tank temperature T , aperture of the valve v8,
increment in the valve aperture �v8, reactant concentration CA, and necessary iterations i ter .

have been considered. Note that weighting matrix R.0/ for the control signal has been initialized in
each sample with the zero matrix 0Nu�Nu 2 RNu�Nu in order to obtain a faster dynamic behavior
of the developed control.

In a first step, a setpoint tracking experiment (Figure 4) was carried out with the pilot plant
emulating an exothermic chemical reaction and controlled by the NMPC strategy based on the con-
vexification approach with guaranteed stability. During the experiment, the setpoint was changed
twice, first from 55 ıC to 65 ıC and later to 45 ıC. Only after the first setpoint change was a small
overshoot observed (approximately 1:2 ıC). After both setpoint changes, when the system reaches
steady state, the control signal shows only insignificant changes, necessary to maintain the temper-
ature in the given setpoint. In the shown results, the computation of the input sequence requires
between 2 and 12 iterations.

In the second experiment, the disturbance rejection capabilities of the proposed controller were
proven by means of a constant error in the parameter E of the emulated exothermic chemical reac-
tion model and by changes in the given setpoint (Figure 5). As the parameterE has a strong influence
on the dynamic behavior of the emulated reaction, the introduced error corresponds only to 3% of
the original value of E. After the setpoint changes, the system shows an overshoot of approximately
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Figure 5. Disturbance rejection experiment (persistent disturbance in the emulated chemical reaction). From
top to bottom: tank temperature T , aperture of the valve v8, increment in the valve aperture �v8, reactant

concentration CA, and necessary iterations iter.

1:6 ıC and �2 ıC. The higher overshoot in comparison to the results given in Figure 4 is a result
of the introduced model mismatch. In spite of the error in the parameter E, the proposed control
strategy stabilizes the system around the given reference and shows only negligible changes in the
control action for the system in steady-state. The necessary iterations to compute the input sequence
are similar to the ones obtained in the first experiment (compare Figure 4) and vary between 2 and
12 iterations.

The third experiment was carried out with an additive disturbance in the system input (Figure 6).
Therefore, an error of�v8 D �15% was applied to the valve opening v8 in t D 70min and removed
in t D 110min. During the application of the disturbance, the effective valve opening is given by
v8 D u C �v8, whereas in absence of the disturbance, the valve opening is defined by v8 D u.
After the application of the disturbance, the temperature increases rapidly because of the reduced
effective opening of the valve v8. Due to this error, the proposed controller increases the valve
opening and reduces the divergence between the measured temperature and the setpoint and, as a
consequence, rejects the applied disturbance successfully. After the removal of the disturbance, the
controller compensates the error in the output and stabilizes the system in the setpoint. In spite of the
amplitude of the chosen disturbance, the proposed predictive control strategy rejects the disturbance
efficiently and leads the system to the desired setpoint.

It can be observed in the presented experimental results that the NMPC satisfied the constraints
(55) imposed to the input sequence and its increments. Furthermore, the proposed control strategy
always solved the optimization problem within the used sampling time of ts D 60 s. During the
experiments, the average computation time to compute a new input sequence was tavgc D 1:115 s,
with a minimum of tminc D 0:2 s and a maximum of tmaxc D 7:945 s. The average number of
necessary iterations to find the solution to the optimization problem was 6.35, with a maximum of
12 and a minimum of 2 iterations.

Finally, the solution computed by the proposed convexification approach was compared in
simulations to the solution obtained solving the original optimization problem with an SQP algo-
rithm. The simulations were carried out by means of a Matlab/Simulink model of the exothermic
chemical reaction and the pilot plant using a personal computer based on an Intel i3-2330M pro-
cessor running Windows 7. The results of the simulated setpoint tracking are given in Figure 7.
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Figure 6. Disturbance rejection experiment (disturbance in the valve opening v8). From top to bottom:
tank temperature T , aperture of the valve v8, reactant concentration CA, input value u, and increment �u

calculated by the controller and necessary iterations iter.

