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SUMMARY

In this paper, we present a control scheme in which a set of agents switches between different network
topologies in order to regulate a set of unconstrained linear systems. The problems of how to decide the time-
varying communication strategy and the corresponding control strategies are addressed. A design method
that guarantees closed-loop stability for the proposed scheme is also provided. In addition, the network
topology optimization problem is posed as a cooperative game, so that tools from game theory can be used
to study the relevance of the different links and the agents. Finally, the proposed scheme is illustrated through
a simulation example. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last years, there has been a growing interest of the control community in the research of
non-centralized control systems. The basic idea is that the overall system is divided into several
smaller subsystems, each controlled by a different local controller or agent that may or may not
share information with the rest. This framework suits naturally to large scale or networked systems
like traffic, water, or power networks [1, 2]. In this context, the role played by the communica-
tion infrastructure that connects the agents may become crucial. For example, the communicational
burden has a direct impact on the battery life of wireless sensor and actuator devices. For this
reason, the dynamics induced by the communication network—due to time-varying delays and
data losses [3, 4]—or the specific control algorithm implemented by the agents [5, 6] has become
important research topics.

Some interesting topics that are rarely considered in the literature are the evolution of couplings
with time, the relevance of the network structure, and the usefulness of the information exchange
among the agents. A survey of the literature (see, e.g., [7]) shows that most schemes are focused
either on situations where the coupling between subsystems can be ignored (e.g., [8–10]) or sit-
uations where the coupling is big enough to require some kind of information exchange between
the agents (e.g., [11, 12]). Multi-agent control policies should be flexible enough to consider these
issues and to adapt themselves according to them. To the best of our knowledge, only [13] deals
explicitly with the adaptation of the communication as a function of the coupling between the
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subsystems. More specifically, in [13], the set of active constraints is used to modify the sets of
agents that must work together. In this paper, we present a multi-agent control scheme that also
adjusts the communication between the agents as a function of the coupling between them. In par-
ticular, we group the agents looking for a trade-off between the control performance of the overall
system and the communicational burden. As a consequence, the network topology is modified to
allow for information exchanges that really contribute to improve the control performance.

In this paper, we also consider other interesting questions that have not been addressed in this
context to the best of our knowledge, such as which elements of a given multi-agent control sys-
tem are more critical, which can be very important, for example, in fault tolerant control policies.
To this end, we apply tools from game theory in order to gain an insight into the agents and the
links involved in our control scheme. Specifically, our approach is based on coalitional game the-
ory [14], a branch of game theory that has dealt with the role played by communication networks
in situations of mutual interaction since decades, see, for example, [15], and which has attracted
the attention of the control community because of its potential applications to multi-agent control
systems [16, 17]. In a cooperative game theoretical framework, most of the literature has dealt only
with static situations [18], although dynamical cooperative games have also been studied. For exam-
ple, in [19], a set of fuzzy coalitions is introduced to allow them to evolve in a dynamic game. The
core of this game is then defined as a dynamic set-valued map that associates each fuzzy coalition
with its allotments. In [18], the worth of the coalitions varies over time as a function of the history
of previous coalitions and allocations. Under this approach, coalitions are allowed to change over
time iff the new game they create is a subgame of the previous one. As a consequence, coalitions
cannot evolve aggregating new players. A different approach is taken in [20], where the sum of the
expected player’s payoff is maximized along a tree of possible trajectories in which the transition
between the corresponding stage games is modeled with probabilities. While these and other related
works contain interesting ideas whose transposition into a control framework deserves to be stud-
ied, they have shortcomings that hinder their direct application to this context. In the first place,
there are specific control issues that are beyond the scope of the traditional game theory literature,
which is more focused on applications related to economy. Likewise, it is not always true that in
a multi-agent control system, all the agents involved are really independent parties with their own
selfish objectives. There are many control applications in which a large-scale system is partitioned
for simplicity into subsystems whose controllers are designed to collaborate in order to satisfy cer-
tain global properties, for example, closed-loop stability. Hence, merging distributed control and
cooperative game theory is not as straightforward as it may seem. In this work, we take advantage
of the optimization procedure used to choose the network topology to build a cooperative game in
which the links are the players [21]. From this perspective, each network topology used is inter-
preted as a coalition of links that is formed to optimize the expected evolution of the closed-loop
system. That is, in our approach, the coalitions of links evolve by aggregating or discarding links
in order to minimize the expected future evolution of the system. For simplicity and being one of
the most well-known solutions in game theory, we calculate the Shapley value [22] of this game
instead of the other solution concepts, which require much more complex calculations and may be
the empty set such as the core. The resulting payoff vector provides us with an on-line indication of
the expected averaged contribution to the overall cost of each link and agent.

