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Abstract: This study presents an analysis about state estimation and dead-time compensation effect over constrained control
systems with bounded disturbances and dead-time. It is shown that input-to-state stability and constraint satisfaction can be
guaranteed by using an equivalent dead-time free system with measurable states and modified disturbances. This result may
be useful to simplify synthesis and analysis of a given constrained control strategy. A linear output feedback control scheme
and a tube-based model predictive control strategy are used as motivating examples.
Nomenclature

For a given matrix M [ Vn×m and a set V , Rm, MV , Rn

denotes the set MV = {y = Mv, v [ V}. Given two sets
U , Rn and V , Rn, the Minkowski sum is defined by
U⊕ V W {u+ v:u [ U, v [ V} and the Pontryagin set
difference is U⊖ V W {u:u⊕ V # U}. Operator z−1

denotes a discrete backward shift. The set of vertexes of a
given compact set Γ is denoted by vert(Γ).

1 Introduction

In classical control techniques, constant input–output delay,
also known as dead-time, imposes phase margin reduction
which limits control performance because of the robustness
specifications [1]. This undesired effect may be avoided
using Smith’s [2] original idea, by predicting delay effect,
in order to remove dead-time from the control loop. In the
last years, robust control of linear time-delay systems has
been widely studied for the unconstrained case (e.g. [3] and
references therein). However, deal with constrained
dead-time systems remains an open problem, once most of
the related works consider only input constraints [4–7].
In works such as [5, 7, 8], it is considered the problem of

global stabilisation of neutrally stable systems with
dead-time and input constraint, but disturbance effect and
state constraint are not discussed. Other works, as [4, 6, 9],
deal with the problem of anti-windup synthesis and
uncertainties, but do not consider state constraints as well.
On the other hand, state constraint is considered without
taking disturbances into account in [10]. Furthermore, these
works are focused on specific control strategies, so that a
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general robust dead-time compensation (DTC) scheme for
constrained systems was not in their scope.
Disturbance and dead-time are important aspects in both

theory and practice [11]. Active disturbance rejection control
and disturbance observer strategies can deal with these kinds of
issues, but it is not simple to guarantee robust constraint
satisfaction. In general, constraint satisfaction is not discussed
in these strategies. An exception is the model predictive control
(MPC)-based scheme presented in [12], however constraint
satisfaction is not guaranteed in the presence of plant-model
mismatches. Other works discuss about the problem of state
estimation in the presence of time-varying output delay [13],
time-varying state delay [14] and constant dead-time [15], but
none of them deals with constraint satisfaction.
It is well known that state estimation, robust stability and

constraint satisfaction can be naturally considered by MPC
strategies [16–21]. Except in [20], which considered a delay
smaller than the sampling period, DTC was not considered
as a key point. Recently, [17] considered variable dead-time
as a source of uncertainty, but it was not considered other
kind of disturbances. Actually, MPC schemes perform DTC
intrinsically [22]. However, by using the augmented
representation, a usual way to consider delay effect [23],
the representation dimension may increase undesirably. In
practice, DTC can be performed explicitly, outside the
optimisation problem, in order to simplify the control
algorithm [24] or to improve robustness [1]. As this kind of
prediction is based on a nominal model, disturbance effect
should be considered to guarantee robust stability and
constraint satisfaction, as shown in [25].
In this paper, the results of Santos et al. [25] are generalised

in order to control dead-time systems with non-measurable
IET Control Theory Appl., 2013, Vol. 7, Iss. 1, pp. 52–59
doi: 10.1049/iet-cta.2012.0684

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


www.ietdl.org

states. It is shown that robust stability and constraint
satisfaction problems can be analysed from a dead-time free
system with measurable states in the presence of modified
disturbances. Moreover, a particular tube-based MPC is
used to illustrate that the presented discussion may be
employed to extend input-to-state stability (ISS) properties
of a given dead-time free control strategy.
This paper is organised as follows: both problem statement

and DTC background are discussed in Section 2; the main
results, based on disturbance effect analysis, are presented
in Section 3; and two strategies for constrained dead-time
systems with non-measurable states are proposed in Section
4. Simulation examples are presented in Section 5 and the
concluding remarks are discussed in Section 6.

