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Summary

In this paper, a heuristic historian data-based predictive control strategy is pre-
sented and used to control a water distribution system simulated using the
EPANET software, in particular, the Richmond water distribution system. The
control actions are computed based on past historian data. The historian stores
closed-loop operation data of the process with different controllers used in the
past, which may not provide sufficient information for a precise system nor con-
troller identification. The proposed predictive controller computes the current
control actions as a weighted sum of past control actions so that an estimation
of the performance cost over a prediction horizon is minimized. Only a subset of
the past control actions in the historian close to the current state of the process
is considered in the current control computations to carry out a local lineariza-
tion. This predictive strategy is well suited to control applications of large and
complex processes for which it is difficult to carry out identification experiments
such as water distribution systems. In the application example, the trajectories
of a set of relay controllers are used through the proposed approach to take into
account pressure constraints and periodic references.
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1 INTRODUCTION

In optimal and model predictive control (MPC), the use of a model is a key concept. While there are many applications
in which obtaining a prediction model is not a problem using standard identification techniques,1 there are also large
and complex processes for which the task of identifying a good model can be very difficult. Moreover, in those cases, the
resulting model (if identified) may be too complex to be used with most techniques, although there are many different
strategies to simplify the problems such as linear-convex and linear-quadratic convex approximations2,3 or, more recently,
learning-based approximations (see the work of Karg and Lucia4 and references therein). This situation appears in the
control of large infrastructures such as water distribution networks in which simplified models are often used.5-7

Nowadays, there has been an increasing interest of the control community on developing controllers based on machine
learning techniques because of the recent theoretical and technological groundbreaking advances in this field. There are
several data-driven approaches in optimal control such as the work of Zhang et al8 in which a neural network is used to
infer a model which is used later in an approximate dynamic programming problem with a robustifying term. A similar
approach has been applied to water-gas shift reaction systems in the work of Wei and Liu.9 Other data-driven techniques
like J-learning and Q-learning have been applied to approximate dynamic programming in the work of Lee and Lee.10
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Data-based learning techniques have been applied to other aspects of optimal control such as predicting the evolution of
control targets.11 Furthermore, learning from data has been also used to improve optimal controllers in iterative learning
control schemes.12,13 All these works use the data, in different ways, in the solution of the corresponding approximate
dynamic programming problem. However, in this paper, we focus on applying machine learning techniques to MPC
without using a dynamic programming formulation.

In this setting, a widely used approach is to derive an explicit model from data to later use it in the controller. Regression
trees and ensemble learning have been used by Jain et al14 to obtain a prediction model from data. A major breakthrough
in system identification was the developing of subspace identification methods (see the works of Van Overschee and
De Moor15-17), which have also been used in the context of data-driven predictive control.18 A different technique used
by Canale et al19 based on nonlinear set membership,20 was used to obtain an approximate model with a bound on
the worst-case model error that can be used to infer closed-loop-stability properties. Prediction models are also inferred
from experimental data of inputs and outputs of the plant in the work of Limon et al.21 Prediction methods can also
return an interval obtained from historic input-output measurements that bounds the system output as in the work
of Bravo et al.22

A different approach is to completely avoid the model estimation phase. Favoreel et al23 used this approach to derive,
by means of matrix decompositions, an LQG control law directly from data. Model-free data-driven MPC has been pre-
sented by Piga et al,24 in which no model is explicitly obtained from data and a hierarchical structure with an inner linear
controller is used. Other strategy without explicit model was presented by Tanaskovic et al,25 where past data obtained
from the system are used off-line to guarantee a predictable closed-loop behavior, whereas on-line collected data is used
to adapt the controller.

Finally, a fourth approach would be the use of some form of machine learning technique to learn the controller directly
from data, like in the work of Fagiano and Novara26 where a l1-norm regularized learning algorithm based on convex
programming was presented, or to solve iteratively infinite horizon control problems by using approximate dynamic
programming27,28 or approximate Q-learning techniques29 in which the direct computation of the performance function
is avoided by using a suitable approximation.30

Most of these approaches assume that, although the model is unknown, appropriate data for identifying the system
dynamics or a specific control law is available, either from appropriate identification experiments or through the exten-
sive use of a simulator, which may not be possible for some applications. In this paper,* however, we do not assume that
the trajectories stored in the database have been chosen or designed to provide sufficient information for a precise identi-
fication of the system dynamics or the corresponding control law. This is the case when historian trajectories are available
from the closed-loop operation of the system under different conditions, controllers, and even control objectives. This
issue limits the applicability of standard identification procedures in which the quality of the information available greatly
affects the quality of the resulting identified models.