All in all, the contribution presented in this work is twofold:

� In the first place, the main contribution of this paper is a double rate control scheme that varies
the network topology enabling or disabling links as the coupling between the agents change.
We assume that there exists a cost for using the communication links, so that at some point it is
preferable to let low-coupled agents work in a decentralized manner. We also provide a design
method for this scheme based on LMIs.
� In the second place, the network topology optimization procedure in which the aforementioned

control scheme is based can be interpreted as a cooperative game. Using standard game theo-
retical results, we can calculate how the control and communicational costs can be distributed
over the links and the agents according to their contribution, which gives us information about
their relevance.
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The rest of the paper is organized as follows. First, the class of multi-agent problems considered
is introduced in Section 2. Next, we propose a multi-agent control algorithm in Section 3. A design
method for the matrices that have to be calculated to apply the proposed scheme and the corre-
sponding stability proof are also given in this section. In Section 4, cooperative game theory tools
are given for the analysis of the relevance of agents and links. An example is given in Section 5 to
illustrate the ideas exposed in the paper. Finally, concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

In this paper, we consider discrete time linear systems that are partitioned into a set N D
¹1, 2, : : : ,N º of subsystems whose dynamics are given by the following model:

xi .kC 1/D Ai ixi .k/CBi iui .k/C di .k/,

di .k/D
X
j¤i

Aijxj .k/C
X
j¤i

Bijuj .k/,
(1)

where xi 2 Rqi and ui 2 Rri with i D 1, : : : ,n are the states and inputs of each subsystem,
respectively. The variable di is the influence of the neighbors’ states and inputs in the update of xi .

Each subsystem is controlled by a different agent that has access only to its state xi and decides at
each sample time the value of its corresponding input ui . In addition, all the agents can communi-
cate through a network whose physical topology is described by means of the graph .N ,L/, where
N is the set of subsystems and L is the set of edges L� LN D ¹¹i , j ºj¹i , j º �N , i ¤ j º that cor-
responds to the physical communication links between the agents (note that a link is an unordered
pair, i.e., ij and j i represent the same link. Each link l 2 L can be either enabled or disabled so
that each enabled link has a fixed stage cost c > 0 associated to its use. We define network mode or
topology as the set of links ƒ� L that are enabled, and we require that the necessary and sufficient
condition for any two agents to communicate is that they are directly or indirectly connected by the
network; that is, there exists a path of enabled links that connects them.

The notion of connectedness induces a partition of the set N into disjoint cooperation or com-
munication components, where two agents are in the same communication component iff they are
connected, either directly or indirectly [23]. The resulting set of communication components is
denoted by N=ƒ.‡. Hence,

S
C2N=ƒ C DN . It is important to stress that the agents inside the same

communication component C choose cooperatively the value of their input variables uC D .ui /i2C
and behave collectively as a one system with dynamics given by

xC .kC 1/D ACxC .k/CBCuC .k/C dC .k/,

dC .k/D
X

j2N�¹C º
ACjxj .k/C

X
j2N�¹C º

BCjuj .k/,
(2)

where xC D .xi /i2C is the aggregate of the states of the subsystems in C .

Remark
The description of the network that has been used allows us to work with multi-hop communication
between agents. Note that this assumption only holds as long as the control time sample is bigger
than the time spent in the communications.

Remark
We assume that the partition of the system is given. System partitioning is a complex problem that is
beyond the scope of this paper. The interested reader is encouraged to see [24,25] for an example of
algorithms for system partitioning. In principle, one could partition the system in any possible way,
even to the extreme of defining a different subsystem for each state. Nevertheless, the number of

‡The idea behind this notation is that the reader should read ‘N divided byƒ’, which corresponds to the fact that the set
of agents is partitioned into communication components because of the network topology implemented byƒ.
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subsystems and links defines the computational complexity of the proposed solution, so there must
be a trade-off between the number of subsystems and links and the computational constraints.

The control objective is to regulate the state of all the subsystems to the origin while minimizing
a cost that depends on the state, input trajectories, and the communication links. The stage cost of
each agent is defined as follows:

`i .k/D x
T
i .k/Qixi .k/C u

T
i .k/Riui .k/C

c

2
jƒi .k/j,

where Qi 2 Rqi�qi and Ri 2 Rri�ri are, respectively, the positive definite and semi-definite con-
stant weighting matrices, and jƒi .k/j is the number of active links that directly connect agent i to
other agents. Analogously, the stage cost of a communication component C is given by

`C .k/D x
T
C .k/QCxC .k/C u

T
C .k/RCuC .k/C cjƒC .k/j,

where QC D diag.Qi /i2C , RC D diag.Ri /i2C , and jƒC .k/j is the number of links used in the
communication component.

Remark
The cost c is a parameter that has to be tuned ‘ad hoc’ for each particular problem so that a good
trade-off is attained between the control performance and the communication costs.

From a centralized point of view, the control problem can be posed as the following infinite
horizon optimal control problem:

min
ƒ.k/

1X
kD0

0
@ X
C2N=ƒ.k/

min
uC .k/

�
xTC .k/QCxC .k/C u

T
C .k/RCuC .k/

�
C cjƒ.k/j

1
A

s.t.

xC .kC 1/D ACxC .k/CBCuC .k/C dC .k/ 8C 2N=ƒ.k/
dC .k/D

X
j2N�¹C º

ACjxj .k/C
X

j2N�¹C º
BCjuj .k/ 8C 2N=ƒ.k/

ƒ.k/� L.