2 Preliminaries

2.1 Problem statement

Consider that the plant can be described by the following
uncertain time-invariant discrete-time linear system with
dead-time

x(k + 1) = Ax(k)+ Bu(k − d)+ w(k)

y(k) = Cx(k)+ v(k)
(1)

where x(k) [ Rn is a vector of the current states, u(k) [ Rm is
the current control input, y(k) [ Rp is the measured output,
w(k) [ Rn is an unknown but bounded state disturbance,
v(k) [ Rn is an unknown but bounded output disturbance,
k denotes the current sampling instant and d represents the
nominal dead-time. It is considered that may exist polytopic
constraints on control input and state such as

u(k) [ U, x(k) [ X

Moreover, it is assumed that: (a) the triple (A, B, C ) is
stabilisable and detectable, (b) disturbances lies in compact
and convex polytopic sets given by

w(k) [ W, v(k) [ V

which contains the origin. It is important to remark that
dead-time estimation error can be described as an additive
bounded disturbance if u(k) is constrained by a compact set.
The main goal is to derive conditions in order to use a

general dead-time free control law, based on a model
without dead-time and a simple Luenberger observer, to
regulate the constrained dead-time system with bounded
disturbances, guaranteeing robust stability and constraint
satisfaction.

2.2 Augmented state-space representation

In discrete-time state-space representation, dead-time effect
can be translated from the control input to the state matrix
by using an augmented representation [23]. In this case, the
new state vector becomes

j(k) = [x(k)T u(k − d)T · · · u(k − 2)T u(k − 1)T]

and the equivalent input–output representation has the
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following form

j(k + 1) = Ajj(k)+ Bju(k)+ Bww(k)

y(k) = Cjj(k)+ v(k)
(2)

where j(k) [ Rn+d·m. This technique is useful since a given
control strategy, for systems without dead-time, can be
directly applied by using the augmented model. However, as
the augmented model has n + d m states, the representation
order may increase undesirably, since it depends on both
dead-time length and control dimension.

2.3 Explicit DTC: nominal case

Assuming measurable states, explicit DTC can be applied to
linear state-space models as discussed in [24]. Since the
effect of u(k) appears after x(k + d ), a prediction for x(k + d )
at k is given by

x̃(k) W x(k + d|k) = Adx(k)+
∑d
j=1

[A j−1Bu(k − j)] (3)

Hence, a dead-time free nominal model at d steps ahead is
given by

x̃(k + 1) = Ax̃(k)+ Bu(k) (4)

Thus, a control law u(k) = k(x̃(k)) is based on the model (4)
without dead-time. In the absence of disturbances, x̃(k) =
x(k + d) and x̃(k) [ Rn as in the original representation.
However, if w(k)≠ 0, then x̃(k) W x(k + d|k) = x(k + d),
which was not tackled in [24].

2.4 Luenberger observer for systems with
dead-time

Since the states are not measurable, it is also necessary to
consider a state estimation approach. Similarly to Mayne
et al. [26], a Luenberger observer will be used to achieve
implementation simplicity. Owing to dead-time effect, state
estimation is handled by the following dynamics

x̂(k + 1) = Ax̂(k)+ Bu(k − d)+ L(y(k)− Cx̂(k)) (5)

where x̂(k) is the estimation of x(k).
As in the case without dead-time, estimation error, denoted

by d(k) W x(k)− x̂(k), can be obtained from (1) and (5) as
follows

d(k + 1) = (A− LC)d(k)+ w(k)− Lv(k) (6)

As a consequence, if AL W A− LC has all eigenvalues strictly
inside the unitary circle, w(k) is inside a compact set W and
v(k) is inside a compact set V, then δ(k) is also inside a
compact set [27]. This set can be obtained as an invariant
outer approximation of the minimal robust positively
invariant set (mrpi) given by

D =
⊕1
j=0

Aj
L[W⊕ (− LV)]
53
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if δ(0) ∈ Δ. An invariant outer approximation, D, described as
follows

ALD⊕ (W⊕−LV) # D

with D # D, can be computed by using specialised
algorithms [28].