In this work, we take a different approach. Instead of first identifying a model and then find the best future input
trajectory based on this model, we limit the set of possible input trajectories to a convex combination of past trajectories
with an initial state close (in some sense) to the current state of the system. We will then use the information in the
database to estimate the performance of the chosen trajectory using a heuristic linear approximation based on a particular
extreme case of direct weight optimization methods31 that results in the solution of a quadratic programming problem (or
linear programming if only regulation around a set point is considered). This is a predictive control strategy in the sense
that it uses the future in the past to predict the future evolution of the process. Note that this concept is very general and it
does not impose almost any condition on the closed-loop trajectories stored in the database, although it would be logical
to consider only those that resulted in a good control performance.

The proposed control strategy can be applied to large processes, eg, water distribution systems. Water distribution sys-
tems pose control problems due to their size, diverse nature of the process, and manipulated variables and disturbance
rich operating conditions. Motivated by these issues, the proposed controller has been applied to the Richmond case
study32 using the EPANET software, assuming that the only historian available is obtained from a set of relay controllers.
Different scenarios are considered, including regulation, periodic reference tracking, and pressure constraints.

This paper is organized as follows. In Section 2, the problem formulation is presented. The controller formulation is
introduced in Section 3. The results of the application of the controller to the water distribution system case study are
shown in Section 4. This paper ends with some conclusions in Section 5.

*A preliminary version of this paper has been presented at the European Control Conference, Limassol, Cyprus, June 2018.
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2 PROBLEM FORMULATION

The system considered throughout this paper will be represented by a discrete-time invariant system

x(k + 1) = 𝑓 (x(k),u(k)), (1)

where x ⊂ ℝnx is the state, u ⊂ ℝnu is the input, and f is the unknown transition function.
A regulation problem is considered along this paper; thus, the control objective is to regulate the system to the origin

while minimizing the performance defined by a stage cost 𝓁(·, ·). Standard MPC33,34 is based on solving an optimal control
finite horizon problem in which the cost of a predicted trajectory of length N is minimized at each time step to obtain
an optimal control sequence that is applied in a receding horizon manner. In order to approximate an infinite horizon
problem, often, a terminal cost function F(·) is also considered, which leads to the finite horizon performance cost J ∶
ℝnx ×ℝnuN → ℝ:

J(x(k),U) =
N−1∑
i=0

𝓁(x(k + i|k),u(k + i|k)) + F(x(k + N|k)), (2)

where x(k + i|k) is the predicted state obtained applying the future input sequence u(k + i|k) with i = {0, … ,N − 1} from
the initial state x(k), 𝓁(·, ·) and F(·) are convex positive definite functions, N defines the prediction horizon, and

U =
⎡⎢⎢⎢⎣

u(k|k)
u(k + 1|k)

⋮
u(k + N − 1|k)

⎤⎥⎥⎥⎦ (3)

is the optimization variable.
Standard MPC solves an optimization problem based on the model. In this work, as the function that models the system

f is unknown, a database will be used to obtain a straightforward estimation of the cost J, which implicitly predict the
behavior of the system. The database stores different closed-loop trajectories. These trajectories contain the state and the
input trajectories of different controllers applied in the past. The information stored in the historian database is used to
generate a set of candidate trajectories of appropriate length. This set of candidates is built using all the sample times in the
historian database for which an N-step trajectory is available. Each candidate trajectory q is defined by its state and input
after i time steps, xq(i),uq(i) with i = 0, …N, where xq(0) is the initial state of the candidate trajectory and they satisfy

xq(i + 1) = 𝑓 (xq(i),uq(i)). (4)

We denote its corresponding input trajectory as

Uq =
⎡⎢⎢⎢⎣

uq(0)
uq(1)
⋮

uq(N − 1)

⎤⎥⎥⎥⎦ (5)

and its corresponding cost for the objective function is considered as

Jq =
N−1∑
i=0

𝓁(xq(i),uq(i)) + F(xq(k + N)). (6)