(3)

This problem can be formulated as a dynamic programming problem with mixed-integer opti-
mization variables, which belongs to the class of NP-complete problems. In general, it is not possible
to solve this problem easily because it is not convex. Hence, different work-arounds have to be used
to calculate at least a suboptimal solution of the original problem. See, for example, [26], where
the classical branch and bound approach is presented, or [27], where different convex relaxations of
mixed-integer quadratic problems are shown. Another interesting work is also [28], where a robust
decomposition of a relatively similar optimization problem with a linear cost function is proposed.
The resulting subproblems are then solved through linear programming over a receding horizon.
Anyhow, the ultimate goal of this research line is to solve (3) in a real distributed fashion, so that
each pair of agents connected by a link decides whether to enable or disable it. The work presented
in this paper is a first step towards that goal. To this end, in every certain number of time steps,
the agents share information about their state and decide the most appropriate network topology for
the next time instants. The computation of this choice is relaxed and reduced to the comparison of
several quadratic functions associated to the cost-to-go of each network topology. During the time
interval between the two choices of the network topology, the agents are grouped according to the
connectedness imposed by the network. The proposed control scheme is proved to be stable and
also takes advantage of the problem solved to choose the network topology to provide an on-line
indication about the current relevance of the links and the agents in the multi-agent system.

Copyright © 2013 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2014; 35:592–608
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3. DISTRIBUTED CONTROL ALGORITHM

In this section, we propose a double sample rate multi-agent control scheme that provides an
approximate solution to problem (3). To this end, we make the following assumptions:

(1) At each time sample, each communication component C 2N=ƒ implements a linear control
law uC DK

ƒ
C xC .§

(2) Let the state and input of the overall system be given by the aggregate of the states and inputs of
the communication components, that is, xN D .xC /C2N=ƒ and uN D .uC /C2N=ƒ. The over-
all control law uN DKƒxN , whereKƒ D diag

�
KƒC

�
C2N=ƒ, guarantees closed-loop stability

of the centralized system. Notice that according to Kƒ, uC ¤ f .xD/,8C ,D 2 N=ƒ,C ¤
D; that is, there is no need to communicate information between different communication
components in order to calculate the control actions.

(3) There exists a positive definite matrix Pƒ D diag
�
PƒC

�
C2N=ƒ that satisfies

xTNPƒxN D
X

C2N=ƒ
xTCP

ƒ
C xC >

X
j2N

1X
nD0

`j .n/, (4)

when the overall system is controlled by uN D KƒxN , and the initial state is xN .0/ D xN .
Note that Pƒ provides us with an upper bound of the cost-to-infinity of the centralized system
in closed loop with the controller uN DKƒxN .

Remark
These assumptions imply that for each network topology considered, there exists a linear feedback
Kƒ adapted to its communicational constraints that stabilizes the overall system and a matrix Pƒ,
also adapted to the communicational constraints, that provides both an upper bound on the cost-
to-go and a Lyapunov function f .xN / D xTNPƒxN of the closed-loop system. Hence, network
topologies for which these matrices do not exist will not be taken into account.

Remark
The ultimate goal of the third assumption is to provide a criterion to choose the most appropriate
network topology. Notice that other different criteria could be used. For example, the expected cost
of the evolution of the closed-loop system with eachKƒ during a certain number of time steps could
be used for this purpose as well. Hence, the third assumption is not strictly necessary.

Based on these assumptions, it is possible to define the function r .ƒ, xN / as follows:

r .ƒ, xN /D x
T
NPƒxN C �cjƒj, 8ƒ� L, (5)

where jƒj stands for the cardinality of ƒ and � for the number of time steps ahead in which the
communicational costs are taken into account. This function will be used to decide what network
topology should be used by minimizing it over ƒ� L.

Next, we introduce the proposed algorithm:

Algorithm 1
Let T > 1 be an integer number of sample times. At each sample time k,

(1) a. If k is a multiple of T , ƒ D L and all the agents broadcast their state so that the func-
tion r.ƒ, xN / can be used to calculate the new optimal network mode ƒ for the next T time
samples.
b. Otherwise, each agent sends his state only to the members of his communication component.

§Throughout the paper, we will drop the time dependence in order to simplify the notation.
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(2) Each agent uses the state information available at its communication component to update
its control actions. Notice that this implies that each communication component uses a linear
feedback KƒC .