2.5 Continuous-time model and dead-time
uncertainty

In general, additive uncertainty bounds are obtained
experimentally as several sources of prediction mismatch
are lumped together. However, some kinds of uncertainties,
such as time-varying delay, are particularly important in
order that they can be mathematically studied. This fact is
illustrated by considering a continuous-time dead-time
uncertainty, which may appear either because of a
time-varying delay or from a simple dead-time estimation
error.
Similarly to Lombardi et al. [17], consider the following

continuous-time system

ẋ(t) = Acx(t)+ Bcu(t − L− e(t)) (7)

where L is the nominal dead-time, e(t) is the dead-time
uncertainty, x(t) [ Rn represents the continuous-time state
vector and u(t) [ Rm is the continuous-time control vector,
obtained from a zero-order hold with with a sampling
period Ts as follows

u(t) = u(k), ∀t [ [kTs, (k + 1)Ts)

Without loss of generality, it is supposed that e(t) > 0 and
L = d · Ts. Moreover, for presentation simplicity, it is
supposed that e(t) , Ts, but the most general case can be
found in [17].
It is well known that in the nominal case (e(t) = 0), the

model is given by

x(k + 1) = Ax(k)+ Bu(k − d)

where A = eAcTs and B = �Ts
0 eAc(Ts−u) duBc. However, in the

presence of dead-time uncertainty, the discrete-time system
becomes

x(k + 1) = eAcTsx(k)+
∫e(t)
0

eAc(Ts−u) duBcu(k − d − 1)

+
∫Ts
e(t)

eAc(Ts−u) duBcu(k − d)

= eAcTsx(k)+
∫e(t)
0

eAc(Ts−u) duBcu(k − d − 1)

+
∫Ts
0
eAc(Ts−u) duBcu(k − d)

−
∫e(t)
0

eAc(Ts−u) duBcu(k − d)

= Ax(k)+ Bu(k − d)

+
∫e(t)
0

eAc(Ts−u) duBc(u(k − d − 1)− u(k − d))︸��������������������������︷︷��������������������������︸
w(k)

(8)
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Therefore dead-time estimation error or time-varying delay
should be treated as a bounded additive uncertainty since
u(k − d) [ U and u(k − d − 1) [ U with

w(k) = −G(e(t))[u(k − d)− u(k − d − 1)]

where G(e(t)) = �e(t)
0 eAc(Ts−u) duBc.

It is important to remark that the sampling period can be
chosen by using any rule of thumb presented in control
systems textbook as Åström and Wittenmark [29]. In
practice, a smaller sampling period reduces inter-sampling
interval, increases discrete dead-time length (d ) and reduces
the magnitude of the additive disturbance (w(k)). As a
consequence, a smaller sampling period tends to improve
control performance as the inter-sampling behaviour is
reduced. However, the main advantage of DTC comes from
the fact that controller design is performed by using a
model without dead-time, so that Ts can be as small as
necessary in order to achieve a desired performance,
keeping control design simplicity.

3 Main results

The overall control system is depicted in Fig. 1, where state
estimation and DTC block is computed as follows

x̃(k) = Adx̂(k)+
∑d
j=1

[Aj−1Bu(k − j)] (9)

x̂(k + 1) = Ax̂(k)+ Bu(k − d)+ L(y(k)− Cx̂(k)) (10)

Note that x̂(k) is obtained from (10) at k − 1. In this case,
x̃(k) W x̂(k + d|k) is the output of the overall system
composed by a cascade connection of (1) and (9), (10) as
depicted in Fig. 1.
As shown in the preliminary discussion, in presence of

disturbances and/or estimation error x̃(k) = x(k + d), but
u(k) = k(x̃(k)). Hence, disturbances and estimation error
effect should be considered through an equivalent overall
representation given by

x̃(k + 1) = Ax̃(k)+ Bu(k)+ w̃(k)

y(k) = Cx̃(k − d)+ Ce(k)+ v(k)

e(k) W x(k)− x̃(k − d)

(11)

where w̃(k) is a disturbance of whole system and e(k) is the
prediction error which should be related with w(k), v(k)
and δ(k).

