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Distributed model predictive control based on a cooperative game
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SUMMARY

In this work we propose a distributed model predictive control scheme based on a cooperative game
in which two different agents communicate in order to find a solution to the problem of controlling
two constrained linear systems coupled through the inputs. We assume that each agent only has partial
information of the model and the state of the system. In the proposed scheme, the agents communicate
twice each sampling time in order to share enough information to take a cooperative decision. We provide
sufficient conditions that guarantee practical stability of the closed-loop system as well as an optimization-
based procedure to design the controller so that these conditions are satisfied. The theoretical results and
the design procedure are illustrated using two different examples. Copyright � 2010 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Model predictive control (MPC) is an optimization-based control strategy that has been successfully
applied to process control, specially to constrained multivariable systems exhibiting dead times
[1]. At each sampling time, a finite-horizon optimal control problem based on the model of the
system is solved. Only the first control move of the optimal solution is applied and the rest of the
sequence is discarded repeating the procedure when a new measurement is available (the so-called
receding horizon scheme). In many cases, MPC cannot be applied to large-scale systems due to the
computational requirements or to the impossibility of obtaining a centralized model of the whole
system. Typical examples of large-scale systems are transportation systems such as traffic, water
or power networks [2]. In addition, there is an increasing interest in networked control systems,
where dedicated local control networks can be augmented with additional networked (wired and/or
wireless) actuator/sensor devices which have become cheap and easy-to-install [3, 4].

Most large-scale and networked control systems are based on a decentralized architecture; that
is, the system is divided into several subsystems, each controlled by a different agent that does
not share information with the rest. Each of the agents implements an MPC based on a reduced
model of the system and on partial state information, which in general results in an optimization
problem with a lower computational burden. Figures 1 and 2 show a centralized and a decentralized
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Figure 1. Centralized MPC scheme.
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Figure 2. Decentralized MPC scheme.
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Figure 3. Distributed MPC scheme.

MPC control scheme for two subsystems coupled through the inputs. For example, in [5], a MPC
algorithm was proposed under the main assumptions that the system is nonlinear, discrete-time
and no information is exchanged between local controllers. The stability of this class of systems,
from an input-to-state stability point of view, was studied in [6].

While this paradigm to process control has been successful, there is an increasing interest in
developing distributed model predictive control (DMPC) schemes, where agents share information
in order to improve closed-loop performance, robustness and fault-tolerance. See Figure 3 for
an example of this control scheme. The performance of the closed-loop system depends on the
decisions that all the agents take; hence, cooperation and communication policies become very
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important issues. In this context, several distributed MPC schemes have been proposed in the
literature that deal with the coordination of separate MPC controllers that communicate in order
to obtain optimal input trajectories in a distributed manner; see [7, 8] for reviews of results in
this area. In [9], sufficient conditions that guarantee stability of a class of distributed controllers
are given. In [10], basic collaboration algorithms are provided with an extensive list of conditions
to ensure convergence and stability. In [11], the problem of distributed control of dynamically
coupled nonlinear systems that are subject to decoupled constraints was considered. In [12, 13],
the effect of the coupling was modeled as a bounded disturbance compensated using a robust MPC
formulation. In [14] distributed MPC of decoupled systems (a class of systems of relevance in
the framework of multi-agents systems) was studied. Several works in the literature assume that
each agent has access to the model of the full system. For example, in [15], it was proven that
through multiple communications between the distributed controllers and using system-wide control
objective functions, stability of the closed-loop system can be guaranteed. In [16, 17] a decentralized
control architecture for nonlinear systems with continuous and asynchronous measurements was
presented. Following up on this work, in [18] a distributed MPC method for the design of networked
control systems based on Lyapunov-based MPC was presented. In both cases, each agent had
access to the full system model. However, sometimes it is not possible to obtain a model that
describes a system globally or even if it is possible, it cannot be computed in a reasonable time
or its very expensive, for example, in large-scale systems.

Motivated by these issues, in this paper we propose a DMPC algorithm for two agents based on
game theory in which two different agents communicate in order to find a solution to the problem
of controlling two constrained linear systems coupled through the inputs. We assume that each
agent only has partial information of the model and the state of the system. Game theory is a
theoretical framework that allows one to study the problem of cooperation of different agents with,
maybe, conflicting control goals, from a mathematical point of view [19, 20]. In the proposed
scheme, the coordination problem between the agents is reduced to a cooperative game where
they have to choose one out of three options, and only two communication cycles are needed to
reach an agreement. In addition, we provide sufficient conditions that guarantee practical stability
of the closed-loop system as well as an optimization-based procedure to design the controller so
that these conditions are satisfied. The theoretical results and the design procedure are illustrated
using two different examples.

2. PROBLEM FORMULATION

Consider the following class of distributed linear systems in which two subsystems coupled with
the neighbor subsystem through the inputs are defined

x1(t +1) = A1x1(t)+ B11u1(t)+ B12u2(t)

x2(t +1) = A2x2(t)+ B21u1(t)+ B22u2(t)
(1)

where xi ∈Rni , i =1,2, are the states of each subsystem and ui ∈Rmi , i =1,2, are the different
inputs. This class of systems is of relevance when identifications techniques are used to obtain the
transfer function of a process. We consider the following linear constraints in the state and the
inputs:

xi ∈Xi , ui ∈Ui , i =1,2

where Xi and Ui with i =1,2 are defined by a set of linear inequalities.
The control objective is to regulate the system to the origin while guaranteeing that the constraints

are satisfied. Centralized MPC solves a single optimization problem to decide the optimal sequences
of the inputs u1 and u2 with respect to a given performance index based on the full model of the
system and on the measurements from all the sensors, see Figure 1. In distributed and decentralized
schemes, two independent controllers (hereby denoted agents) are defined. Agent 1 has access to
the model of subsystem 1, its state x1 and decides the value of u1. On the other hand, agent 2
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has access to the model of subsystem 2, its state x2 and decides the value of u2. This implies
that neither agent has access to the full model or state information and that in order to find a
cooperative solution, they must communicate.

A control system is decentralized if there is no communication among the agents, see Figure 2.
This is the worst scenario from the performance point of view, because each agent has to cope alone
with its control problem with the risk that the absence of coordination in the agents’ decisions may
lead to the instability of the system. The control system is distributed if there is communication
between agents, see Figure 3. The degree of communication depends on the control problem and
the communication constraints. In this section, we present a distributed MPC controller based on
a cooperative game scheme between two different agents.