In this paper, we propose to use a control law derived from the control trajectories in the candidates set. Following a
receding horizon approach, at each sampling time, the control signal to be applied will be computed as a weighted sum
of the initial control signals of the candidates considered, ie,

u∗(k) =
∑

q
𝛽∗q uq(0), (7)

where the optimal values of the weights 𝛽q are chosen to minimize an estimation of J(x(k),
∑

𝛽qUq). The following section
discuss how to define this estimation and implement the proposed controller.
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3 CONTROLLER FORMULATION

This section presents the main contributions of the paper, which are based on using an approach closely related to direct
weight optimization to forecast the future performance cost, and the controller formulation itself, in which only a subset
of the past control actions in the historian are considered in the control computations to carry out a local linearization. The
proposed predictive controller computes the current control actions as a weighted sum of past control actions. In order
to minimize the computational burden and to provide good cost estimations based on local data, only a subset of the past
control actions in the historian are considered in current control computations. This subset is comprised of closed-loop
trajectories starting from an initial state close to the current state of the process.

In particular, at time k, we propose to choose the Q candidates with an initial state xq(0) closest to the current state x(k)
taking into account a given metric.† Once the Q candidate trajectories are obtained, the optimal control sequence will be
chosen among the convex combination of the control sequences of the candidate trajectories with an initial state equal to
x(k), ie, the optimization variables are the Q weights 𝛽q with q = 1, … ,Q such that

x(k) =
Q∑

q=1
𝛽qxq(0),

Q∑
q=1

𝛽q = 1,

𝛽q ≥ 0, ∀q ∈ {1, … ,Q}.

(8)

For a given choice of candidates weights 𝛽q, we consider the following estimation of its corresponding cost:

J
(

x(k),
∑

𝛽qUq

)
= J

(∑
𝛽qxq(0),

∑
𝛽qUq

)
≃
∑

𝛽qJq. (9)

This approach is related to direct weight optimization nonlinear identification methods.31 Direct weight optimization
methods are based on postulating an estimator that is linear in the observed outputs of the estimated function (in this
case the predicted cost) and then determining the weights in this estimation by direct optimization of a suitable chosen
criterion. Different criteria can be defined depending on the properties of the estimated function to take into account the
nonlinearities of the function by penalizing far away points and the effect of noise. In the proposed approach, we assume
that, for the set of Q closest candidates, the function can be approximated by a linear function and we neglect the effect
of noise. In practice, using local trajectories is similar to carrying out an online linearization of the dynamics around
the current state. Under these assumptions, (9) is a valid estimation of the cost for any particular choice of weights (see
remark 4 in the work of Roll et al31). The optimization is then carried out to optimize the expected predicted performance
as in standard MPC. Note that, because of the receding horizon implementation, the estimation of the future cost is
recalculated at each sampling time, reducing the effect of the prediction error through feedback.

Summing up, the proposed controller is based on solving the following linear programming optimization problem based
on minimizing the upper bound on the trajectory defined by the convex combination of the candidate trajectories that
start from the current state:

min
𝛽∈ℝQ

Q∑
q=1

𝛽qJq

s.t. x(k) =
Q∑

q=1
𝛽qxq(0),

Q∑
q=1

𝛽q = 1,

𝛽q ≥ 0, ∀q ∈ {1, … ,Q}.

(10)

†Candidates with the same distance value will be randomly selected if necessary so that only Q candidates are included in the set.
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FIGURE 1 Feasibility problem in ℝ2: left infeasible, right feasible [Colour figure can be viewed at wileyonlinelibrary.com]

Problem (10) is a linear programming problem that can be solved using off-the-shelf algorithms, even for large num-
ber of optimization variables. In the next section, in order to illustrate the proposed strategy, it is applied to control the
Richmond water distribution system.

Remark 1. We notice that, if J ∶ ℝnx × ℝnuN → ℝ is a convex function in ℝnx × ℝnuN , then, in view of Jensen's
inequality,35 we have

J
(

x(k),
∑

𝛽qUq

)
= J

(∑
𝛽qxq(0),

∑
𝛽qUq

)
≤

∑
𝛽qJq. (11)

Thus, the proposed approach, under the convexity assumption, minimizes an upper bound of the cost for the chosen
future input trajectory. Note that J is convex for linear systems and quadratic cost functions, which are widely used in
the MPC literature.