Fig. 1 Overall control scheme
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3.1 Overall disturbance analysis

The overall disturbance w̃(k) can be computed from (11) and
(9) as function of x̂(k) yielding

w̃(k) = x̃(k + 1)− Ax̃(k)− Bu(k)

= Adx̂(k + 1)+
∑d
j=1

[A j−1Bu(k − j + 1)]

− A Adx̂(k)+
∑d
j=1

[Aj−1Bu(k − j)]

{ }
− Bu(k)

= Ad[x̂(k + 1)− Ax̂(k)− Bu(k − d)]

(12)

Then, by using the Luenberger observer given by (10),
expression (12) may be rewritten as following:

w̃(k) = Ad[L(y(k)− Cx̂(k))] = AdL(Cd(k)+ v(k)) (13)

This result is equivalent to the one presented in [18] for d = 0.

3.2 Prediction error

In the prediction error case, it is considered the deviation
between the real state and its prediction, used for control
purposes and given by

e(k) = x(k)− x̃(k − d) (14)

By considering (9) at k − d, the following equation is obtained

x̃(k − d) = Adx̂(k − d)+
∑d
j=1

[Aj−1Bu(k − j − d)] (15)

For the real system, x(k) can be expressed as a function of x(k
− d ), running (1) from k− d until k recursively, which gives

x(k) = Adx(k − d)+
∑d
j=1

[Aj−1Bu(k − j − d)]

+
∑d
j=1

[A j−1w(k − j)]

(16)

Finally, replacing (15) and (16) in (14) yields

e(k) = Add(k − d)+
∑d
j=1

[Aj−1w(k − j)] (17)

This expression relates the actual state value with the
predicted (expected) one.

3.3 Bounding disturbance effect

As it was already pointed out, if the estimator is stable, it can
be defined an overall disturbance set W̃ such that

w̃(k) [ W̃, ∀v(k) [ V, ∀w(k) [ W, ∀k

In a similar way, a prediction error set E can be defined by the
IET Control Theory Appl., 2013, Vol. 7, Iss. 1, pp. 52–59
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following statement

e(k) [ E, ∀v(k) [ V, ∀w(k) [ W, ∀k

By using (16) and (17) and the mrpi idea, briefly discussed in
Section 2, outer bounds can be derived for prediction error
and overall disturbances as follows

w̃(k) [ AdL(CD⊕ V)

e(k) [ W⊕ AW⊕ · · · ⊕ Ad−1W⊕ AdD

where D is an invariant outer approximation forW⊕−LV. It
is important to remark that the initial estimation assumption,
x̂(0)− x(0) [ D, is not a hard condition since it can be
ensured by running the observer in an open-loop fashion
before the controller startup.
Owing to the equivalence between the predicted

representation and the real system, it is possible to
guarantee robust stability of the real system by using a
control strategy based in a dead-time free model. ISS
stability theory [30, 31], which is briefly presented in the
appendix, will be used to formalise this idea as presented in
the following theorem.

Theorem 1:

(i) Let the system

x(k + 1) = Ax(k)+ Bu(k − d)+ w(k)

y(k) = Cx(k)+ v(k)

with w(k) [ W, be controlled by

u(k) = k(x̃(k))

x̃(k) = Adx̂(k)+
∑d
j=1

[A j−1Bu(k − j)]

x̂(k + 1) = Ax̂(k)+ Bu(k − d)+ L(y(k)− Cx̂(k))

and all eigenvalues of the matrix (A− LC) are strictly inside
the unitary circle.
(ii) Let the sets W̃ and E be defined such that ∀k . 0,
[x̃(k + 1)− (Ax̃(k)+ Bu(k))] [ W̃ and, ∀k > d, (x(k)−
x̃(k − d)) [ E.
(iii) Let the system

z(k + 1) = Az(k)+ Bk(z(k))+ wz(k)

be ISS for all wz(k) satisfying wz(k) [ W̃.

Then:

(a) System (i) is ISS.
(b) If x̃(k) [ X⊖ E, ∀k≥ 0, then x(k) [ X, ∀k≥ d.