The objective of the DMPC scheme is to minimize a performance index that depends on the
future evolution of both states and inputs. At each sampling time, each agent solves a sequence
of reduced dimension optimization problems based on the model of its subsystem and assuming
a given fixed input trajectory for its neighbor. In order to describe the algorithm, we need to
introduce the following definitions:

• Ui : Future input sequence of agent i . These are the decision variables of the optimization
problems solved by both agents

U1 =

⎡
⎢⎢⎢⎢⎢⎣

u1,0

u1,1

...

u1,N−1

⎤
⎥⎥⎥⎥⎥⎦ , U2 =

⎡
⎢⎢⎢⎢⎢⎣

u2,0

u2,1

...

u2,N−1

⎤
⎥⎥⎥⎥⎥⎦

• ni : Neighboring agent of agent i ; that is, Un1 =U2 and Un2 =U1.
• Ji : Local cost function of agent i based on the predicted trajectories of its state defined as

follows:

J1(x1,U1,U2) =
N−1∑
k=0

L1(x1,k,u1,k)+ F1(x1,N )

J2(x2,U2,U1) =
N−1∑
k=0

L2(x2,k,u2,k)+ F2(x2,N )

where Li (·) and Fi (·) with i =1,2 are the stage and terminal cost functions, respectively,
defined as

Li (x,u) = xT Qi x +uT Ri u

Fi (x) = xT Pi x

with Qi , Pi>0, Ri�0. The prediction horizon is N . We use the notation xi,k to denote the
k-steps ahead future predicted state obtained from the initial state xi applying the input
trajectories defined by U1 and U2. Note that the second and third parameters of functions J1
and J2 are switched. This will allow us to simplify the algorithm definition.

• U d
i (t): Optimal input sequence of agent i at time t , denoted U d

i (t), defined as:

U d
1 (t)=

⎡
⎢⎢⎢⎢⎢⎢⎣

ud
1,0

ud
1,1

...

ud
1,N−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, U d
2 (t)=

⎡
⎢⎢⎢⎢⎢⎢⎣

ud
2,0

ud
2,1

...

ud
2,N−1

⎤
⎥⎥⎥⎥⎥⎥⎦

Copyright � 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2011; 32:153–176
DOI: 10.1002/oca



DISTRIBUTED MPC BASED ON A COOPERATIVE GAME 157

• U s
i (t): Shifted optimal input sequence of agent i obtained from the optimal input sequence

of agent i at time t −1, denoted U d
i (t −1), as follows:

U s
1 (t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ud
1,1

ud
1,2

...

ud
1,N−1

K1x1,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U s
2 (t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ud
2,1

ud
2,2

...

ud
2,N−1

K2x2,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where x1,N , x2,N are the N -steps ahead predicted state obtained from x1(t −1), x2(t −1),
respectively, applying the input trajectories U d

1 (t −1),U d
2 (t −1) and K1, K2 are two known

feedback gains.

The proposed DMPC algorithm is the following:

1. At time step t , each agent i receives its corresponding partial state measurement xi (t).
2. Each agent i minimizes Ji assuming that the neighbor keeps applying the optimal trajectory

evaluated at the previous time step; that is, Uni =U s
ni (t). Agent 1 solves the following

optimization problem:

U∗
1 (t)=argmin

U1
J1(x1(t),U1,U s

2 (t))

x1,k+1 = A1x1,k + B11u1,k + B12u2,k

x1,0 = x1(t)

x1,k ∈X1, k =0, . . . , N

u1,k ∈U1, k =0, . . . , N −1

x1,N ∈�1

(2)

Agent 2 solves the following optimization problem:

U∗
2 (t)=argmin

U2
J2(x2(t),U2,U s

1 (t))

x2,k+1 = A2x2,k + B22u2,k + B21u1,k

x2,0 = x2(t)

x2,k ∈X2,k =0, . . . N

u2,k ∈U2,k =0, . . . N −1

x2,N ∈�2

(3)

The sets �1 and �2 define the terminal region constraints that are necessary to prove closed-
loop practical stability following a terminal region/terminal cost approach. Note that in both
optimization problems the free variable is Ui while the neighbor input trajectory Uni is fixed.

3. Each agent i minimizes Ji optimizing the neighbor input assuming that it applies the input
trajectory computed in the previous optimization problem U∗

i . Agent 1 solves the following
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optimization problem:

Uw
2 (t)=argmin

U2
J1(x1(t),U∗

1 (t),U2)

x1,k+1 = A1x1,k + B11u1,k + B12u2,k

x1,0 = x1(t)

x1,k ∈X1, k =0, . . . , N

u2,k ∈U2, k =0, . . . , N −1

x1,N ∈�1

(4)

Agent 2 solves the following optimization problem:

Uw
1 (t)=argmin

U1
J2(x2(t),U∗

2 (t),U1)

x2,k+1 = A2x2,k + B22u2,k + B21u1,k

x2,0 = x2(t)

x2,k ∈X2, k =0, . . . , N

u1,k ∈U1, k =0, . . . , N −1

x2,N ∈�2

(5)

In this optimization problem, the free variable is Uni (the input trajectory Ui is fixed). Solving
this optimization problem, agent i defines an input trajectory for its neighbor that optimizes
its local cost function Ji .

4. Both agents communicate. Agent 1 sends U∗
1 (t) and Uw

2 (t) to agent 2 and receives U∗
2 (t)

and Uw
1 (t).

5. Each agent evaluates the local cost function Ji for each of the nine different possible combina-
tions of input trajectories; that is U1 ∈{U s

1 (t),Uw
1 (t),U∗

1 (t)} and U2 ∈{U s
2 (t),Uw

2 (t),U∗
2 (t)}.

6. Both agents communicate and share the information of the value of the local cost function
for each possible combination of input trajectories. In this step, both agents receive enough
information to take a cooperative decision.

7. Each agent applies the input trajectory that minimizes J = J1 + J2. Because both agents have
access to the same information after the second communication cycle, both agents choose
the same optimal input sets. We denote the chosen set of input trajectories as U d

1 (t),U d
2 (t).

8. The first input of each optimal sequence is applied and the procedure is repeated the next
sampling time.

From a game theory point of view, at each time step both agents are playing a cooperative game.
This game can be synthesized in strategic form by a 3×3 matrix. Each row represents one of the
three possible decisions of agent 1, and each column represents one of the three possible decisions
of agent 2. The cells contain the sum of the cost functions of both agents for a particular choice
of future inputs. At each time step, the option that yields a lower global cost is chosen. Note that
both agents share this information, hence, they both choose the same option. The nine possibilities
are shown in Table I.