Remark
The state broadcast is necessary because a cooperative decision from a global point of view has to be
made. This procedure can be seen as players deciding to cooperate by forming a series of bilateral
agreements among themselves. Each bilateral cooperative agreement corresponds to the activation
of the link that joins both players. Thus, in order to determine what links should be enabled, it is nec-
essary that agents communicate their state to their neighbors. For this reason, we assume that there
is a state broadcast, which is a much faster procedure than waiting for a negotiation on the individual
agreements. Consequently, it is necessary that the network allows all the agents to communicate at
least when all the links are enabled. Otherwise, there would be agents that would be always iso-
lated, and their respective control problem should be treated exclusively from a decentralized point
of view.

Remark
The set of points CRƒ for which a network mode ƒ is dominant can be calculated as

CRƒ D ¹xjr.ƒ, xN /6 r.� , xN /,8� � Lº.

It is trivial to show that the boundaries of the dominance regions that correspond to this multi-agent
control scheme are defined by quadratics that depend on the upper bound matrices Pƒ and number
of links jƒj of each network mode.

Remark
The proposed control scheme behaves naturally as a fault tolerant control policy with respect to
failures in the links. In case that a communication link is broken, the corresponding network topolo-
gies in which the link is involved are discarded, and the remaining network topologies still allow to
control the overall system.

Remark
The procedure to choose the best network topology requires to assign a value to each coalition of
links (network topology). Hence, by definition, a cooperative game is built in order to choose the
best network topology; that is, the core of our scheme is a cooperative game. This idea together with
its application to calculate the relevance of the agents and the links will be discussed in the next
section.

3.1. Controller design procedure

In this section, we present a method to design the matrices Kƒ and Pƒ for the different network
topologies defined by ƒ.

Theorem 1
Let ƒ � L be a set of active links in a multi-agent control system. The dynamics of the whole
system are given by AN D .Aij /i ,j2N and BN D .Bij /i ,j2N , and its stage cost is defined by
QN D diag.Qi /i2N and RN D diag.Ri /i2N . If there exist matrices Wƒ D W T

ƒ D .Wij /i ,j2N ,
whereWij 2Rqi�qj , and Yƒ D .Yij /i ,j2N , where Yij 2Rri�qj , such that the following constraints
are satisfied 2

666664

Wƒ WƒA
T
N C Y

T
ƒB

T
N WƒQ

1=2
N Y T

ƒR
1=2
N

ANWƒCBNYƒ Wƒ 0 0

Q
1=2
N Wƒ 0 I 0

R
1=2
N Yƒ 0 0 I

3
777775
> 0, (6a)
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Wij D 0,Yij D 0 8i , j 2N ,C 2N=ƒ such that i 2 C , j … C , (6b)

then matrices Pƒ D W �1ƒ and Kƒ D YƒW
�1
ƒ satisfy (4) and all the communication constraints

imposed by the network mode ƒ and stabilize the centralized closed-loop system.

Proof
Applying iteratively backwards the Schur’s complement to the LMI (6a) and taking into account the
proposed variable change, it can be seen that if (6a) is satisfied, then the following inequality holds

.AN CBNKƒ/
T P .AN CBNKƒ/�PƒCQN CK

T
ƒRNKƒ 6 0. (7)

Pre- and post-multiplying, respectively, by xTN and xN and taking into account that

xN .kC 1/D ANxN .k/CBNKƒxN .k/,

and X
j2N

`j .xj .k//D xN .k/
TQNxN .k/C xN .k/

TKT
ƒRNKƒxN .k/,

we obtain the following inequality:

xN .kC 1/
TPƒxN .kC 1/� xN .k/

TPƒxN .k/C
X
j2N

`j .xj .k//6 0.

A telescope summation of this inequality from t D k to infinity leads us to

xN .k/
TPƒxN .k/>

1X
nDk

X
j2N

lj .xj .n//.

Stability and (4) follow. The constraints (6b) guarantee that Kƒ and Pƒ satisfy the communication
restrictions of the network mode ƒ. For simplicity, let us rearrange the states of the subsystems
in order to write Pƒ as Pƒ D diag.PC /C2N=ƒ and Kƒ as Kƒ D diag.KC /C2N=ƒ. Given
that the inverse of a block diagonal matrix is another block diagonal matrix in which the origi-
nal blocks are inverted, that is, Wƒ D P�1ƒ D diag

�
P�1C

�
C2N=ƒ, it can be concluded that (6b)

implies that Pƒij D 0 with i 2 C , j … C . Likewise, given that Yƒ D KƒWƒ, it is easy to see
that Yƒ D diag

�
KCP

�1
C

�
C2N=ƒ. Thus, (6b) is also equivalent to make Kij D 0,8i , j such that

i 2 C , j … C . �

Remark
In general, the proposed design methods cannot be applied to multi-agent systems with a high num-
ber of agents. The number of LMIs that have to be solved grows exponentially with the number of
links as there are 2jLj different possible network topologies. Even when all the LMIs are solved off-
line, this number can be too high for some applications. Nevertheless, this number can be reduced
by discarding the network topologies because they do not make sense. Anyhow, it is clear that it is
necessary to develop new methods to relax the computational requirements that limit the application
of the results of the paper to multi-agent systems with a high number of agents.