Proof:

(a) For presentation simplicity, the proof for part ‘a’ is
presented in the appendix.
(b) Owing to ISS guarantee, x̃(k) [ X̃, implying that
x(k + d) [ X̃⊕ E since x(k + d) = x̃(k)+ e(k + d) ⇒
55
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x(k + d) [ x̃(k)⊕ E. In a similar way, as x(k + d)−
x̃(k) [ E, it can be directly concluded from Pontryagin set
difference definition that if x̃(k) [ X⊖ E, then x(k + d)
[ X. □

This theorem has three interesting properties: (a) state and
output constraints can be guaranteed by imposing tighter
constraints over x̃(k); (b) control constraints can be
guaranteed by defining a suitable control law κ(·); and (c)
ISS guarantee of a dead-time system with non-measurable
states is converted into dead-time free problem with known
states. Note that z(k + 1) = Az(k)+ Bk(z(k))+ wz(k) is an
auxiliary dead-time free system used to define the
stabilising control law κ(·) in order that if wz(k) = w̃(k),
then z(k) = x̃(k), for all k≥ 0.

4 Dead-time free strategies

In this section, DTC scheme will be applied to a linear
controller and a tube-based MPC strategy by using the ideas
of Theorem 1. As indicated in Section 2, the main idea is to
derive a constrained control law for a system with
dead-time and non-measurable states based on a dead-time
free model.
Firstly, in order to ensure conditions (ii) of Theorem 1, it is

used the idea of Mayne et al. [18], which was already
revisited in Section 2. Thus, the bounds for w̃ and e(k) are

W̃ = AdL(CD⊕ V)

E = W⊕ AW⊕ · · · ⊕ Ad−1W⊕ AdD

The next step is to define a control law u(k) = κ(z(k)) in order
to guarantee condition (iii) of Theorem 1.

4.1 Linear controller

The first motivating example is a simple controller in the form
κ(z(k)) =Kz(k), which is based on a robust linear feedback
gain presented in [32]. Without loss of generality, consider
that the sets U and X⊖ E are expressed as follows:
U = {u:|lju| , 1, j = 1, . . . , nru} and X⊖ E = {z:|hiz|
, 1, i = 1, . . . , nrx}. Constraint satisfaction and ISS
problem is posed in terms of the following convex
optimisation problem

min
Y ,Q

− log( det(Q)) (18)

s.t.

lQ ∗ ∗
0 1− l ∗

AQ+ BY wv Q

⎡
⎢⎣

⎤
⎥⎦ . 0, ∀wv [ vert(W̃)

(19)

1 ∗
Y ′ ljQ

[ ]
. 0, j = 1, . . . , nru (20)

1 ∗
Qhi Q

[ ]
. 0, i = 1, . . . , nrx (21)

for a given λ≥ 0. If this optimisation problem is feasible,
x̃′Q−1x̃ , 1 is a robust admissible invariant set for the
system z(k + 1) = Az(k)+ Bu(k)+ w̃z(k) controlled by
u(k) = YQ−1x̃(k), under the constrains x(k) [ X⊖ E and
u(k) [ U, and subject to the disturbance w̃z(k) [ W̃ .
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The linear matrix inequality (LMI) (19) is used to guarantee
robust invariance [32]. Control constraint satisfaction is
ensured by the LMI (20) as in [33], state constraint satisfaction
is ensured by the LMI (21) as in [33] and the criterion (18) is
applied to obtain the largest ellipsoid (in volume) contained in
the constraints polytope [33]. Note that other performance
specifications could be added in the form of LMIs. Finally,
from Theorem 1, it can be verified that original system (1) is
ISS and guarantees robust constraint satisfaction.