Remark
At each sampling time, the controllers decide among three different options. The shifted optimal
input trajectory U s

i (t) keeps applying the latest optimal trajectory. The selfish option U∗
i (t) provides

the best improvement in Ji if the rest of the system’s manipulated variables stay unchanged. The
altruist option Uw

i (t) provides the best improvement for the neighbor agent cost function J2. In
this case, the agent i sacrifices its own welfare in order to improve the overall performance.
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Table I. Cost function table used for the decision making.

Us
2 (t) U∗

2 (t) Uw
2 (t)

Us
1 (t)

J1(x1(t),Us
1 (t),Us

2 (t))

+J2(x2(t),Us
2 (t),Us

1 (t))

J1(x1(t),Us
1 (t),U∗

2 (t))

+J2(x2(t),U∗
2 (t),Us

1 (t))

J1(x1(t),Us
1 (t),Uw

2 (t))

+J2(x2(t),Uw
2 (t),Us

1 (t))

U∗
1 (t)

J1(x1(t),U∗
1 (t),Us

2 (t))

+J2(x2(t),Us
2 (t),U∗

1 (t))

J1(x1(t),U∗
1 (t),U∗

2 (t))

+J2(x2(t),U∗
2 (t),U∗

1 (t))

J1(x1(t),U∗
1 (t),Uw

2 (t))

+J2(x2(t),Uw
2 (t),U∗

1 (t))

Uw
1 (t)

J1(x1(t),Uw
1 (t),Us

2 (t))

+J2(x2(t),Us
2 (t),Uw

1 (t))

J1(x1(t),Uw
1 (t),U∗

2 (t))

+J2(x2(t),U∗
2 (t),Uw

1 (t))

J1(x1(t),Uw
1 (t),Uw

2 (t))

+J2(x2(t),Uw
2 (t),Uw

1 (t))

Remark
Centralized MPC solves a single large-scale problem based on the model of the whole system, see
Figure 1. In the example section we will compare the performance of the proposed approach with
a centralized MPC controller based on the following optimization problem:

{U c
1 (t),U c

2 (t)}=arg min
U1,U2

J1(x1(t),U1,U2)+ J2(x1(t),U2,U1)

x1,k+1 = A1x1,k + B11u1,k + B12u2,k

x1,0 = x1(t)

x1,k ∈X1, k =0, . . . , N

u1,k ∈U1, k =0, . . . , N −1

x1,N ∈�1

x2,k+1 = A2x2,k + B22u2,k + B21u1,k

x2,0 = x2(t)

x2,k ∈X2, k =0, . . . , N

u2,k ∈U2, k =0, . . . , N −1

x2,N ∈�2

(6)

The centralized MPC provides, in general, the best closed-loop performance, but can only be
applied when it is possible to control the system with a single controller that has access to the full
model and state of the same.

Remark
In general, the minimum number of communication steps needed to implement a cooperative
control scheme is two. In the first step each agent informs of its intentions to its neighbors and
during the second it can confirm if it accepts its neighbors’ intentions. In the best case, an agreement
can be achieved in the second step, but in general an iterative procedure will be needed to reach
an agreement.

Remark
The proposed controller scheme is cooperative from a game theory point of view because each
agent chooses the solution that optimizes a cost function that depends on both subsystems, not
only on the future trajectories of its subsystem. If the decision taken does not depend on a global
performance index, the solution is not cooperative. In the simulation section, we will compare the
proposed distributed controller with a distributed scheme in which the two agents communicate,
but do not take a cooperative decision. They iterate until an agreement is obtained. In this case,
the solution is a Nash equilibrium [15] of the multi-objective optimization problem defined by the
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cost functions of both agents. At each iteration, agent 1 solves the following optimization problem:

Ul+1
1 =argmin

U1
J1(x1,U1,Ul

2)

x1,k+1 = A1x1,k + B11u1,k + B12u2,k

x1,0 = x1

x1,k ∈X1, k =0, . . . , N

u1,k ∈U1, k =0, . . . , N −1

x1,N ∈�1

(7)

and agent 2 solves the following optimization problem:

Ul+1
2 =argmin

U2
J2(x2,U2,Ul

1)

x2,k+1 = A2x2,k + B22u2,k + B21u1,k

x2,0 = x2

x2,k ∈X2, k =0, . . . , N

u2,k ∈U2, k =0, . . . , N −1

x2,N ∈�2

(8)

with U 0
1 =U s

1 and U 0
2 =U s

2 ; that is, the initial guess is given by the shifted trajectory. An agreement
is reached when the difference between the proposed control vector by each agent at one iteration
and its value at the previous iteration is below a threshold. This implies that they do not share
information about the utility of each decision, they reach an agreement when neither of them
can improve, hence reaching a Nash equilibrium. In the example, we will compare the proposed
controller with different controllers based on this distributed scheme, each one carrying out a
fixed number of iterations, to demonstrate that the proposed cooperative scheme provides a better
performance with a lower number of iterations.

Remark
Although the option chosen by the algorithm is the Pareto optimum of the game that both agents
are playing, in general, it is not a Pareto optimum of the multi-objective optimization problem
defined by the cost functions J1 and J2.

Remark
The proposed scheme can be extended to deal with N agents, however, in order to build a global
cost table to take a cooperative decision, the complexity grows exponentially. In order to reduce
the complexity, the structure of the system may be exploited taking into account that an input may
not affect all the outputs. Also, in general, not all the possible cooperation options are employed
with the same frequency, hence, it is possible to reduce further the complexity by not taking into
account the less frequent options.

Remark
In the proposed algorithm both agents can operate in parallel; that is, the agents can compute U∗

i
and Uw

i simultaneously (steps 2 and 3).