Figure 7. Simulation results of the convexification approach (solid line) and the sequential quadratic pro-
gramming algorithm (dash-dotted line). From top to bottom: tank temperature T , aperture of the valve v8,

increment in the valve aperture �v8, cost J , and computation time tc .
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The solution computed directly with the SQP algorithm shows a slightly faster reaction to setpoint
changes and a lower cost (3) during transitions. The use of the proposed optimization approach and
the SQP algorithm led in the given simulation results to mean square errors in the tank tempera-
ture of 3.47 and 3.33, respectively. In contrast, the convexification required on average only 0.351 s
to obtain the solution, whereas the SQP algorithm needed about 2.306 s to solve the optimization
problem. An alternative is the use of first principles nonlinear models in a predictive control frame-
work. However, this kind of model is very difficult to obtain for real processes, and the possible
model mismatch adds some extra difficulty to the control problem, requiring in many cases the use
of computationally more complex robust control strategies such as min-max MPC.

7. CONCLUSIONS

This work presented a new NMPC strategy based on the convexification of the performance index
to be minimized. The control strategy has been developed for quadratic cost functions considering
second order Volterra series prediction models.

The proposed control strategy is based on the approximation of the original cost function by
convex quadratic functions. With a weighting of the control effort, convexity of the approximated
functions can be assured by a suitable choice of the weighting matrix R. It can be shown that the
original cost function with a weighting matrix R can be approximated by means of a convex hull
based on the pointwise maximum of several convex quadratic functions using the same weighting
matrix R. Then, globally minimizing the convex hull, a new input sequence can be calculated. With
the optimization routine based on a decent method with backtracking line search, convergence of
the procedure can be shown. Furthermore, input-to-state practical stability can be proven for the
proposed NMPC strategy (in the case of a nominal model asymptotic stability can be ensured).

The proposed NMPC strategy was applied to a CSTR, and several setpoint tracking and dis-
turbance rejection experiments were carried out. The control strategy showed a good performance
and stabilized the system in the given setpoint, even in presence of strong disturbances. The neces-
sary computational effort allowed to compute the control sequence within the used sampling time.
Finally, the control performance was illustrated by experimental results.

APPENDIX A: MATRIX DEFINITIONS

In order to apply the proposed NMPC strategy using second order Volterra series models, the matri-
ces Bl and Bnl for the linear and nonlinear terms fl.u/ and fnl.u/ have to be defined (Section 3.2).
The parameters Nt , N , and Nu represent the truncation order, the prediction horizon, and the con-
trol horizon, respectively. The matrix Bl 2 RNt�Nu�N or the submatrices Bl;i 2 RNt�Nu with
i D 1; : : : ; N are defined as

Bl;i D

2
666666666666666664

bi;iC1 : : : bi�.Nu�2/;iC1
i�NuC1P
jD1

bj;iC1

bi;iC2 : : : bi�.Nu�2/;iC2
i�NuC1P
jD1

bj;iC2

:::
:::

:::
:::

bi;Nt : : : bi�.Nu�2/;Nt

i�NuC1P
jD1

bj;Nt

0 0 0 0
:::

:::
:::

:::

0 0 0 0

3
777777777777777775

(56)
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Analogously, the matrix Bnl 2 RNu�Nu�N or the submatrices Bnl;i 2 RNu�Nu with i D 1; : : : ; Nt
are defined as

Bnl;i D

2
6666666666666664

bi;i : : : bi�.Nu�2/;i
i�NuC1P
jD1

bj;i

0 : : : bi�.Nu�2/;i�1
i�NuC1P
jD1

bj;i�1

:::
: : :

:::
:::

0 : : : bi�.Nu�2/;i�.Nu�2/
i�NuC1P
jD1

bj;i�.Nu�2/

0 : : : 0
i�NuC1P
kD1

kP
jD1

bj;k

3
7777777777777775

(57)

APPENDIX B: VOLTERRA SERIES MODELS IN STATE-SPACE-LIKE REPRESENTATION

Generally, a non-autoregressive second order Volterra series model as the one given in (1) can
be described as a discrete state-space-like model. The state-space-like representation has a special
importance for the stability proof (Section 5) for the proposed NMPC strategy.