4.2 Tube-based MPC

To obtain a larger domain of attraction and to improve
performance, the proposed DTC scheme can be applied to
robust MPCs strategies. Consider the strategy based on a
dead-time free process proposed in [26]. For the dead-time
case, it is just necessary to use a modified disturbance
bound W̃ instead of W and the tighter constraint X⊖ E
instead of X. Thus, an output feedback tube-based MPC for
dead-time system with tighter constraints, X W X⊖ E and
U W U⊖ KZ, may be given by

min
x0 ,ui

VN (x̃(k); x, u) =
∑N−1

i=0

ℓ(xi, ui)+ Vf (xN ) (22)

s.t.

x0 [ x̃(k)⊕ (−Z)

xi+1 = Axi + Bui, i = 0, 1, . . . , N − 1

(xi, ui) [ X× U, i = 0, 1, . . . , N − 1

xN [ Xf

where (i) x̃(k) is given by (9), (10); (ii) K and Kf are
stabilising gains such that all the eigenvalues or A + BK and
A+ BKf are strictly inside the unitary circle; (iii) Z is an
outer approximation of an mrpi respecting (A+ BK)Z
⊕W̃ # Z; (iv) X and U are non-empty sets; (v) Xf is an
admissible invariant set which fulfils (A+ BKf )Xf , Xf ,
Xf , X, Uf , KfU; (vi) Vf ((A+ BKf )x)+ ℓ(x,
Kf x) ≤ Vf (x), ∀x [ Xf ; and (vii) u(k) = k(x̃(k)) = u∗0(k)+
K(x∗0(k)− x̃(k)) with u∗0(k) and x∗0(k) being the arguments
which minimise (22) at k.
The matrix K characterises the dynamics of the closed-loop

system in the presence of disturbances. It can be defined in
order to minimise the set Z, ensuring condition (iv), by
applying some convex optimisation techniques presented in
[32]. The control gain Kf , the terminal set and the terminal
cost can be obtained by considering the optimal unconstrained
control law [26].
The proposed predictive controller requires the solution of

a quadratic programming (QP) problem at each sampling
time. Therefore in order to implement the controller, an
algorithm to solve the QP problem within the sampling is
compulsory. There exists QP solvers tailored to efficiently
solve the QP problems derived from predictive controllers
with a computation time that depends linearly on the
prediction horizon [34]. Other possibility is the off-line
solution of the QP problem by using the multi-parametric
programme tools [35].

5 Simulation example

A double integrator system similar to the one presented in
[18] is used to illustrate the effect of the proposed DTC in
IET Control Theory Appl., 2013, Vol. 7, Iss. 1, pp. 52–59
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the two controllers of Section 4

x(k + 1) = 1 1

0 1

[ ]
x(k)+ 0.5

1

[ ]
u(k − d)+ w(k)

y(k) = [1 1]x(k)+ v(k)

where w(k) [ W W {w:‖w‖1 ≤ 0.1}, v(k) [ V W {v:|v| ≤
0.05} and the dead-time is set to d = 2 or d = 3 in order to
show the difficulties associated to its effect. The state
constraints are supposed to be x(k) [ X W {x:x = [x1 x2]

′, −
40 ≤ x1 ≤ 5, − 40 ≤ x2 ≤ 5} and the control constraints
are u [ U W {u:|u| ≤ 5}. In the linear control strategy,
it is used λ = 1. For the MPC case, it is used
ℓ(xi, ui) = 0.5(x′iQxi + u′iRui), Vf (xN ) = 0.5x′NPxN , where
Q = I, R = 0.01 and Kf and P are stabilising elements related
with the optimal unconstrained controller for (A, B, Q, R).
Furthermore K = [1 1], L = [− 1 − 1]′ and N = 20.
Initial conditions are x(0) = [10 − 2.5] for the linear

controller and x(0) = [10 − 5] for the predictive controller
in order to explore its larger domain of attraction. Additive
disturbances are the same in all simulations, but they were
randomly set to be in their extremes. The first control action
(u(k)≠ 0) is computed after k = 2 in order that state
estimations can converge to their bounds. In this case, it is
applied u( j) = 0, j = −d, − d + 1, . . . , 1.