3. STABILITY PROPERTIES

Controlling a system between two independent agents may lead to an unstable system. The resulting
closed-loop system is a multiprocess system and studying the stability of this class of systems is
in general a difficult task. Following a terminal region/terminal constraint approach [21, 22], in
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this section we provide sufficient conditions that guarantee practical stability of the closed-loop
system as well as an optimization-based procedure to design the controller so that these conditions
are satisfied. This result is stated in the following theorem:

Theorem 1
Assume that there exist linear feedbacks u1 = K1x1 and u2 = K2x2 such that the following condi-
tions hold:

F1((A1 + B11K1)x1 + B12K2x2)− F1(x1)+L1(x1, K1x1)−d1�0 ∀x2 ∈�2 (9a)

F2((A2 + B22K2)x2 + B21K1x1)− F1(x2)+L1(x2, K2x2)−d2�0 ∀x1 ∈�1 (9b)

x1 ∈�1 → (A1 + B11K1)x1 + B12K2x2 ∈�1 ∀x2 ∈�2 (9c)

x2 ∈�2 → (A2 + B22K2)x2 + B21K1x1 ∈�2 ∀x1 ∈�1 (9d)

K1x1 ∈U1 ∀x1 ∈�1 (9e)

K2x2 ∈U2 ∀x2 ∈�2 (9f)

�1 ∈X1 (9g)

�2 ∈X2 (9h)

Then, if at t =0, U s
1 (0),U s

2 (0) are given such that Problems (2) and (3) are feasible for x1,0 =
x1(0), x2,0 = x2(0),U1 =U s

1 (0) and U2 =U s
2 (0), then the proposed algorithm is feasible for all time

steps t�0 and system (1) in closed-loop with the proposed distributed MPC controller is ultimately
bounded in a region that contains the origin in its interior.

Proof
The proof consists of two parts. We first prove recursive feasibility of Problems (2) and (3) if at time
t , U s

1 (t),U s
2 (t) are given such that (2) and (3) are feasible for x1,0 = x1(t), x2,0 = x2(t),U1 =U s

1 (t)
and U2 =U s

2 (t). Then we prove that, under the stated assumptions,

J (t)= J1(x1(t),U d
1 (t),U d

2 (t))+ J2(x2(t),U d
2 (t),U d

1 (t))

is a decreasing sequence of values with a lower bound. This implies that system (1) in closed-loop
with the proposed distributed MPC controller is ultimately bounded in a region that contains the
origin in its interior.

Part 1. We will prove this part by recursion. First, we prove that if the state and input trajectories
obtained from x1(t −1) and x2(t −1) applying U d

1 (t −1) and U d
2 (t −1) satisfy all the constraints

of Problems (2) and (3), then U d
1 (t) and U d

2 (t) also satisfy all the constraints. Recalling step 5 of
the proposed algorithm, to prove this statement it is sufficient to prove that there exists at least a
pair of input trajectories that satisfy all the constraints. To this end, we will prove that U s

1 (t),U s
2 (t)

provide a feasible solution for x1(t) and x2(t). Note that, in general, it is not possible to guarantee
that any of the other options are feasible.

Taking into account that by definition U d
1 (t −1) and U d

1 (t −1) satisfy the constraints of Problems
(2) and (3), the following statements hold:

x1,k ∈X1, k =0, . . . , N

ud
1,k ∈U1, k =0, . . . , N −1

x1,N ∈�1

x2,k ∈X2, k =0, . . . , N

ud
2,k ∈U2, k =0, . . . , N −1

x2,N ∈�2

Copyright � 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2011; 32:153–176
DOI: 10.1002/oca
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where x1,k, x2,k are the k-steps ahead predicted state obtained from x1(t −1), x2(t −1), respectively,
applying the input trajectories U d

1 (t −1),U d
2 (t −1) defined by ud

1,k,ud
2,k with k =0, . . . , N −1.

At time step t −1, the first input of the chosen trajectories U d
1 (t −1),U d

2 (t −1) is applied; that
is, u1(t −1)=ud

1,0 and u2(t −1)=ud
2,0. This implies that

x1(t)= A1x1(t −1)+ B11u1(t −1)+ B12u2(t −1)= A1x1,0 + B11ud
1,0 + B12ud

2,0 = x1,1.

Taking into account the definitions of U s
1 (t) and U s

2 (t), it can be proved that the k-steps ahead
predicted states obtained from x1(t), x2(t), respectively, applying the input trajectories U s

1 (t),U s
2 (t)

satisfy all the constraints from k =0 to N −1. Moreover, as

x1,N ∈�1, x2,N ∈�2

it holds that

(A1 + B11K1)x1,N + B12K2x2,N ∈�1

(A2 + B22K2)x2,N + B21K1x1,N ∈�2

and hence all the constraints of Problems (2) and (3) are satisfied which implies that U s
1 (t),U s

2 (t)
and hence U d

1 (t),U d
2 (t) provide a feasible solution for x1(t) and x2(t). Taking into account that by

assumption, U s
1 (0),U s

2 (0) satisfy all the constraints for x1(0) and x2(0) and using the above result
recursively, the statement of this part is proved.

Part 2. In this part we will prove that

J1(x1(t),U s
1 (t),U s

2 (t))+ J2(x2(t),U s
2 (t),U s

1 (t))�J (t −1)+d1+d2

where

J (t −1)= J1(x1(t −1),U d
1 (t −1),U d

2 (t −1))+ J2(x2(t −1),U d
2 (t −1),U d

1 (t −1)).

Taking into account the definitions of U d
1 (t −1) and U s

1 (t) it follows that

J1(x1(t),U s
1 (t),U s

2 (t))− J1(x1(t −1),U d
1 (t −1),U d

2 (t −1))

is equal to

F1((A1 + B11K1)x1,N + B12K2x2,N )− F1(x1,N )+L1(x1,N , K1x1,N )−L1(x1,0, K1x1,0)

As L1(x1,0, K1x1,0)�0 and taking into account (9a) and (9b), that x1,N ∈�1 and that x2,N ∈�2 it
follows that

J1(x1(t),U s
1 (t),U s

2 (t))− J1(x1(t −1),U d
1 (t −1),U d

2 (t −1))−d1�0

Following the same steps for J2 we obtain that

J2(x2(t),U s
2 (t),U s

1 (t))− J2(x2(t −1),U d
2 (t −1),U d

1 (t −1))−d2�0

and hence

J1(x1(t),U s
1 (t),U s

2 (t))+ J2(x2(t),U s
2 (t),U s

1 (t))�J (t −1)+d1+d2

As the proposed algorithm chooses U d
1 (t),U d

2 (t) as the pair of input trajectories that yield the
minimum cost, it is easy to see that

J (t)�J (t −1)+d1+d2

Following standard Lyapunov arguments and taking into account that recursive feasibility is guar-
anteed (see the first part of the proof), it is proved that system (1) in closed-loop with the proposed
controller is ultimately bounded in a region that contains the origin in its interior. �
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3.1. Design procedure

In the previous section, we have provided sufficient conditions to guarantee that the system in
closed-loop with the proposed distributed MPC scheme is practically stable. In general, designing
the controller parameters so that these conditions are satisfied is a hard problem because the design
constraints are coupled; for example, the constraints that define the invariant set �1 depend on
the set �2 and viceversa. For centralized MPC controllers, there are various methods described in
the literature on how to design a stabilizing local controller, terminal cost function and terminal
region [21–23] (for example, the local controller and the terminal cost can be obtained solving a
LQR problem). These results however cannot be applied to the distributed case. In this section,
we present an optimization-based procedure to find local controllers K1, K2, matrices P1, P2 and
regions �1, �2 such that (9a) holds for a given system.