In a first step, the past input values u.k � i/ with i D 1; � � � ; Nt of the non-autoregressive second
order Volterra series model (1) can be considered as system states, for example, the model states are
defined by

xi .k/ D u.k � i/ for i D 1; : : : ; Nt (58)

where xi .k/ is the i th element of the state vector x.k/ 2 RNt . It can be seen easily that the definition
of the states (58) can be rewritten in the form

x1.k/ D u.k � 1/

x2.k/ D x1.k � 1/

x3.k/ D x2.k � 1/

:::
:::

:::

xNt .k/ D xNt�1.k � 1/

(59)

where the first state xi .k/ represents the last applied input signal and the remaining states depend
on the states from the previous instants. With the states xi .k/ for i D 1; : : : ; Nt defined in (59), the
model output of the second order Volterra series model (1) can be expressed by

y.k/ D l.x.k// D

NtX
iD1

aixi .k/C

NtX
iD1

NtX
jDi

bi;jxi .k/xj .k/ (60)

Note the similarity of (60) and (1) where the past input values u.k� i/ for i D 1; : : : ; Nt have been
substituted by the previously defined states xi .k/ for i D 1; : : : ; Nt . Now, it can be seen easily that
(1) can be expressed as a nonlinear state-space-like model defined by

x.k C 1/ D Ax.k/C Bu.k/

y.k/ D l.x.k//
(61)
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Taking into account (59), the state matrix A 2 RNt�Nt and the input matrix B 2 RNt are given by

A D

2
6666664

0 0 : : : 0 0 0

1 0 : : : 0 0 0

0 1 : : : 0 0 0
:::
:::
: : :

:::
:::
:::

0 0 : : : 1 0 0

0 0 : : : 0 1 0

3
7777775
; B D

2
6666664

1

0

0
:::

0

0

3
7777775

(62)

The model in state-space representation (61) can be used easily as a prediction model in an NMPC
framework. Under consideration of the current estimation error d.k/, (61) can be rewritten in the
following form:

x.k C i C 1jk/ D Ax.k C i jk/C Bu.k C i jk/

y.k C i jk/ D l.x.k C i jk//C d.k/
(63)

APPENDIX C: PROOF OF THEOREM 1

This section presents the detailed proof of Theorem 1 (Section 5.3) used to demonstrate input-to-
state practical stability of the NMPC strategy based on the convexification approach.

C.1. General statements

The following lemmas and theorems have been applied to define an upper bound for the cost
difference (46):

Lemma 1
A quadratic function g.a/ D a2 is locally Lipschitz continuous in a 2 Œb1; b2� with �1 < b1 6
b2 <1. With this condition, a Lipschitz constantLq can be found such that kg.a1Ca2/�g.a1/k 6
Lqka2k.

Lemma 2
The steady-state input function '.�/ (4) of the Volterra model in state-space representation is Lips-
chitz continuous and, as a consequence, the inequality condition k'.a1 C a2/ � '.a1/k 6 L'ka2k
is satisfied.

Lemma 3
The output nonlinearity l.�/ (60) of the Volterra model in state-space representation is Lipschitz
continuous and can be bounded by kl.a1 C a2/ � l.a1/k 6 Llka2k.

Theorem 2
Consider the steady-state input difference �ur D ur.k C 1/ � ur.k/ where ur.k/ and ur.k C 1/
denote the steady-state inputs at k and k C 1, respectively. Furthermore, consider the state values
xf .kC i jkC 1/ predicted at kC 1 using the feasible solution uf .kC 1/ given in (43). Being cx , a
positive and constant parameter, the difference between the states�x.kC i/ D xf .kC i jkC 1/�
x�.k C i jk/ for i D Nu C 1; : : : ; N is bounded by

k�x.k C i/k 6 cxk�urk (64)

