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Abstract

This brief shows how a min–max MPC with bounded additive uncertainties and a quadratic cost function results in a piecewise affine and
continuous control law. Proofs based on properties of the cost function and the optimization problem are given. The boundaries of the regions
in which the state space can be partitioned are also treated. The results are illustrated by an example.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) is one of the control tech-
niques able to cope with both model uncertainties and con-
straints in an explicit way. There are different approaches for
modelling uncertainties. The approach considered here is that
of bounded additive or global uncertainties (Camacho & Bor-
dóns, 2004); this supposes that all uncertainties can be glob-
alized in a single vector which is added to the 1-step ahead
prediction equation. When bounded uncertainties are consid-
ered explicitly, it would seem that more robust control would
be obtained if the controller minimized the objective function
for the worst-case situation.

Min–max MPC (MMMPC) techniques have been used to
explicitly consider the effect of the uncertainty on the control
law (Campo & Morari, 1987; Casavola, Giannelli, & Mosca,
2000; Veres & Norton, 1993; Lee & Yu, 1997; Kim, Kwon, &
Lee, 1998). However, all of these have a great computational
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burden in common which limits the range of processes to which
they can be applied. When the cost function is based on 1 or
∞ norms the min–max problem can be efficiently solved us-
ing linear programming techniques (Allwright & Papavasilou,
1992). In other works (Kothare, Balakrishnan, & Morari, 1996;
Lu & Arkun, 2000), the computational burden is lessened by
minimizing an upper bound of the worst case instead of explic-
itly solving a min–max problem.

MMMPC controllers can be divided into two types: open-
loop and closed-loop min–max predictive controllers. In the
first type, predictions are computed in an open-loop manner (al-
though the resulting controller is a feedback controller). These
controllers are based on the solution of a single min–max prob-
lem optimizing a single control policy for all possible values
of the uncertainty. Closed-loop min–max predictive controllers
take into account that the control law is actually applied in a
feedback manner when computing the predictions. These con-
trollers employ different strategies such as nested min–max
problems (Bemporad, Borrelli, & Morari, 2003; Lee & Yu,
1997), optimization of multiple control policies (Kerrigan &
Maciejowski, 2004; Scokaert & Mayne, 1998), and, more re-
cently, feasibility constraints (Sakizlis, Kakalis, Dua, & Pis-
tikopoulos, 2004) when minimizing the nominal or expected
cost. Open-loop MMMPC is known to be very conservative,
whereas closed-loop MMMPC is known to suffer from a much
greater computational burden.
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Bemporad et al. (2003) have shown that both open-loop or
closed-loop MMMPC with ∞-norm (or 1-norm) have a piece-
wise affine (PWA) nature. This fact was deduced by the use of
multiparametric programming and it allows explicit solutions
of such control laws. In this brief we show that the constrained
MMMPC control law with a quadratic objective function is also
PWA and continuous. We provide proofs based mainly on the
properties of the cost function and on the optimization problem.
This result can be exploited to implement this type of control
law to processes with fast dynamics. The results presented in
the paper can be applied to open-loop prediction MMMPC or
to MMMPC using a semi-feedback strategy (Mayne, 2001). In
this, some kind of feedback is introduced into the predictions
because the system is pre-controlled using an inner feedback
gain. This technique (Rossiter, Kouvaritakis, & Rice, 1998) is
known to reduce the conservatism of open-loop predictive con-
trollers (Bemporad, 1998; Löfberg, 2003) without having to
increase the computational burden.

The brief is organized as follows: Section 2 presents the
MMMPC strategy, along with some easy properties. Sections
3 and 4 deal with the continuity and PWA nature of the control
law. The boundaries of the regions are treated in Section 5.
Finally, the results presented in this brief are illustrated with an
example in Section 6.