The procedure determines first matrices K1, K2, P1 and P2 such that (9a) and (9b) hold for any
given sets �1 and �2 solving a linear matrix inequality (LMI) optimization problem. Once the local
feedbacks K1 and K2 are fixed, the invariant sets �1 and �2 are obtained. Note that constants d1
and d2 are determined a posteriori, once the local feedbacks, terminal costs and terminal regions
are fixed.

From the point of view of each agent, its neighbor’s input can be viewed as a disturbance. This
allows us to use well-known tools from control of linear uncertain systems in order to determine a
local controller such that a given degree of robustness is guaranteed. In [24–26] several methods
to solve this class of problems are presented. In particular, constraint (9a) can be transformed into
a LMI and solved using standard techniques, moreover, is equivalent to designing an H-infinity
controller for subsystem 1 assuming that u2 is the disturbance [26]. The same technique can be
followed to design K2 and P2. The following theorem defines a LMI constraint that only depends on
the system matrices that guarantee that there exist K1, K2, P1 and P2 such that (9a) and (9b) hold.

Theorem 2
Consider system (1). If there exist matrices Wi ,Yi and a constant �i such that the following
inequality holds: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

�i I 0 BT
i,ni 0 0

∗ Wi Wi AT
ii +Y T

i BT
ii Wi Q1/2

i Y T
i R1/2

i

∗ ∗ Wi 0 0

∗ ∗ ∗ I 0

∗ ∗ ∗ ∗ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

>0 (10)

then (9a) (or (9b), depending on the agent) is satisfied for Pi =W −1
i , Ki =Yi W

−1
i , and

di =�i max
x∈�ni

(Knix)TKnix

Proof
In [26] it is proved that if (10) holds, then the following constraint is satisfied:

Fi ((Ai + BiiKi )xi + Bi,niv)− Fi (xi )+Li (xi , Ki xi )−�iv
Tv�0 ∀v (11)

It follows that (9a) (or (9b), depending on the agent) holds for

di =�i max
x∈�ni

(Knix)TKnix
�

Once the local controllers and the terminal cost functions are fixed, in order to design a distributed
MPC scheme that satisfies the assumptions of Theorem 1, one needs to find sets �1,�2 such that
(9c)–(9g) hold. In general this is a difficult problem because each of the sets depends on the other.
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The size of the terminal region for agent 1 is determined by the magnitude of the disturbances
induced by its neighbor agent 2 and viceversa. We provide next an optimization-based procedure
to solve this problem. In order to present the algorithm we need the following definitions.

Definition 1
Given the following discrete-time linear system subject to bounded additive uncertainties:

x+ = Ax + Bu+ Dw

with w∈W subject to constraints in the state and the input x ∈X,u ∈U and a linear feedback
u = K x ; a set � is said to be a robust positive invariant set for the system if the following
constraints hold:

x ∈�→ (A+ BK )x + BK x ∈� ∀w∈W

K x ∈U

�∈X

Given system matrices A, B, D, K and the sets X,U,W, there exist several methods to find a
set � that satisfies these constraints, see, for example, [27] for a procedure to find the maximal
robust positive invariant and [28] for a procedure to find an approximation of the minimal robust
positive invariant. We denote �(A, B, D, K ,X,U,W) the corresponding maximal robust positive
invariant set.

Taking into account that the input of the neighbor agent can be considered as an unknown
bounded disturbance, in order to decouple the computation of the sets �1 and �2, we use the
following result based on finding a robust positive invariant set for each subsystem:

Theorem 2
Given constants �1 ∈ (0,1] and �2 ∈ (0,1], if the sets defined as

�1 = �(A1, B11, B12,X1, K1,�1U1,�2U2)

�2 = �(A2, B22, B21,X2, K2,�2U2,�1U1)

are not empty, then constraints (9c) to (9g) are satisfied.

Proof
The theorem is proved taking into account the definition of the operator � and that �1U1 ⊆U1
and �2U2 ⊆U2. �

The main idea is that to determine the invariant sets both agents limit their inputs by a factor
�i ∈ (0,1] with i =1,2, hence, the other agent can find the maximal robust positive invariant set
with respect to a known bounded disturbance. For example, agent 1 finds the maximal robust
positive invariant with respect to a disturbance bounded in �2U2 assuming that its input is bounded
in �1U1. Agent 2 does the same. Note that these sets may be empty depending on the value of �1
and �2. If both sets exists, then they satisfy the stability constraints. In general, an infinite number
of possible values of �1 and �2 such that both sets are non-empty may exist. In order to choose
one, we propose to solve the following optimization problem to maximize the feasibility region of
the distributed MPC controller:

max
�1∈(0,1],�2∈(0,1]

f (�1 ×�2)

�1 =�(A1, B11, B12, K1,X1,�1U1,�2U2)

�2 =�(A2, B22, B21, K2,X2,�2U2,�1U1)

(12)

where f (·) is a measure of the size of a polyhedron (for example, its Chebyshev radius).
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Once matrices K1, K2, P1, P2 and the sets �1 and �2 are determined, constants d1 and d2 can be
calculated in order to obtain an estimation of the set in which the closed-loop system is ultimately
bounded.

Remark
Theorem 1 guarantees that the closed-loop system is ultimately bounded in a closed region that
contains the origin, however, taking into account that the local controller guarantees that each
subsystem is input-to-state stable [29] with respect to the input of the neighbor subsystem, asymp-
totic stability can be proved under some additional assumptions regarding the decrease rate of the
norm of the input with respect to the norm of the state as it approaches the origin.