Remark
Notice that the proposed LMI can be used as well in the case where a set of stabilizing controllers
Kƒ is given. In that case, the LMI provides us with the corresponding Pƒ matrices.

Remark
The previous LMI can be solved while maximizing the trace of Wƒ in order to minimize the trace
of Pƒ and in order to improve the bound of the cost-to-go.

Copyright © 2013 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2014; 35:592–608
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3.2. Stability properties

It is well known that switching between different stable plant dynamics can result in an unstable
system [29]. Thus, it is necessary to study the stability of the proposed control strategy taking into
account the possible switchings between the different network topologies.

Theorem 2
Let a multi-agent system be controlled by the control strategy described in Algorithm 1. If matrices
Kƒ and Pƒ, which correspond to the different network topologies defined byƒ, have been obtained
according to Theorem 1, then the closed-loop system is asymptotically stable.

Proof
The stability proof is based on the fact that r.ƒ.k/, xN .k// is a decreasing function with a
lower bound for the state trajectories of the system in closed loop with the proposed controller.
Let ƒ.0/ and xN .0/ be, respectively, the network topology and the state of the overall sys-
tem at time k D 0. A bound of the cost-to-go of the closed-loop system at k D 0 is given
by xTN .0/Pƒ.0/xN .0/. As a result of Theorem 1, we know that the cost-to-go of the closed-
loop system controlled by the linear feedback Kƒ.0/ decreases with time as long as the network
topology does not change. Next, let us suppose that at time k D k1, there is a switch of the net-
work topology. According to Algorithm 1, this happens only if there exists a network topology
ƒ.k1/ such that r.ƒ.0/, xN .k1// > r.ƒ.k1/, xN .k1//; that is, xTN .k1/Pƒ.0/xN .k1/C �cjƒ.0/j>
xTN .k1/Pƒ.k1/xN .k1/C�cjƒ.k1/j. Again, according to Theorem 1, we know that after the switch-
ing, the cost-to-go xTN .k/Pƒ.k1/xN .k/ decreases with time. If we apply recursively this argument,

it can be concluded that r.ƒ.k/, xN .k// decreases with k. Consequently, there must be a kn that
satisfies r.ƒ.kn/, xN .kn// D jƒ.kn/j, which happens iff the state of the overall system is at the
origin. At this point, the topology switching condition r.ƒ.kn/, xN .k// > r.ƒ.k/, xN .k// could
only be satisfied for k > kn by the network topology with the least communicational costs, say
ƒmin, assuming ƒ.kn/¤ƒmin. Once ƒmin is implemented, the function r.ƒ.k/, xN .k// reaches a
constant value because the communication cost of each mode is not state dependent. �

4. AN ANALYSIS OF THE RELEVANCE OF LINKS AND AGENTS

In this section, we deal with the second contribution of the paper: the application of game theoretical
tools to find out what links and agents are more important. In particular, we use cooperative game
theory, which is focused on situations of mutual interaction between a set of players that can com-
mit themselves to follow common binding strategies, and whose goal is to study which coalitions
of players should be expected and how to distribute the costs or benefits derived from cooperation
among them.

A cooperative transferable utility game is a pair .P , v/ where P is the set of players and v is the
characteristic function that assigns a worth to each of the possible coalitions S � P of players with
v.;/ D 0. The function v.S/ measures the costs or benefits that the coalition S obtains when it
reaches the common goal without the assistance of the rest of the players. In case that S D P , the
term grand coalition is used.

In this work, the key to connect the fields of control and the cooperative game theory is to inter-
pret (5) as the characteristic function of a cooperative game in which L is the set of players. That is,
each network topology corresponds to a coalition of links, and (5) is used to obtain its value. In this
way, the same optimization procedure used to choose the most appropriate network topology allows
us to define the so-called link game [21]. Notice that the idea of considering the links that define the
network as the players of a cooperative game is well-known in a game theoretical framework [21].

Remark
Following [21], and taking into account the third assumption , (5) can be written as

r .ƒ/D
X

C2N=ƒ
v.C /C �c jƒj ,

Copyright © 2013 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2014; 35:592–608
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where the state dependence of the characteristic function has been omitted for simplicity. As it can
be seen, the grand coalition is divided into its communication components because of the network
topology defined byƒ, and its worth is the sum of the values of the corresponding components plus
the cost of the links used by ƒ. Notice that this decomposition is possible because of the way in
which Pƒ is designed.

Remark
The link game is not really a game because if we take the decentralized network topology, that
is, ƒDC D ; (isolated subsystems), then we have r .ƒDC / ¤ 0. This problem is solved by mod-
ifying the characteristic function v by the zero normalization, that is, redefining the link game as
r .ƒ/D r .ƒ/�r .ƒDC /. Finally, notice that ifƒDC corresponds to an unstable closed-loop system,
the problem would have to be reformulated by unifying some subsystems.