2. Min–max MPC with bounded additive uncertainties

Consider the following state-space model with bounded ad-
ditive uncertainties (Camacho & Bordóns, 2004):

x(t + 1) = Ax(t) + Bu(t) + D�(t), y(t) = Cx(t) (1)

with x(t) ∈ Rdim x , u(t) ∈ Rdim u, �(t) ∈ {� ∈ Rdim � :
‖�‖∞ ��m}, y(t) ∈ Rdim y . Consider a sequence u =
[u(t) . . . u(t + Nu − 1)]T of values of the control signal over
a control horizon Nu and � = [�(t + 1) . . . �(t + N)]T a se-
quence of future values of �(t) over a prediction horizon N .
Furthermore, let J (�, u, x) be a quadratic performance index
of the form:

J (�, u, x) = x(t + N |t, �)TPx(t + N |t, �)

+
N−1∑
j=1

x(t + j |t, �)TQjx(t + j |t, �)

+
Nu−1∑
j=0

u(t + j)TLju(t + j), (2)

where x(t + j |t, �) is the prediction of the state for t + j made
at t when the future values of the uncertainty are supposed
to be given by the sequence �. When Nu < N it is assumed
that the control signal is constant and equal to u(Nu − 1) for
j =Nu, . . . , N . On the other hand P, Qj ∈ Rdim x×dim x , Lj ∈
Rdim u×dim u are symmetric positive definite matrices used as
weighting parameters.

At any time, the state x and the sequence u must satisfy a
set of nc affine constraints, such that only the pairs

(u, x) : RT
i u + �T

i ��gi + F T
i x, i = 1, ..., nc ∀� ∈ � (3)

are admissible, where � = {� ∈ RN ·dim � : ‖�‖∞ ��m}, Ri ∈
R(Nu·dim u), Fi ∈ Rdim x , �i ∈ R(N ·dim �) and gi ∈ R. These
constraints may arise from operational constraints or be used
to guarantee stability. Note that

max
�∈�

�T
i � = max

‖�‖��m

�T
i � = �m‖�i‖1,

where ‖�i‖1 is the 1-norm of �i , i.e., the sum of the abso-
lute value of its components. Thus, the robust fulfillment of the
constraints (3) is satisfied if and only if RT

i u +�m‖�i‖1 �gi +
F T

i x, i = 1, . . . , nc (Alamo, Muñoz de la Peña, Limón Mar-
ruedo, & Camacho, 2005a). Therefore, robust constraint satis-
faction of (3) is guaranteed by considering the following set of
affine constraints:

Ru�c� + Fx, (4)

where matrices R ∈ Rnc×(Nu·dim u) and F ∈ Rnc×dim x are
composed of the row vectors RT

i and F T
i and the ith component

of vector c� ∈ Rnc is given by gi − �m‖�i‖1.
MMMPC (Campo & Morari, 1987) is based on finding the

control correction sequence u that minimizes J (�, u, x) for
the worst possible case of the predicted future evolution of
the process state or output signal. This is accomplished by the
solution of a min–max problem such as

u∗(x) = argmin
u∈U

J ∗(u, x)

s.t. Ru�c� + Fx,
(5)

with

J ∗(u, x) = max
�∈�

J (�, u, x),

where U ⊆ RNu·dim u is compact. Of all possible values of x

only those feasible are considered: that is, those belonging to

K∗ � {x ∈ Rdim x : ∃u ∈ U, Ru�c� + Fx}. (6)

The solution of problem (5) is applied in a feedback manner
using a receding horizon strategy (Camacho & Bordóns, 2004).
Note that J ∗(u, x) is the pointwise maximum of a set of an
infinite number of quadratic cost functions of u and x. Thus,
J ∗(u, x) is a piecewise quadratic function of u and x. Note that
a polytopic terminal constraint devised to provide robust sta-
bility can also be included within the constraints Ru�c� +Fx

(see Mayne, Rawlings, Rao, & Scokaert, 2000 and references
therein). Also a stabilizing terminal cost can also be considered
via a proper choice for matrix P (Mayne et al., 2000).