Proof
The predicted states satisfy xf .kCi jkC1/ D x�.kCi jk/ for i D 1; : : : ; Nu as uf .kCi jkC1/ D
u�.k C i jk/ for i D 1; : : : ; Nu � 1. Furthermore, the prediction of the states based on the optimal
and the feasible solution are defined for i D Nu C 1; : : : ; N by

x�.k C i jk/ D Ax�.k C i � 1jk/C Bur.k/

xf .k C i jk C 1/ D Axf .k C i � 1jk C 1/C Bur.k C 1/
(65)
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Hence, the difference between the states �x.k C i/ D xf .k C i jk C 1/ � x�.k C i jk/ for i D
Nu C 1; : : : ; N can be written as

�x.k C i/ D A�x.k C i � 1/C B�ur (66)

where �ur D ur.k C 1/ � ur.k/ represents the difference of the steady-state inputs at k C 1 and
k. Taking into account that �x.k C Nu/ D 0, the recursion (66) ensures the existence of cx D
kAN�.NuC1/BC� � �CBk with cx > 0 such that k�x.kC i/k 6 cxk�urk for i D NuC1; : : : ; N .
�

C.2. Definition of the cost difference

Consider the cost J f .x.kC 1/; RkC1/ at kC 1 depending on the feasible solution uf .kC 1/ (43)
and the control weighting effort RkC1, which can be expressed as

J f .x.k C 1/; RkC1/ D

Nu�1X
iD1

L.xf .k C i jk C 1/; uf .k C i jk C 1/; d.k C 1/; RkC1/C

NC1X
iDNu

Lh.x
f .k C i jk C 1/

(67)

Based on the costs given in (67) and (45), the cost difference�J.kC 1/ D J f .x.kC 1/; RkC1/�
J �.x.k/; RkC1/ becomes

�J.k C 1/ D Lh.x
f .k CN C 1jk C 1/ � L.x�.kjk/; u�.kjk/; d.k/; RkC1/C

Nu�1X
iD1

.L.xf .k C i jk C 1/; uf .k C i jk C 1/; d.k C 1/; RkC1/�

L.x�.k C i jk/; u�.k C i jk/; d.k/; RkC1//C

NX
iDNu

.Lh.x
f .k C i jk C 1/ � Lh.x

�.k C i jk//

(68)

Then, the difference of the two cost functions (68) can be written in the following form:

�J.k C 1/ D �L.x�.kjk/; u�.kjk/; d.k/; RkC1/C ˛1 C ˛2 C ˛3 C ˛4 (69)

with the terms ˛1, ˛2, ˛3 and ˛4 given by:

˛1 D

Nu�1X
iD1

�
kl.xf .k C i jk C 1//C d.k C 1/ � r.k C 1/k2Q

� kl.x�.k C i jk//C d.k/ � r.k/k2Q
�

˛2 D

Nu�1X
iD1

�
kuf .k C i jk C 1/ � ur.k C 1/k

2
RkC1

� ku�.k C i jk/ � ur.k/k
2
RkC1

�

˛3 D

NX
iDNu

�
kl.xf .k C i jk C 1//C d.k C 1/ � r.k C 1/k2Q

� kl.x�.k C i jk//C d.k/ � r.k/k2Q
�

˛4 D kl.x
f .k CN C 1jk C 1//C d.k C 1/ � r.k C 1/k2Q

The following theorems define upper bounds of the terms ˛1, ˛2, ˛3, and ˛4 used in the cost
difference (69):
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Theorem 3
Consider the estimation error increment given by �d D d.k C 1/ � d.k/ where d.k C 1/ and
d.k/ denote the estimation errors at k C 1 and k, respectively. Then, the term ˛1 used in (69) is
bounded by

˛1 6 c1.Q;Nu/ � k�dk (70)

where c1 denotes a positive Lipschitz constant.