Remark 2. Although we have considered a state feedback setting, the proposed approach can also be used in an output
feedback setting in which the output measurements are stored in the database. In addition, constraints can be taken
into account using the weighted predicted state and input trajectories. In Section 4, we present an example in which
a constraint on an output of the system (the pressure at one of the demand nodes of the water drinking network) is
considered.

Remark 3. The cardinality of the candidate trajectories Q is important because larger values carry higher computa-
tional burdens. Moreover, a large number of candidates increases the distance from x(k) of the last candidate selected
with a local linearity loss (if the system were nonlinear). On the opposite side, smaller values of Q could produce
feasibility problems. Figure 1 shows the feasibility problem in ℝ2. On the left side, S3 is the subset contained in the
convex envelope formed by states xq(0) with Q = 3. It is shown that x(k) ∉ S3, so the optimization problem is infea-
sible. On the right side, S4 is the subset contained in the convex envelope formed by states xq(0) with Q = 4. In this
case, x(k) ∈ S4, so the minimization problem is feasible. The solution to feasibility problems could be to increase the
value of Q to find a convex envelope that contains x(k). However, sometimes this may not be possible because there is
not enough information in the database or because the current state is close to the system operating boundaries and
the trajectories in the database operate far from these boundaries. In these cases, a different solution has to be con-
sidered. In this paper, we propose to apply the uq(0) of the closest candidate. However, there are other options like
using the input corresponding to the nearest point of the convex envelope of the candidates or consider some form of
extrapolation procedure.

http://wileyonlinelibrary.com
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Remark 4. Hyperparameters of the trajectories stored in the data base are defined as additional information of the
controllers that generate these trajectories. Examples of hyperparameters are the tuning values of a PID controller,
reference and hysteresis of a relay controller or the prediction horizon, and the matrices that define the cost of a
MPC controller. Hyperparameters can be taken into account in the distance function, the cost function, or in the con-
straints of the optimization problem to improve the performance of the proposed approach. In Section 4, we present
an example in which the information of the reference of the controller of each trajectory stored in the database is used
as a hyperparameter in the proposed controller.

4 APPLICATION TO A WATER DISTRIBUTION SYSTEM

The Richmond water distribution system is a well-known case study32,36 that can be simulated using the EPANET
hydraulic simulation software.37 This case study describes a system that is a good candidate for the historian data based
predictive control strategy presented in this paper, which has also been used in a standard MPC framework.38 Although
the system is nonlinear and complex, it can be approximated by a linear water balance based model with sufficiently large
sampling times, in this case, 1 hour. Figure 2 shows the Richmond water distribution system diagram, which is composed
by six tanks, seven pumps, 41 nodes of which 11 are demand nodes, and 44 pipes of which eight are unidirectional pipes
and one source.

Note that, for a given tank, there are several demand nodes that withdraw water from that tank. Water is introduced
by the pumps from a single water source and demand nodes consume this water, lowering the levels in the tanks. The
control objective in this paper is to keep the water levels in each tank around a specified set-point, while satisfying the
demands. The state vector x is composed by the levels of the six tanks, ie, x ∈ ℝ6. Demands are considered disturbances,
modeled by the disturbance signal vector d ∈ ℝ11.

In order to attain the control objective, water flows are used as manipulated variables; thus, the input signal vector
u ∈ ℝ7 contains the water flows that have to be attained using each pump in the system. Note that, in the Richmond case
study (as in many water distribution systems), pumps are operated with an ON-OFF mode; thus, the necessity of a low
level switching logic that transform each real component of u into an equivalent logic sequence for each particular pump.
In this paper, discrete time intervals of 1 hour (k ∈ ℕ) and low-level switching logic intervals of 1

24
hours = 2.5 minutes

are considered. To minimize the number of pump switches, a duty cycle policy consisting on applying the control effort
in a single pulse is used.