Fig. 2 State evolution with a linear controller: d = 2 top and d = 3
bottom
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Simulations for the linear and the predictive control
strategies are shown in Figs. 2 and 3, respectively, where Ω
represents a robust invariant region for the predicted
estimation, x̃(k). These figures are interesting to illustrate
robust state constraint satisfaction, which is one of the
major advantages of the proposed approach. The shadowed
zone represents the set x̃(k)⊕ E, which is a confident set for
the future real state x(k + d ). Even though x(k + d ) is not
known at k because of estate estimation and prediction, it
always lies inside the shadowed zone, x(k + d) [ x̃(k)⊕ E
as expected from Theorem 1 proof. This can be directly
verified from Figs. 2 and 3. Hence, imposing tighter
constraints over x̃(k), namely X⊖ E, it is guaranteed that
x̃(k + d) [ X. Moreover, as x̃(k) is inside its invariant
region, limited by dotted line, then x(k + d ) should lies
inside V⊕ E, represented by the solid line. In other words,
constraints satisfaction for x̃(k) is used to guarantee robust
constraint satisfaction for x(k + d ).
This approach is useful because dead-time effect can be

easily evaluated from the estimation error bound. It can be
noticed in both strategies, a simple dead-time can reduce
considerably the invariant region depicted by the dotted
line. Indeed, as could be expected, a longer dead-time
affects both prediction error and overall disturbance effect,
reducing the invariant region. It is important to note that
constraint satisfaction can be guaranteed from k + d. As a
consequence, if the control algorithm starts at k = 0, state

Fig. 3 State evolution with a tube-base MPC: d = 2 top and d = 3
bottom
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constraint satisfaction can be evaluated, but it cannot be
forced because it depends on u(− d), . . . , u(− 1) which
were previously applied. This fact is a consequence of
dead-time effect and cannot be avoided.
Another interesting issue is that the predictive scheme

presents a significantly larger robust invariant set.
Nevertheless, other schemes such as linear laws or
anti-windup strategies are interesting alternatives because of
their simplicity once it is possible to consider other convex
specifications that are not in the scope of this work.

6 Conclusion

The problem of state estimation and DTC for constrained
system was analysed by means of an equivalent dead-time
free representation with measurable states. Compensation
and state estimation effect were lumped together in a
modified disturbance which is related to the real one in
order to obtain a simplified equivalent control problem.
This result was applied to a linear controller and a
tube-based MPC, allowing the use of these strategies
directly to control constrained dead-time systems. As a
topic for future work, it would be interesting to apply a
similar analysis in other kinds of uncertainty representation.
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9 Appendix

9.1 Appendix 1: ISS definition

The ISS definition, presented in [30], will be briefly revisited
in this appendix. In this case, is necessary to recall some
function definitions. A function g : R+ 
 R+ is a
K-function if it is continuous, strictly increasing and γ(0) =
0. A function b : R+ × R+ 
 R+ is a KL-function if for a
fixed t≥ 0, the function β(·,t) is a K-function and for each
fixed s≥ 0, the function β(s,·) is decreasing and β(s,·)→ 0
as t→∞. For a bounded signal wz(k) [ Wz, its finite
IET Control Theory Appl., 2013, Vol. 7, Iss. 1, pp. 52–59
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sequence is denoted by wz[k−1] W {wz(0), wz(1), . . . ,
wz(k − 1)}; and its standard l1 norm is represented by
‖wz[k−1]‖1 W supk≥0 {‖wz(k)‖}.
It will be considered a system given by

z(k + 1) = f (z(k), wz(k)) (23)

which can be used to represent a linear system controlled by a
non-linear strategy u(k) = κ(z(k)) as

f (z(k), wz(k)) = Az(k)+ Bk(z(k))+ Bwwz(k)

Note that state evolution until k depends only on z(0) and
wz[k−1]

because of causality. The solution of system (23) at

sampling time k for the initial state z(0) and a sequence of
disturbances wz[k−1]

is denoted by f(k, z(0), wz[k−1]
), where

f(0, z(0), wz[−1]
) = z(0).

Definition 1: System (23) is (globally) input-to-state stable if
there exist a KL-function β and a K-function γ, such that, for
each sequence w and each initial condition z(0), the following
holds

‖f(k, z(0), wz[k−1]
)‖ ≤ b(‖z(0)‖, k)+ g(‖wz[k−1]

‖1)

for each k≥ 0.

In some cases, robustness can only be ensured in a
neighbourhood of the origin and/or for small enough
uncertainties. This problem can also be analysed within the
ISS framework by means of the local ISS notion.