4.1. Link analysis

In cooperative game theory, the distribution of the costs or benefits among the players is based on
the use of payoff rules, which are mathematical tools that provide a payoff vector oD .oi /i2P 2RP

that specifies the benefit or cost that each player may reasonably expect from the game. As our char-
acteristic function is based on the control and communicational costs associated to each coalition of
links, a payoff rule will give us the corresponding cost of each link. In general, useful links will be
associated to lower costs in the payoff rule. In this work, we will use the Shapley value [22], which
assigns to the game .ƒ, v/ the vector � .ƒ, v/ with

�l .ƒ, v/D
X

S�ƒŸ¹lº

jS jŠ .jƒj � jS j � 1/Š

jƒjŠ
.v .S [ ¹lº/� v.S//

for each link l 2ƒ.

Remark
The interpretation of the Shapley value in this context is the following: Once a new link l is enabled,
it joins to the coalition of current active links S . Hence, it must receive a payoff equal to its contri-
bution, that is, v.S [ ¹lº/� v.S//. Given that S is not known a priori, the Shapley value averages
this payoff over all the possible coalitions of links S that link l could join to.

The Shapley value satisfies also some interesting properties in our context:

(1) Linearity. The Shapley value is a linear function. Hence, a zero normalization of the charac-
teristic function only modifies the Shapley value by adding the same constant value to each of
its components.

(2) Efficiency. The Shapley value is an allocation of the total cost in the network. In other words, if
we add up the value assigned to each link, then we have the value corresponding to the grand
coalition.

(3) Dummy link. If a link does not have any influence in the network, then it has payoff zero;
that is, if l 2 L verifies r .ƒ/ D r .ƒŸl/ for all ƒ containing l , then its Shapley value is
�l .ƒ, r/D 0.

(4) Symmetric links. If two links always produce the same costs in the system, then they have the
same relevance. That is, if l , l 0 2 L satisfy r .ƒŸl/ D r .ƒŸl 0/ for all ƒ containing l , l 0,
then �l .ƒ, r/D �l 0 .ƒ, r/.

It is important to stress that the Shapley value provides us with a way to know exactly how
to distribute the control and communicational costs between the links at a given state xN . This
information is very useful, for example, to identify which links of the system are more important.
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Remark
Notice that the same problem solved to choose the best network topology is used to construct a
cooperative game whose payoff vector provides us with an indication of the relevance of the links.
This information can be useful for different purposes. For example, let us assume that a multi-agent
system stays at a certain region of the state space and several links fail and must be disabled. The
Shapley value could then be used to determine which links should be repaired first according to their
expected contribution to the overall cost.

4.2. Agent analysis

An analysis by agents from the link game is obtained in [21] for communication structures. The
position value obtains a payoff vector for the agents using the Shapley value of the link game. The
rationale behind this allocation rule is that both agents in a link should obtain equal revenue from it.
The position value of this situation is defined as the vector in RN with coordinates

�i .ƒ/D
1

2

X
l2ƒi

�l .ƒ, r/ ,

for each i 2 N and where ƒi is the set of links being used by agent i . This allocation rule is the
only one that satisfies the following properties in our context:

(1) Efficiency by components. Agents only pay for link costs in their corresponding communica-
tion components. This is, if C 2 N=ƒ, then

P
i2C �i .ƒ/ D r .ƒC /, where ƒC represents

the network topology that connects only the agents of C .
(2) Balanced total threats. A threat of an agent towards another agent is the payoff difference for

the second if the first switches off one his links in the network. Balanced total threats state that
the total threat of an agent towards another one is equal to the reverse total threat. This means
that if i , j 2N , thenX

l2L0
i

�
�j .ƒ/� �j .ƒŸl/

�
D
X
l2L0

j

Œ�i .ƒ/� �i .ƒŸl/� .

Remark
Because of the zero normalization of the game, we do not obtain the real payoff vector of the
agents with the position value. Following [30], the payoff for each agent is really the sum of
his revenue using the position value plus its corresponding cost when the network topology ƒDC

is implemented.

Remark
It is possible to apply other payoff rules that are focused on the agents and not on the links. For
example, Myerson [15] proposed to use a point game to calculate the payoff of the agents. While
this approach may seem more straightforward, it demands strange assumptions regarding the behav-
ior of the agents outside a coalition. In particular, it may not make sense in a control context to
assume that the agents outside of a given coalition do not implement control actions at all, which is
necessary to build the characteristic function of the agent game.

5. SIMULATION RESULTS

In this section, we use the system shown in Figure 1 as an academic example to illustrate the
techniques proposed in the paper. It consists of four agents, represented by boxes and arabic
numbers (N D ¹1, 2, 3, 4º), and four links, represented by arrows and roman numbers (L D
¹I , II , III , IV º). As there are four links, there are 16 possible network topologies that have been
numbered from 0 to 15. A link is enabled in the topologies whose numbers appear next to it in
Figure 1. For example, in mode 0, no link is enabled, and in mode 5, links I and II are enabled.
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Figure 1. Links enabled in each mode.