FIGURE 2 Richmond water distribution network diagram [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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TABLE 1 Switching levels (in meters) of the relays of each of the controllers used to generate the data base

RbC 1 RbC 2 RbC 3 RbC 4
Pump Tank Level ON Level OFF Level ON Level OFF Level ON Level OFF Level ON Level OFF
u1 x1 2.3685 2.9799 2.4785 3.0899 1.5018 2.1132 1.9352 2.5466
u2 x1 3.0405 3.2513 3.1505 3.3613 2.1738 2.3846 2.6072 2.8180
u3 x1 2.8888 3.1126 2.9988 3.2226 2.0221 2.2459 2.4555 2.6793
u4 x2 3.2623 3.5789 3.3323 3.6489 2.5956 2.9122 2.9290 3.2456
u5 x3 0.7185 1.8850 0.8285 1.9950 0.5852 1.7517 0.6518 1.8183
u6 x4 1.5907 1.9708 1.7207 2.1008 1.2774 1.6575 1.4340 1.8141
u7 x6 1.7037 2.1095 1.7837 2.1895 0.7037 1.1095 1.2037 1.6095

x1r x2r x3r x4r x6r

RbC1 2.9403 3.4206 1.3018 1.7808 1.9066
RbC2 3.0503 3.4906 1.4118 1.9108 1.9866
RbC3 1.6403 2.4206 1.1018 1.3108 0.4066
RbC4 2.5069 3.0873 1.2351 1.6241 1.4066

TABLE 2 Set-points (in meters) of the controllers used to generate the data base

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6
Min. level 1.02 2.03 0.5 1.1 0.2 0.19
Max. level 3.37 3.65 2 2.11 2.69 2.19

TABLE 3 Maximum and minimum safety tank water
levels in Richmond system

It is assumed that the water demand is composed by a periodic signal with a random component, ie,

d(k) = dp(k) + dr(k), (12)

where dp ∈ ℝ11 is a set of periodic signals that satisfy dp(k) = dp(k + T) with T = 24 obtained from the demand profiles
used by Van Zyl et al32,36 and dr(k) is a set of random zero mean signals, which added to dp(k) result in a demand signal
with 5% of variation around dp(k).

The Richmond water distribution system has six tanks; however, because of the network structure, in order to maintain
the desired levels, Tank 5 is always full in normal operating conditions. For this reason, only the rest of the tanks are
considered for the purposes of computing the control signals. Note, however, that the EPANET simulation uses the whole
state information.

The cost function in these examples is the following tracking error penalty stage cost that only depend on x (ie, in these
examples l(x,u) = l(x)):

𝓁(x) = |xc − xr|22, (13)

where xc ∈ ℝ5 are the levels of the five tank levels considered of x and xr ∈ ℝ5 are their corresponding reference values.
Furthermore, the terminal cost is equal to the stage cost, ie, F(·) = 𝓁(·).

The database stores the closed-loop trajectories of four different controllers, each one based on a different set of relays,
denoted RbC1, RbC2, RbC3, and RbC4, respectively. Every pump is switched on and off depending on the level of the
tank that is directly downstream. Table 1 shows this relation and the switching on and off levels for every pump of each
controller.

Table 2 shows set-points values for each controller. The set-points are obtained as the middle point of the corresponding
pump switching on and off levels. In the case of tank 1, denoted as x1, which is the first component of x, the set-point is
the average of the three middle switching levels of pumps 1, 2, and 3, denoted as u1, u2, and u3 respectively.

For each controller, there are 100 trajectories stored in the data base, each one with 96 hours of closed-loop simulated
operation of the system. Each of the trajectories start with different random initial values of the tank levels that satisfy
the minimum and maximum safety constraints of Table 3. In addition, the head at the demand node four, denoted z(k), is
also included in the database. Head information will be used to include a soft constraint to limit the maximum pressure in
that particular demand node to demonstrate that historic data can be used to model complex, possibly nonlinear, outputs
and take them into account in the control decision. The amount of information stored in the database is equivalent to
4.38 years of historian information. Although a realistic size for a historian, the database is very small in relation to the
dimensionality of the problem, which is ℝ6, which could lead to identification problems.
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Using the information of these simulations, over 38 000 24-hour candidates trajectories are defined, for which at each
sampling time; only Q will be considered to formulate the controller. The choice of the number of candidates considered
depends mainly on the density and quality of the historian trajectories stored in the database. There is a trade-off between
complexity, feasibility, and relevance. Higher number of candidates in general avoid feasibility issues, but may take into
account candidates whose information is not relevant because its initial state is too far away from the current state leading
to lower quality cost estimations. In this example, a value of Q = 500 has been found to be appropriate in regard to the
aforementioned trade-off.