Definition 2: System (23) is locally input-to-state stable if
there exist constants c1 and c2, a KL-{function} β and a
K-{function} γ, such that, for each sequence w with
‖wz(k)‖ ≤ c1 and each initial condition z(0) with
‖z(0)‖ ≤ c2, the following holds

‖f(k, z(0), wz[k−1]
)‖ ≤ b(‖z(0)‖, k)+ g(‖wz[k−1]

‖1)

for each k≥ 0.

9.2 Appendix 2: ISS proof

In this section, the main goal is to prove that the original
system is ISS because of stability conditions imposed to the
following dead-time free auxiliary system

z(k + 1) = Az(k)+ Bk(z(k))+ wz(k)

From the analysis of the controlled system it can be seen that
the overall dynamics is given by

d(k + 1) = ALd(k)+ w(k)− Lv(k)

x̃(k + 1) = Ax̃(k)+ Bk(x̃(k))+ AdLCd(k)+ AdLv(k)

Given that the dynamics of δ(k) does not depend on x(k) and it
IET Control Theory Appl., 2013, Vol. 7, Iss. 1, pp. 52–59
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is nominally asymptotically stable, that is for w(k) = 0 and v
(k) = 0, then this is ISS w.r.t. the exogenous signals w(k)
and v(k) as in [30, Example 3.4] with

‖d(k)‖ ≤ b1(‖d(0)‖, k)+ gw(‖w[k−1]‖1)+ gv(‖v[k−1]‖1)

where b1(‖d(0)‖, k) = crk(‖d(0)‖), gw(‖w[k−1]‖1) =
c

1−r ‖w[k−1]‖1, gv(‖v[k−1]‖1) = c‖L‖
1−r ‖w[k−1]‖1 and c > 0 and

0≤ ρ < 1 are constants such that ‖Ak
L‖ ≤ crk .

Then, there exists a KL-function bd(r, k) = 3b1(r, k), and
a couple of K-functions ud(r) = 3gw(r) and ld(r) = 3gv(r)
such that

‖d(k)‖ ≤ max{bd(‖d(0)‖, k), ud(‖w[k−1]‖1), ld(‖v[k−1]‖1)}

On the other hand, the dynamics of x̃(k) is ISS w.r.t
wz(k) = AdLCd(k)+ AdLv(k). Thus, in a similar way as
done before, there exists a KL-function bx, and a couple of
K-functions gx, ux and lx such that

‖x̃(k)‖ ≤ max{bx(‖x̃(0)‖, k), gx(‖d[k−1]‖1), ux
× (‖w[k−1]‖1), lx(‖v[k−1]‖1)}

Then, in virtue of [30, Theorem 2], the overall system is ISS
w.r.t the signals w(k) and v(k). Defining the extended estate
p(k) = [d(k)′, x̃(k)′]′ and the extended exogenous input
wp(k) = [w(k)′, v(k)′]′, there exists a KL-function β, and a
K-function θ such that

‖p(k)‖ ≤ b(‖p(0)‖, k)+ u(‖wp[k−1]‖1) (24)

Since e(k) = x(k)− x̃(k − d) = Add(k − d)+∑d
j=1 A

j−1

×w(k − j) (see (17)), we have that

x(k + d) = x̃(k)+ Add(k)+
∑d
j=1

Aj−1w(k − j + d)

Then there exist positive constants a1 and a2, such that

‖x(k + d)‖ ≤ a1(‖p(k)‖)+ a2(‖w[k,k+d−1]‖1)

Finally, by using (24), it is obtained

‖x(k + d)‖ ≤ a1(b(‖p(0)‖, k)+ u(‖wp[k−1]‖1))
+ a2(‖w[k,k+d−1]‖1)

≤ b2(‖p(0)‖, k)+ u2(‖wp[k−1]‖1)
+ a2(‖w[k,k+d−1]‖1)

≤ b2(‖p(0)‖, k)+ u3(‖wp[k+d−1]‖1)

(25)

where b2 and u3 are suitable KL and K-functions,
respectively. This result is important because it can be
verified from (25) that, if w(k) and v(k) approach to zero,
then the vector x(k + d ) also approaches to zero as k→∞.
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