4. EXAMPLES

In this section the theoretical results and the design procedure are illustrated using two different
examples. The first example is focused on the controller design procedure. The second controller
shows the application of the proposed approach to a supply chain problem. The simulations
presented in this paper were performed using Matlab in a computer equipped with a 2.2 GHz Core
2 duo processor and 3 GB of RAM memory.

4.1. Two double integrators with coupled inputs

The system considered is composed of two double integrators with coupled inputs. The first
subsystem is defined by the following matrices:

A1 =
[

1 1

0 1

]
, B11 =

[
0

1

]
, B12 =

[
0

0.4

]

and the second subsystems is defined by:

A2 =
⎡
⎣1 1

0 1

⎤
⎦ , B22 =

[
0

1

]
, B21 =

[
0

1

]

The state and the input must satisfy the following constraints:

‖x1‖∞�1, ‖x2‖∞�2, |u1|�1, |u2|�1

The stage cost functions of each agent are defined by Qi = I and Ri =1 with i =1,2.
In order to determine the local controllers Ki and the corresponding weight matrices Pi that

define the terminal cost function, an LMI problem based on (10) that minimizes the constant �i is
solved for each agent. The following matrices are obtained:

Ki = [−0.2023 −0.9254], i =1,2

P1 =
[

32.6719 −17.5149

−17.5149 54.6366

]
, P2 =

[
38.4509 −5.6447

−5.6447 50.1686

]

The last step necessary to apply the proposed algorithm is to determine an invariant region for
the two agents, �1 and �2. Different approaches can be used to determine the values of �i that
maximize the size of the terminal regions. In this example, the terminal region was calculated for
a grid with different values of �i . The criterion to select the maximum invariant region was the
Chebyshev radius of the maximum ball inside the region. The results were �∗

1 =0.3 and �∗
2 =0.5.

Figure 4 shows a 3D plot of the Chebyshev radius as a function of �1 and �2.
The constants �1 and �2 define a trade-off between the degree of freedom that the agents have

in order to stabilize the system, and the size of the terminal region that determines the size of
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Figure 4. Chebyshev radius of the set �1 ×�2 for different values of �1 and �2.

(a) (b)

Figure 5. (a) Minimum robust invariant set for agent 1 as a function of �2 with �1 fixed and (b) maximum
robust invariant set for agent 2 as a function of �2 with �1 fixed.

the disturbance. As �2 increases, the set defined by K2x ∈�2U2 increases. This implies that the
set �2 =�(A2, B22, B21, K2,X2,�2U2,�1U1) becomes larger because the feasibility region of the
input is larger, while the set �1 =�(A1, B11, B12, K1,X1,�1U1,�2U2) has to take into account
bigger disturbances and may even cease to be defined (i.e. is empty). This happens when the
minimum positive robust invariant set for an uncertainty bounded in �2U2 is not included in
the feasibility region defined by X1 and K1x1 ∈�1U1. In Figure 5(a), inner approximations of the
minimum positive invariant sets of subsystem 1 for different values of �2 and a fixed value of �1
are shown. It can be seen that for large values of �2, the inner approximation is not contained in
the feasibility region of agent 2 (shown in dashed line), and hence, it is empty. In Figure 5(b) the
maximum positive invariant set for the same values of �1 and a fixed value of �2 are shown. It
can be seen how the size of the set always increases with �2.

In the first time step, a feasible solution for the centralized problem is used as the shifted
trajectories. Simulations results are shown in the next figures for the following initial conditions:

x1(0)=
[

0.7

−1

]
, x2(0)=

[
1

0.8

]
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Figure 6. State, input and global cost J (t) trajectories of the double integrators in
closed-loop with the proposed controller.

(a) (b)

Figure 7. (a) Agent 1 state evolution and (b) agent 2 state evolution.

Figure 6 shows the trajectories of the states of each agent, the inputs and the cost index.
Figures 7(a) and 7(b) show the state trajectories of each agent along with its corresponding
invariant set.

4.2. Application to a supply chain problem

In this section, we apply the proposed controller to a reduced version of the MIT beer game and
compare the performance with other control schemes. The MIT beer game was developed by Jay
Forrester in the late 1950s to show his management students how oscillations arise in a supply chain,
see, for example [30]. A supply chain is the set of structures and processes used by an organization
to provide a service or a good to a consumer. Typically three phenomena take place in supply
chains flows: oscillation, amplification and phase lag. Owing to material or informational delays
in the flows of the supply chain, they are prone to oscillation; that is, production and inventories
overshoot and undershoot the optimal levels. The magnitude of the fluctuations increases as they
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Figure 8. Reduced beer game.

propagate from the customer to the factory, with each upstream stage tending to lag behind the
downstream one in what is commonly known as the bullwhip effect.

The original MIT beer game is composed of four agents: retailer, wholesaler, distributor and
factory. Customers demand beer from the first one, who orders beer from the wholesaler, who
orders and receives beer from the distributor, who finally orders and receives orders from the
factory. There are shipping and processing delays at each stage. In [30], the original model and
all the difficulties of the corresponding stock management problem are explained in detail. This
problem has been widely used in the literature. In particular, in [31] it has been used as application
example for a DMPC scheme. The main difference between the proposed scheme and the DMPC
proposed in [31] is that in [31] the agents only communicated once and the only information
shared was the future input trajectories (a strategy similar to Iter 1).

In this paper, a reduced version of the problem with two agents is considered: the retailer and its
supplier, see Figure 8. There is no loss of generality since the structure of the game is regular: there
is a cascade of firms, each maintaining and controlling its stock. The continuous time equations
for the supplier are [30]:

ṡS(�) = oS
r (�−�2)−oR

r (�−�1)−bS(�)/tb

ȯS
u (�) = oS

r (�)−oS
r (�−�2)

ḃS(�) = oR
r (�)−oR

r (�−�1)−bS(�)/tb

(13)

The equations for the retailer are:

ṡR(�) = oR
r (�−�1 −�2)+bS(�−�2)/tb −dr (�−�1)−bR(�)/tb

ȯR
u (�) = oR

r (�)−oR
r (�−�1 −�2)−bS(�−�2)/tb

ḃR(�) = dR
r (�)−dR

r (�−�1)−bR(�)/tb

(14)