4.1 Example 1
The example is a closed-loop simulation of 120 hours with initial state

x(0) = [3, 2.44, 1.58, 1.5, 0.99, 1.51], (14)

and the reference used is

xr = [3.0503, 3.4906, 1.4118, 1.9108, 1.9866]. (15)

This reference is equal to the reference of one of the controllers used to create the database, in particular, the relay-based
controller 2 (RbC 2). In order to take into account the periodic nature of the demand, the distance function takes the
following form:

distq = ||x(k) − xq(0)||2𝜆 + 𝜆pΔq(k)2, (16)

where 𝜆 is a diagonal matrix given by

𝜆 = diag([ 1.0831 1 1.825 1.7299 1.6667 ]), (17)

and 𝜆p = 0.2. The term Δq(k) is the time difference, in hours, between the candidate initial time and the current time.
This distance function (16) takes into account the periodic nature of the demands of the system, penalizing candidates
trajectories that start at a different hour because the demand differs.

The optimization problem solved at each time instant is defined in (10) and the control input applied is calculated
as in (7). A standard linear programming solver can be used to obtain the solution as, in our case, linprog in Matlab.
Figure 3 shows the water levels in the six tanks of the Richmond system during the closed-loop simulation using EPANET.
Minimum, maximum, and reference levels are represented for each tank (in red-dashed lines and black-dashed lines,
respectively). Tank 5 is not controllable and there is not any reference signal in its level graphic.

The pump flows, in liters per second, can be observed in Figure 4. Notice that the solution obtained with the proposed
controller tends to a quasi-periodic behavior. Since demand signals periodicity produces periodic trajectories and control
action stored in the database when system is controlled with relay controllers, the convex combination of the control
actions in the database is almost periodic as well.

To evaluate the performance of the controller, it is necessary to take into account the periodic nature of the system. The
performance metric will be the summation of the closed-loop performance cost over a period of d(k) computed at each
hour of the simulation as

PC(x(k)) =
N∑

i=0
𝓁(x(k + i)), (18)

where x(k+i) are the values of the tank levels of the closed-loop simulation; 𝓁(·) is defined as in (13) and N = 24. Note that,
in this system, the instantaneous performance cost has no meaning, as it will go up and down as the periodic disturbance
changes. The summation of the closed-loop performance cost over a period is a sensible choice as it should converge to a
constant value when the closed-loop system reaches a quasi-steady state periodic trajectory, provided that the controller
is working fine. Note that the random part of d(k) has an impact on the behavior of PC(x(k)).

Figure 5 shows the evolution of PC(x(k)) for two of the relay-based controllers and the proposed strategy. The relay-based
controllers 3 and 4 are not represented because their performance costs are much higher. In particular, their mean costs
are 76.99 and 27.7, respectively, while the mean cost of the proposed historian data–based predictive control is 3.36.
The historian data–based predictive controller improves the controllers included in the database, although the perfor-
mance and behavior is similar to a relay controller.
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FIGURE 3 References (black dash) and closed-loop trajectories (blue solid) of the tank levels with the proposed controller. Maximum and
minimum physical-level constraints (red dash) are represented for each tank [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Closed-loop control actions for each pump with the proposed controller [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Performance cost comparison of the proposed
controller (JDbPC) and the relay-based controllers 1 and 2 (JRbC1 and
JRbC2) [Colour figure can be viewed at wileyonlinelibrary.com] Time (h)
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4.2 Example 2
In this example, the proposed strategy is applied taking into account the set-point value of each closed-loop trajec-
tory stored in the database. The reference of each relay-based controller is shown in Table 2. According to Remark 4,
which presents hyperparameters and the way to use them in the proposed strategy, this example focuses on applying the
hyperparameter information in both the distance and the cost function.

First, hyperparameters are used when building the subset of Q candidate trajectories. Defining xr
q as the set-point value

of candidate q, the distance function in (16) is modified, adding a term, which penalizes candidate trajectories whose
references are far from the reference of the problem xr, ie,

distq = ||x(k) − xq(0)||2𝜆 + 𝜆pΔq(k)2 + 𝜆r ‖‖xr − xr
q‖‖2

2 , (19)

where 𝜆r = 10 weighs the deviation between the current reference and the reference of the candidate.
Second, the cost function is also modified to take into account the hyperparameters. In the previous example, the stage

cost does not consider the particular target of the candidates. This can affect the set-point tracking capabilities of the
controller. One possibility is to add a constraint to optimization problem (10) to guarantee that the convex combination
of the candidates corresponding references xr

q is equal to the target reference of the predictive controller xr, ie,

Q∑
q=1

𝛽qxr
q = xr.