Proof
With x�.kC1jk/ D x.kC1/ and the solutions uf .kCi jkC1/ D u�.kCi jk/ for i D 1; : : : ; Nu�1,
the predicted states satisfy xf .k C i jk C 1/ D x�.k C i jk/ for i D 1; : : : ; Nu � 1. For the
reference applies r.k/ D r.k C 1/, and the increment in the estimation error is given generally as
�d D d.kC1/�d.k/. Defining the auxiliary variable ´.kC i jk/ D l.x�.kC i jk//Cd.k/�r.k/,
the term ˛1 can be written as

˛1 D

Nu�1X
iD1

�
k´.k C i jk/C�dk2Q � k´.k C i jk/k

2
Q

�
(71)

Taking into account Lemma 1, the term ˛1 (71) can be bounded by

˛1 6 c1.Q;Nu/ � k�dk (72)

being c1.�; �/ a positive Lipschitz constant which depends on the weighting factor Q and the control
horizon Nu. �

Theorem 4
Consider the estimation error increment given by �d D d.k C 1/ � d.k/ where d.k C 1/ and
d.k/ denote the estimation errors at k C 1 and k, respectively. Then, the term ˛2 in (69) can be
bounded by

˛2 6 c2.RkC1; L' ; Nu/ � k�dk (73)

being c2 a positive Lipschitz constant.

Proof
Consider the optimal and the feasible solution satisfying uf .k C i jk C 1/ D u�.k C i jk/ for
i D 1; : : : ; Nu � 1. Defining the increment in the steady-state input as �ur D ur.k C 1/ � ur.k/,
and using the auxiliary variable ´1.kC i jk/ D u�.kC i jk/�ur .k/, the term ˛2 can be expressed as

˛2 D

Nu�1X
iD1

k´1.k C i jk/ ��urk
2
RkC1

� k´1.k C i jk/k
2
RkC1

(74)

Then, applying Lemma 1 to (74), the term ˛2 is bounded by

˛2 6 c2.RkC1; Nu/ � k�urk (75)

where c2.�; �/ is a positive parameter. Based on the definition (4), the increment in the steady-state
input can be written as

�ur D '.r.k C 1/ � d.k C 1// � '.r.k/ � d.k// (76)

The increment in the estimation error is defined as �d D d.k C 1/ � d.k/, and for the reference
applies r.k/ D r.k C 1/. Defining the auxiliary variable ´2 D r.k/ � d.k/, the increment in the
steady-state input can be expressed as

�ur D '.´2 ��d/ � '.´2/ (77)
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Taking into account Lemma 2, the norm of �ur is bounded by

k�urk 6 L'k�dk (78)

Finally, using the bound for k�urk in (75), the term ˛2 is limited to

˛2 6 c2.RkC1; Nu; L'/ � k�dk (79)

where c2.�; �; �/ is a positive Lipschitz constant, which depends on the weighting factor RkC1, the
control horizon Nu, and the parameter L' . �

Theorem 5
Consider the estimation error increment given by �d D d.k C 1/ � d.k/ based on the estimation
errors d.kC 1/ and d.k/ at kC 1 and k, respectively. Then, the term ˛3 used in (69) is bounded by

˛3 6 c3.Q;L' ; Ll ; cx; N;Nu/ � k�dk (80)

with c3 being a positive Lipschitz constant.

Proof
Consider the predictions x�.kC i jk/ and xf .kC i jkC 1/ for i D Nu; : : : ; N made at k and kC 1
with the optimal and the feasible solution, respectively. The difference between these predictions is
defined as�x.kC i/ D xf .kC i jkC1/�x�.kC i jk/ for i D Nu; : : : ; N and the initial condition
xf .kCNu � 1jkC 1/ D x

�.kCNu � 1jk/. Furthermore, consider the estimation error increment
�d D d.k C 1/ � d.k/ and the auxiliary variables

´1.k C i jk/ D l.x
�.k C i jk/C�x.k C i// � l.x�.k C i jk//C�d

´2.k C i jk/ D l.x
�.k C i jk//C d.k/ � r.k/

Then, assuming a constant reference, that is, r.k C 1/ D r.k/, the term ˛3 can be expressed as

˛3 D

NX
iDNu

k´1.k C i jk/C ´2.k C i jk/k
2
Q � k´2.k C i jk/k

2
Q

Taking into account Lemma 1, the term ˛3 can be bounded by

˛3 6 c3.Q/ �
NX

iDNu

k´1.k C i jk/k (81)

Now, with the function l.�/ being Lipschitz continuous, the term ´1.k C i jk/ can be bounded using
Lemma 3:

k´1.k C i jk/k 6 kl.x�.k C i jk//C�x.k C i/ � l.x�.k C i jk//k C k�dk
6 Llk�x.k C i/k C k�dk