Modes 11 to 15 have been omitted in the figure and appear in the legend. They correspond to net-
work topologies that provide full connectivity (three or four links enabled), which allows the agents
to have full state information. All these five cases have been grouped in mode number 11 for the
purposes of this example. The matrices that define the subsystem dynamics are the following:

A11 D

�
1 0.8
0 0.7

�
A22 D

�
1 0.6
0 0.7

�
A33 D

�
1 0.9
0 0.8

�
A44 D

�
1 0.8
0 0.5

�
Aij D

�
0 0

0 0

�
i ¤ j

Bi i D

�
0

1

�
Bij D

�
0

0.15

�
i ¤ j , (8)

where xi 2R2 and ui 2R are, respectively, the states and the input of each subsystem i 2N . The
stage costs `i of all the subsystems are defined by matrices Qi D diag.1, 1/, Ri D 1 with i 2N .

5.1. Distributed control scheme

For each possible topology, a different LMI problem designed according to Theorem 1 has been
solved to obtain the corresponding matricesKƒ and Pƒ using MATLAB’s LMI toolbox (The Math-
Works, Inc. Natick, Massachusetts USA). For example, for mode 4, which corresponds to the case
in which agents 1 and 3 communicate and coordinate their actions, the resulting matrices are

KT
4 D

2
6666666664

�0.25 0 0.02 0

�0.53 0 0.06 0

0 �0.26 0 0

0 �0.45 0 0

0.01 0 �0.23 0

0.05 0 �0.63 0

0 0 0 �0.27
0 0 0 �0.43

3
7777777775

,
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Figure 2. (a) Modes (´-axis) as a function of x1 for x2 D x3 D x4 D 0 and (b) modes (colors) as a function
of x1 for x2 D x3 D x4 D 0.

P4 D

2
6666666664

4.56 5 0 0 �0.36 �1.1 0 0

5 9.61 0 0 �0.8 �2.48 0 0

0 0 5.48 5.14 0 0 0 0

0 0 5.14 8.34 0 0 0 0

�0.36 �0.8 0 0 4.17 5.08 0 0

�1.1 �2.48 0 0 5.08 11.69 0 0

0 0 0 0 0 0 5.37 5.44
0 0 0 0 0 0 5.44 8.40

3
7777777775

.

It can be seen that Kƒ and Pƒ satisfy the communication constraints of mode 4.
Once matrices Kƒ and Pƒ for each ƒ � L are obtained, it is possible to determine the optimal

topology for a given state. Moreover, the state space can be partitioned in regions associated to dif-
ferent modes. In order to visualize the boundaries of these regions, we restrict our attention to the
changes in the state x1 while the rest of subsystems states are set at the origin. The communication
cost is set to c D 0.5, and the parameter � is set to � D 1. In Figure 2(a) and (b), it is shown how for
values of x1 far from the origin it is better to apply a centralized mode. As state x1 becomes closer
to the origin, the recommended mode is number 7, which means that the cooperation of agents 1, 2,
and 3 is recommended. When x1 becomes closer, then mode number 4 is applied; only agents 1 and
3 have to cooperate. Finally, as x1 is around the origin, mode 0 is used; that is, all agents can work
in a decentralized manner.

We next present a simulation of the proposed control scheme performed with T D 3; that is, each
three sample times the network topology is revised. The initial state of this simulations is

x1.0/D

�
2

1.8

�
x2.0/D

�
0

0

�
x3.0/D

�
0

0

�
x4.0/D

�
0

0

�
.

Figures 3 and 4 show the evolution of the system states and inputs, respectively, as a function
of time. Note that whenever an agent is not at the origin, it disturbs the rest of the agents from
their equilibrium point. Figure 5 shows the different network modes active during the simulation. In
Figure 6, the cumulated cost of the coalitional multi-agent algorithm is compared with the cumulated
cost of the centralized controller. The total cumulated cost is defined as

kX
tD0

0
@X
j2N

`j .k/C cjƒ.k/j

1
A . (9)

The additional communicational cost produced by the network mode choice explains the higher
cost during the first steps. Then, as the system is closer to the origin, the advantages of the change of
network mode can be seen. These advantages become even clearer in Figure 7, where a comparison
between the centralized controller and the switching one is made taking into account only the con-
trol costs; that is, the communicational costs are not considered. In this figure, it can be seen how
the proposed controller has almost the same cumulated cost with that of the centralized controller,
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Figure 4. Input trajectories.

even when the network mode that is equivalent to a centralized controller is hardly used, as it is
shown in Figure 5. It can also be seen that the decentralized control provides the worst closed-loop
performance.

Finally, we show in Figure 8 the expected additional control cost in parts per unit, which is given
by the following index:

I.k/D
jxN .k/

TPƒ.k/xN .k/� xN .k/
TPLQRxN .k/j

xN .k/TPLQRxN .k/
.