This constraint aims at taking into account, not only where a given trajectory is, but also where it is headed. However,
adding this constraint may compromise the feasibility of the optimization problem. For this reason, in this example,
we propose to add it as a soft constraint modifying the objective function. To this end, at each sampling time, the
historian-based controller solves the following optimization problem:

min
𝛽

Q∑
q=1

𝛽qJq + 𝜌r

||||||
||||||xr −

Q∑
q=1

𝛽qxr
q

||||||
||||||
2

2

s.t. x(k) =
Q∑

q=1
𝛽qxq(0),

Q∑
q=1

𝛽q = 1,

𝛽q ≥ 0, ∀q ∈ {1, … ,Q}.

(20)
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FIGURE 6 References (black dash) and closed-loop trajectories (blue solid) of the tank levels with the proposed controller using
hyperparameters [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Performance cost comparison with relay-based
controllers and historian predictive control with and without
hyperparameters [Colour figure can be viewed at
wileyonlinelibrary.com]

Any standard quadratic programming solver can be used as, in our case, quadprog in Matlab. Figure 6 shows the level
trajectories of the closed-loop simulation of the proposed control strategy using hyperparameters with weight 𝜌r = 1.
Figure 7 shows the closed-loop performance of the proposed controller with and without hyperparameters and the cost
of the two best relay-based controllers. It can be seen that the use of hyperparameters leads to better set-point regulation
and to a lower performance cost.
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FIGURE 8 Comparison of number of
candidates provided by each relay-based
(RBC) controller along the whole
simulation between proposed strategy
without hyperparameters (left side) and
with hyperparameters (right side) [Colour
figure can be viewed at
wileyonlinelibrary.com] Relay Group
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Figure 8 shows the number of candidates provided by each relay controller along the whole simulation for the proposed
controller with and without the use of the information provided by the hyperparameters.

Note that, in both cases, most candidates trajectories belong to relay-based controller 1 and 2 because their set-points
are close to the reference; in fact, relay-based controller 2 has the same reference and it can be seen that, when hyperpa-
rameters are considered, almost all candidates belong to this controller. Note also that, even if most of the trajectories are
of a single relay controller, the proposed strategy achieves a better performance cost.

4.3 Example 3
In this section, constraints are taken into account, in particular, a maximum average head constraint in demand node
four. Hydraulic head is a specific measurement of liquid pressure above a geodetic datum and it relates the energy in an
incompressible fluid to the height of an equivalent static column of the fluid. As mentioned before, the historian data
includes the average head in this node for all the trajectories, which we denote as z.

There exists a nonlinear relation between head and flow, which we can observe if we consider the head loss
Hazen-William formula39

z = 𝛾u1.852, (21)

where 𝛾 is a parameter calculated with the length of the pipe, the pipe roughness coefficient, and the inside pipe diameter.
Despite this nonlinear relation, the estimated average pressure sequence,

ẑk+i =
Q∑

q=1
𝛽qzq(i), (22)

provides a good approximation based on local data.
Head constraints are included in the optimization problem as soft constraints (slack variables) instead of hard con-

straints to eliminate feasibility issues caused by this sort of constraints. Note that these feasibility issues are related to the
high dimension of the state in relation to the database size in this example. Thus, for lower dimensional systems, it could
be possible to use hard constraints. The number of slack variables added to the optimization problem is equal to the pre-
diction horizon N to ensure that all the average heads in the estimated average head sequence, denoted as ẑ and obtained
as the convex combination of the candidate head sequences, satisfy this soft constraints.
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FIGURE 9 Comparison between the average head in demand
node 4 with and without constraints [Colour figure can be viewed at
wileyonlinelibrary.com]