(82)

Then, the upper bound (81) of the term ˛3 can be rewritten as

˛3 6 c3.Q/ �
NX

iDNu

.Llk�x.k C i/k C k�dk/ (83)

With Theorem 2, the difference of the predicted states based on the optimal and the feasible solution
can be bounded with k�x.k C i/k 6 cxk�urk. Using this bound in (83) and removing the sum,
the term ˛3 can be expressed as

˛3 6 c3.Q;N;Nu/ � .Llcxk�urk C k�dk/ (84)

Taking into account Lemma 2, the increment in the necessary steady-state input can be bounded by
k�urk 6 L'k�dk (Proof of Theorem 4). Hence, (84) can be modified and the upper bound of ˛3
is defined by

˛3 6 c3.Q;N;Nu; L' ; Ll ; cx/ � k�dk (85)
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where c3.�; �; �; �; �; �/ denotes a positive Lipschitz constant, which depends on the weighting factor
Q, the prediction horizon N , the control horizon Nu, and the parameters L' , Ll , and cx . �

Theorem 6
Consider the truncation order, the prediction horizon, and the control horizon satisfying N > Nt C
Nu. Then, the term ˛4 used in (69) is given by

˛4 D 0 (86)

Proof
Consider the nilpotent character of the used prediction model (35) with ANt D 0. For a prediction
horizon ofN > NuCNt , the steady-state input (4) is used (at least) in the lastNt sampling periods.
As a consequence of the property ANt D 0, the state xf .k C N C 1jk C 1/ calculated at k C 1
reaches steady state. Taking into account the definition of the steady-state input (4), it is clear that
the nominal output in k C N C 1 is given by Qy.k C N C 1jk C 1/ D r.k C 1/ � d.k C 1/. From
the definition of the nominal output (38), it follows that

l.xf .k CN C 1jk C 1// D r.k C 1/ � d.k C 1/ (87)

Taking into account (87), the term ˛4 is given by

˛4 D 0 (88)

for a prediction horizon of N > Nu CNt . �

C.3. Upper bound of the cost difference

Under consideration of the upper bounds of the terms ˛1, ˛2 and ˛3 as well as ˛4 D 0 defined in
the previous section, Theorem 1 can be proven by the following proof:

Proof of Theorem 1
Consider the cost difference �J.k C 1/ D J f .x.k C 1/; RkC1/ � J �.x.k/; RkC1/ given in (69).
Furthermore, consider Theorems 3, 4, and 5 with the definitions of upper bounds of the terms ˛1
(70), ˛2 (73), and ˛3 (80), respectively. Then, with ˛4 D 0 (Theorem 6), the cost difference�J.kC
1/ based on the weighting factor RkC1 is limited by

J f .x.kC1/; RkC1/�J
�.x.k/; RkC1/ 6 �L.x�.kjk/; u�.kjk/; d.k/; RkC1/C cd � k�dk (89)

The positive constant parameter cd is given by

cd D c1.Q;Nu/C c2.RkC1; Nu; L'/C c3.Q;N;Nu; L' ; Ll ; cx/ (90)

and depends on the weighting factors Q and RkC1, the parameters L' , Ll and cx , the prediction
horizon N , and the control horizon Nu.

In addition, for the cost J �.x.k C 1/; RkC1/ based on the optimal solution u�.k C 1/ at k C 1,
the statement

J �.x.k C 1/; RkC1/ 6 J f .x.k C 1/; RkC1/ (91)

holds if there is a Ok such that R Ok D Rk 8 k > Ok. Thus, using (91) in (89), the difference of the
optimal costs based on the weighting factor RkC1 is bounded by

J �.x.kC 1/; RkC1/�J
�.x.k/; RkC1/ 6 �L.x�.kjk/; u�.kjk/; d.k/; RkC1/C cd � k�dk (92)

under the condition that there is some Ok such that R Ok D Rk 8 k > Ok. Hence, the bound of
the difference between the optimal costs depends directly on the estimation error increment �d D
d.k C 1/ � d.k/. �
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