The super-scripts R, S denote variables from the retailer and the supplier, respectively. Variable
si (�) is the stock level; that is, the number of items available in that stage for shipment downstream.
The unfulfilled order of stock oi

u(�) stands for the number of ordered items that the agent is
waiting to receive from the upstream stage. The backlog of unfulfilled orders bi (�) accounts for
the number of committed items that have to be shipped to the downstream stage. The parameter tb
stands for the average backlog clearance time and introduces a first-order dynamic in the process.
The customer demand dR

r (�) represents how many items are demanded by the customers. From a
control point of view, it can be seen as a measurable perturbation that has to be rejected in order
to maintain the stock and the production at the desired levels. The information flows are assumed
to have no time delays and the material flows have a delay modeled by �2. A delay for processing
the received orders is introduced by means of the parameter �1. The manipulated variable at each
stage is the order rate oi

r ; that is, the number of items demanded upstream. The supplier demands
directly to the factory, which is modeled here as a pure delay. This model is different from other
supply chain models, in which each agent has to decide not only what to order downstream, but
what to send upstream. In this model of the MIT beer game, items sent to the upstream agent are
not a decision variable. They are fixed by the orders received. In particular, items sent and the
orders received are related through a first-order system with a delay; that is, the shipment rate li

r (�)
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is defined by the following equations:

lS
r (�) = oR

r (�−�1)+bS(�)/tb

lR
r (�) = dR

r (�−�1)+bR(�)/tb

These relations have already been taken into account in the model.
The model of the system is defined by the parameters �1, �2 and tb. In the simulations done

in this paper, we use �1 =2d , �2 =1d and tb =4d . In order to obtain a discrete time model of
the system, the continuous time model of Equations (14)–(13) is discretized with a sampling time
�=1d . Auxiliary states are introduced to take into account the delays. The resulting discrete time
linear model is the one used in all the simulations carried out in this section.

In addition, an integrator is added to the controller; that is, the MPC controller decides the
increment on the orders made downstream. This implies that the controller evaluates �oS

r and �oR
r

defined as follows:

�oS
r (t) = oS

r (t)−oS
r (t −1)

�oR
r (t) = oR

r (t)−oR
r (t −1)

The state of the model of the first subsystem (the retailer) is given by:

x1(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sR(t)

oR
u (t)

bR(t)

oR
r (t −1)

oR
r (t −2)

oR
r (t −3)

bS(t)

bS(t −1)

dr (t −1)

dr (t −2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The state of the model of the second subsystem (the supplier) is given by:

x2(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sS(t)

oS
u (t)

bS(t)

oS
r (t −1)

oR
r (t −1)

oR
r (t −2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It can be seen that both models share some information. In particular, the retailer model needs to
keep track of the unfulfilled orders of the supplier, while the supplier model needs to keep track
of the orders received of the retailer. The input of the first agent is u1 =�oR

r (t) and the input of
the second agent is u2 =�oS

r (t).
The control objective is to regulate the stock levels and the orders placed by both agents to a

desired value. The orders received by the retailer from the external demand forces him to send items
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upstream, and hence to lose stock. These orders can be seen as external disturbances that have to be
rejected. To this end, the retailer sends and order for more items downstream. These orders can be
seen as an external disturbance for the supplier, which in order to reject this disturbances generates
new items. The retailer’s stock has to be regulated to a reference value of rR

s (t). Analogously, the
supplier’s stock is regulated to a value rS

s (t). The reference signals for the orders are given by
rR

o (t) for the retailer and by rS
o (t) for the supplier. Note that in general, the orders references signal

should be chosen accordingly with the predicted demand.
To this end, we consider different MPC controllers based on the following cost functions:

J1 =
N−1∑
k=0

(rR
s,k −sR

k )2W R
s +(r R

o,k −oR
k )2W R

o +(�oR
k )2W R

�

J2 =
N−1∑
k=0

(rS
s,k −sS

k )2W S
s +(r S

o,k −oS
k )2W S

o +(�oS
k )2W S

�

where N is the prediction horizon, the subindex k denotes the k-steps predicted value of a signal and
W R

s ,W R
o ,W R

� ,W S
s ,W S

o ,W S
� are constant weight matrices that define the stage cost. It is important

to remark that no terminal cost function is considered in this example.
Note that in order to obtain predictions for the states of the retailer, an estimation of the future

demand is needed. We denote the estimated demand as d̂R
r (t). This signal may be different from

the actual demand dR
r (t) in a given simulation.

The following values were used for the controller parameters:

N =6, W R
s =30, W R

o =30, W R
� =1, W S

s =30, W S
o =30, W S

� =1 (15)

For these simulations we have considered that the stocks and orders must be non-negative.
The objective of this section is to compare the performance of different MPC schemes. To this

end, we have carried out a set of simulations in four different scenarios for each controller. The
first controller considered is the centralized MPC scheme defined by the optimization problem (6).
This controller decides both inputs with a single optimization problem based on the full model of
the system and the global cost function J = J1 + J2. In general, the centralized MPC provides the
best performance and has the higher computational burden. The second control scheme considered
is the proposed distributed MPC controller in which two different agents communicate to find
a cooperative solution. In addition, we have considered several controllers based on the iterative
controller defined by the optimization problems (7), (8). To avoid the case in which the agents
do not reach an agreement, a maximum number of iterations is fixed. Different controllers with a
maximum number of iterations of 1, 2, 5 and 10 have been considered. We denote these controllers
as Iter1, Iter2, Iter5 and Iter10, respectively. In the case of convergence in this bargaining process,
the agents reach a Nash solution from a game theory point of view. None of them consider the
cost function of the other agent. For any given input trajectory proposed by its neighbor, the
agent evaluated the best possible input for his performance index. By definition, in a situation
of equilibrium, this situation constitutes a Nash equilibrium. It is important to remark that in the
controller defined by a single iteration (Iter1), the agents do not reach an agreement. They just
advice each other about their predicted inputs. Each agent uses this information to estimate the
future behavior of the other one. This is not a cooperative scheme because agents do not have a
chance to bargain. From the point of view of each agent the other’s actions are simply measurable
disturbances.

In order to compare the performance of the controllers, four different scenarios have been taken
into account. Each scenario is defined by a different initial state, a different retailer demand, and
a different demand forecast. All the simulations are done with the discrete time model presented
before.

Scenario 1: Both agents begin with 250 items in stock. The demand of the system dR
r (t) is

defined in the following way: during the first 15 days its value is 70. After that, it is set to 130
during 10 days and finally it returns to its initial value for 70 days. The estimated demand d̂R

r (t)
is equal to the real demand.
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Table II. Results for scenario 1.