Including constraints in z modifies the optimization problem (20) in the following form:

min
𝛽,𝜏

Q∑
q=1

𝛽qJq + 𝜌r

||||||
||||||xr −

Q∑
q=1

𝛽qxr
q

||||||
||||||
2

2

+ 𝜌z

N−1∑
i=0

(
𝜏2

i + 𝜏i
)

s.t. x(k) =
Q∑

q=1
𝛽qxq(0),

Q∑
q=1

𝛽q = 1,

𝛽q ≥ 0, ∀q ∈ {1, … ,Q},

zcons ≥

( Q∑
q=1

𝛽qzq(i)

)
− 𝜏i, ∀i ∈ {0, … ,N − 1},

𝜏i ≥ 0, ∀i ∈ {0, … ,N − 1},

(23)

where 𝜏 is a set of slack variables, which lets a small violation of the average head constraints; 𝜌z is the weight of the slack
variables with respect to the other terms; zcons are the average head constraint values; and zq(i) is the average head of the
qth candidate sequence at instant i.‡ Similar to problem (20), a standard quadratic programming solver can be used to
obtain the solution of (23).

The optimization problem solved tracks the same reference in level as in (15) and implement the proposed controller
with hyperparameters using a number of candidates Q = 500 and without hyperparameters. The value of the head con-
straints weight is 𝜌z = 105. For simplicity, head constraint is considered only in one demand node, ie, demand node 4,
and the average head constraint values in meters is

zcons = 187.3. (24)

Figure 9 shows a comparison between the average head in demand node 4 obtained with and without head average
constraints. In case of the proposed controller without constraints, the constraint in average head is clearly violated by the
optimal solution. When the controller takes into account this constraint, the optimal solution mostly satisfies it. Figure 10
shows the average head estimation signal error for the demand node 4, which is calculated as the difference between the
real average head, obtained by simulation, and the estimation of the average head, obtained as in (22). We can observe
that the error signal has approximately zero mean (0.21%).

‡Notice that, with the same slight abuse of the notation used before, we define the head of the qth candidate trajectory zq(i) as the ith row ahead average
head after the initial row nr of the candidate trajectory.
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FIGURE 10 Difference between the estimated average head and
the real average head of demand node 4 [Colour figure can be
viewed at wileyonlinelibrary.com] Time (h)
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TABLE 4 Amplitude and offset of the sinusoidal reference
signal of each controllable tank

Tank 1 Tank 2 Tank 3 Tank 4 Tank 6
Amplitude 1.41 1.07 0.31 0.6 1.58
Offset 2.3453 2.9556 1.2568 1.6108 1.1966

4.4 Example 4
In this section, we consider a set of periodic level reference signals instead of the constant signals used in the previous
examples. Typically, water distribution networks are controlled taking into account economic issues such as the tariff
pattern related to the electricity price. In the Richmond benchmark, the electricity costs considered had a different tariff
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FIGURE 11 Periodic reference for every tank (dashed black), closed-loop simulation with the proposed controller (blue), and with the
relay controller 4 (dashed-dotted yellow) [Colour figure can be viewed at wileyonlinelibrary.com]
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during day and night hours. In general, this leads to nonsteady level in the tanks, which fill during the night in which
pumping water is more economic, and discharge to satisfy the demands during the day. According to this idea and con-
sidering the period of the tariff pattern and demand signals, a sinusoidal signal of 24-hour period is taken into account
with its maximal at 3 a.m. and its minimal at 15 p.m. to build the reference signals for the tank levels. Table 4 shows the
amplitude and offset for every reference signal considered.

Figure 11 shows the level references considered and the closed-loop trajectories of the proposed controller, together
with that of the relay-based controller 4 (which provided the best performance of all the relay based-controllers). This
figure shows that the proposed controller provides a quasi-periodic closed-loop trajectory, which is almost in phase with
the reference, while, clearly, the relay-based trajectory (which is akin to the trajectories of the database) is not correlated.
This implies that the proposed strategy does not simply learn (or identify) the control law in the database, but, rather than
that, it uses the stored trajectories to fulfill as best as possible the current control objective, which can be different from
that used to build the database.

5 CONCLUSIONS

In this paper, we have proposed a heuristic data–based predictive controller based, optimizing an estimation of the perfor-
mance over a convex combination of past trajectories. This approach can be used in complex systems in which models or
enough data for identification are not available. The proposed approach is applied to a water distribution network, demon-
strating that it is able to consider different issues such as periodic level references and pressure constraints explicitly in
its formulation. Future works include the development of stabilizing designs and estimation error bounds.
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