In a linear system, the optimal linear feedback is the linear quadratic regulator (LQR). If this
feedback is used, the cost-to-go of the closed-loop system is given by xN .k/TPLQRxN .k/. Note
that in this case, the cost-to-go is exact. Consequently, the index I.k/ gives us a bound on the addi-
tional control effort that will be required if the linear feedback Kƒ.k/ is applied during the rest of
the simulation.
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Figure 8. Bound on the additional control effort in parts per unit at each time step.

Remark
Notice that the index I.k/ assumes that the linear feedback Kƒ.k/ does not change in the future. In
case that this is a problem, the bound Imax Dmax

ƒ.k/
I.k/ can be used.

5.2. Link analysis

Using the matrices Pƒ, the link game can be constructed for a given state xN in order to analyze
which links are more relevant. Note that each coalition of links corresponds to a network topology.
For example, if the state is

x1 D

�
4

3.6

�
x2 D

�
2.1
�3

�
x3 D

�
0.4
0.8

�
x4 D

�
0

0

�
, (10)

the corresponding characteristic function after its zero normalization is

r.;/D 0 r.I /D�13.26
r.II /D�20.68 r.III /D�20.53
r.IV /D�77.34 r.I , II /D�38.74
r.I , III /D�23.19 r.I , IV /D�81.98
r.II , III /D�48.12 r.II , IV /D�70.15
r.III , IV /D�77.31 r.I , II , III /D�86.32
r.I , II , IV /D�86.32 r.I , III , IV /D�86.32
r.II , III , IV /D�86.32 r.I , II , III , IV /D�85.82.

These values show that the optimal network topology defined by ƒ at this state is any of the four
composed by three links. The Shapley value for this game is

�.L, r/D
�
�10.58 �15.24 �13.79 �46.20

�
.

This payoff vector distributes the costs of the grand coalition between the links. The higher value
a link has, the less useful for the system it is. For example, the link IV , the one that connects
agents 1 and 3, has the lowest value. This result makes sense because r.IV / provides a much lower
cost than any other network topology with only one link enabled. Notice also that only the two-links
topologies in which IV is involved provide a good value. Likewise, ƒ D ¹IV º provides almost
the same value as that of other topologies with full communication (i.e., with three links enabled).
Hence, II , III , and IV deserve a much lower payoff because their contribution is not so crucial
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for the overall system. What makes these links less critical at this particular state? Links II and
III involve the only agent already at the origin and hence contribute less to the global objective.
Finally, link I has the highest value because agents 1 and 2 have little to gain with the cooperation
because agent 2 has a negative state that requires a considerably different type of actuation.

This example stands out from the benefits of merging cooperative game theory and control theory.
The Shapley value synthesizes in a single vector many information related to the relevance of the
links in the network. As we have seen, the same conclusion is supported from a control theory per-
spective (IV is associated with good values of the cost-to-go, agent 4 is at the origin, the coupling
between 1 and 3 makes the cooperation difficult at this state, . . . ). For this reason, we claim that the
Shapley value is a valuable tool in this context, which provides us with quick information regarding
the network structure.

5.3. Agent analysis

If we calculate the position value of the link game, the following vector is obtained

�.ƒ/D
�
�28.39 �12.91 �29.99 �14.51

�
.

In the position value, each agent receives half the value of each of its links. Notice that a link
with a good value implies that the cooperation between the two agents it connects is important
from a global perspective. For this reason, the agents with the best values are critical to achieve the
global objective with the best possible cost. In this example, agents 1 and 3 form the link with the
highest value (IV ) and therefore have the best values. On the other hand, agents 2 and 4 receive a
worse payoff because their cooperation is not critical at this state. Finally, notice that the sum of the
components adds up exactly the value that the grand coalition has assigned in the game. Thus, the
position value also provides us with a possible allocation vector to distribute the profits/costs from
cooperation.

6. CONCLUSIONS

The contribution of the paper is twofold. In the first place, we have proposed a multi-agent control
scheme, which dynamically switches the network topology to optimize both the control performance
and the communicational burden, together with its corresponding design method and closed-loop
stability proof. In the second place, the paper provides a novel connection between the coalitional
game theory and control theory, which is not straightforward even when these fields may seem very
related to each other. In particular, a link game is built using the same optimization procedure that
the aforementioned control scheme uses to choose the best network topology. The Shapley value of
this game is proposed as a tool to quickly determine the relevance of the links and the agents in the
multi-agent control problem. In this sense, we believe that this work may be a good starting point to
transpose more results from a cooperative game theory into a control theoretical context. Neverthe-
less, we admit that our proposal has some shortcomings that are not easy to address. Specifically, the
number of LMIs that have to be solved may be too big for systems with a high number of agents, and
it is necessary to develop and strengthen much more the connection between the game theory and
the control. Future research work would include the analysis of other solution concepts and game
theoretical properties in control applications, the evolution of the proposed control scheme towards
a truly distributed implementation, and the enhancement of the current formulation to deal with the
use of local model predictive controllers at subsystem level.
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