J Tsim

Centralized 3.6179e+006 1.4187
DMPC 4.9827e+006 0.8806
Iter1 2.1866e+007 0.5362
Iter2 5.6999e+006 0.7200
Iter5 5.8449e+006 1.7651
Iter10 4.1679e+006 2.2721

Table III. Results for scenario 2.

J Tsim

Centralized 4.3228e+006 1.44
DMPC 5.3558e+006 0.8890
Iter1 2.1921e+007 0.5008
Iter2 6.0941e+006 0.8771
Iter5 6.2743e+006 1.8354
Iter10 4.7223e+006 2.2581

Table IV. Results for scenario 3.

J Tsim

Centralized 5.9327e+006 1.427
DMPC 9.6698e+006 0.8265
Iter1 2.2047e+007 0.6887
Iter2 9.0370e+006 0.8287
Iter5 1.0595e+007 1.8209
Iter10 6.2798e+006 1.2073

Scenario 2: Same initial state and estimated demand of the first scenario. In this case, the real
demand differs from the estimated demand. At each time step, the real demand is obtained adding
a random variable with mean 0 and standard deviation of 15 to the estimated demand.

Scenario 3: Same initial state and real demand of the first scenario. In this case, the estimated
demand is supposed to be constant and equal to the latest demand received; that is, the instant
demand is extended in time as a forecast.

Scenario 4: Same real and estimated demands of the first scenario. The initial state is below the
reference. The retailer has an initial stock of 100 items while the supplier is out of stock.

The results obtained are shown in Tables II–V. In these tables, the total accumulated cost and
the total CPU time of each simulation is shown. The total CPU time includes not only the time
of solving the different optimization problems but also all the additional computations such as
evaluating the system model. In the simulations, the distributed schemes have not been implemented
in parallel, and hence the centralized and the distributed controllers have the same computational
power. The total simulation time provides an estimate of the computational burden of each of the
controllers, in particular, it shows that for this particular example the centralized problem has a
low computational burden and that the computational burden of the iterative controllers increases
as the maximum number of iterations increases. In addition, for scenario 1 figures are shown for
all the different controllers considered.

Some conclusions can be obtained from the preceding experiments. In general, the proposed
algorithm provides a performance of the same order of magnitude than the one provided by the
centralized MPC which, as expected, has the best results. Regarding the simulation time, it can be
seen that for this particular case, the CPU time needed to solve in parallel the sequence of low-
order optimization problems is very similar to the time needed to solve the large-scale problem.
With respect to the non-cooperative distributed MPC controllers, the proposed distributed scheme
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Table V. Results for scenario 4.

J Tsim

Centralized 7.2608e+006 1.55
DMPC 8.1302e+006 0.9521
Iter1 2.9982e+007 0.6116
Iter2 1.0397e+007 0.8542
Iter5 1.0444e+007 1.8621
Iter10 9.4679e+006 2.4107
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Figure 9. Centralized MPC closed-loop trajectories for scenario 1.

provides a better performance than Iter1, Iter2 and Iter5. The controller Iter10 provides a better
performance but needs more communication cycles in order to achieve an agreement. Even in this
case, the solution is still a Nash equilibrium, hence, there is no guarantee that it will provide a good
overall performance. Note that the iterative controllers’ results show that increasing the number
of iterations of the bargaining process does not guarantee an improvement in the performance. It
can be seen that Iter5 sometimes is worse than Iter2 from the performance point of view.

The simulations demonstrate that the proposed distributed scheme provides a good performance
with only two communication cycles because it obtains a cooperative solution; that is, the decision
is taken in order to optimize a global performance index. The iterative controllers do not take a
cooperative decision and this implies that, in general, the solutions provided are worst. This can
be clearly seen in Figures 9–14, which show the closed-loop trajectories of each of the controllers
considered for scenario 1. In this scenario, the centralized MPC is able to react in advance to
the demand peak, maintaining the stocks close to the references. The trajectories of the proposed
distributed MPC scheme show a larger deviation of the stocks from the references, however, these
trajectories do not present oscillations as the trajectories corresponding to Iter1, Iter2 and Iter5.
Oscillations are a common result of non-cooperative bargaining processes. In this scenario, Iter10
however provides a better response than the proposed DMPC, at the cost of a high computational
burden and a large number of communication steps.
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Figure 10. Proposed DMPC closed-loop trajectories for scenario 1.
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Figure 11. Iter1 closed-loop trajectories for scenario 1.
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Figure 12. Iter2 closed-loop trajectories for scenario 1.

0 10 20 30 40 50 60
100

200

300
Retailer

Stock
Stock reference

0 10 20 30 40 50 60
200

250
Supplier

Stock
Stock reference

0 10 20 30 40 50 60
0

100

200
Retailer

Items ordered
Extern demand

0 10 20 30 40 50 60
0

100

200
Supplier

Items ordered
Supplier demand

Figure 13. Iter5 closed-loop trajectories for scenario 1.
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Figure 14. Iter10 closed-loop trajectories for scenario 1.

5. CONCLUSIONS

In this work we have proposed a novel distributed MPC algorithm based on game theory for a class
of systems controlled by two agents. The proposed controller only needs two communication steps
in order to obtain a cooperative solution to the centralized optimization problem. Each agent solves
an optimization problem that only depends on its local model and partial state information. After
sharing information about the local cost, the agents choose the solution that yields the best global
performance among a set of suboptimal possibilities. The options are suboptimal because each
agent has an incomplete view of the system and they propose the best solutions from their point
of view. The proposed algorithm has low communication and computational burdens and provides
a feasible solution to the centralized problem. In addition, we provide sufficient conditions that
guarantee practical stability of the closed-loop system as well as an optimization-based procedure
to design the controller so that these conditions are satisfied.

ACKNOWLEDGEMENTS

Financial support from the European Commission, INFSO-ICT-223854 and MEC-Spain, DPI2008-05818,
is gratefully acknowledged.

REFERENCES

1. Camacho EF, Bordons C. Model Predictive Control in the Process Industry (2nd edn). Springer: London, England,
2004.

2. Negenborn RR, De Schutter B, Hellendoorn H. Multi-agent model predictive control of transportation networks.
Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control (ICNSC 2006),
Ft. Lauderdale, FL, 2006; 296–301.

3. Yang TC. Networked control systems: a brief survey. IEE Procedings—Control Theory and Applications 2006;
152:403–412.

Copyright � 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2011; 32:153–176
DOI: 10.1002/oca
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