Problem (5) is of the open-loop type. However, the results
presented in this paper are also valid when using a semi-
feedback approach (Mayne, 2001) in which the control input
is given by u(t) = −Kx(t) + v(t) where the feedback matrix
K is chosen to achieve a certain desired property such as nom-
inal stability or LQR optimality. The MMMPC controller will
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compute the optimal sequence of correction control inputs v(t).
Rewriting (1) as

x(t + 1) = ACLx(t) + Bv(t) + D�(t) (7)

with ACL = (A − BK) it is clear that such semi-feedback
MMMPC can be expressed as (5).

With prediction model (1) the prediction equation can be
written (Camacho & Bordóns, 2004) as

x = Guu + G�� + Fxx(t), (8)

where x ∈ RN ·dim x are the predictions of process state over
the prediction horizon, Gu ∈ R(N ·dim x)×(Nu·dim u), G� ∈
R(N ·dim x)×(N ·dim x) and Fx ∈ R(N ·dim x)×dim x . Taking into
account (8) the cost function can be rewritten as

J (�, u, x) = uTMuuu + �TM��� + 2�TM�uu
+ 2xTMT

uf u + 2xTMT
�f

� + xTMff x (9)

where Muu = GT
uQGu + L, M�� = GT

�QG�, Mff = F T
x QFx ,

M�u = GT
�QGu, Muf = GT

uQFx , M�f = GT
�QFx and Q and

L are symetric positive definite block diagonal matrices, i.e.,
Q=diag(Q1, . . . , QN−1, P ) and L=diag(L1, . . . , LNu). Note
that by construction M�� and Mff are Gram matrices and, there-
fore, at least positive semi-definite. On the other hand, Muu is
positive definite as L > 0. Thus, J (�, u, x) is convex and con-
tinuous on x, �, and strictly convex on u. Moreover, J ∗(u, x)

is strictly convex on u and convex on x as it is the pointwise
maximum of a set of an infinite number of (strictly) convex
functions (Boyd & Vandenberghe, 2004). Thus, the solution to
the min–max problem is unique. Furthermore, by the gluing
lemma (Munkres, 2000), J ∗(u, x) is also continuous. Also, due
to convexity on �, the maximum of J will be reached at least
one (or more) of the vertices of the polytope � (see Bazaraa &
Shetty, 1979, Theorem 3.4.6). Thus, J ∗(u, x) can be computed
as the pointwise maximum of every J (�i , u, x) for a givenx,
i.e, J ∗(u, x) = max{J (�1, u, x), . . . , J (�2N , u, x)} where �i ∈
vert{�}, and vert{�} is the set of vertices of �.

3. Continuity of the control law

The continuity of the control law will be shown here using
well-known results from point-to-set map theory (Hogan, 1973)
(see Appendix A). Problem (5) is of the form

v(x) = min
u∈�(x)

f (u, x), (10)

where f : U × K∗ −→ [−∞, +∞] ≡ J ∗ and �(x) is a point-
to-set map defined by �(x)� {u ∈ U : Ru�c� + Fx}. On the
other hand, the set of minimizers for x is given by the point-
to-set map M(x) = {u ∈ �(x) : v(x)�f (u, x)}. To prove the
continuity of the control law, it has to be proven that for (5)
M(x) is continuous on K∗. First, it is necessary to prove that
K∗ is a connected set and that �(x) is continuous on K∗.

Proposition 1. The feasible set K∗ is convex and therefore
connected.

Proof. Let x1, x2 ∈ K∗ be two feasible states and u∗
1 ,u∗

2 the
solutions of (5) for x1, x2. Let � ∈ [0, 1] and define u∗

� ��u∗
1 +

(1−�)u∗
2 , x� � �x1+(1−�)x2. By feasibility, u∗

1, u∗
2 satisfy the

constraints, thus Ru∗
1 �c�+Fx1 and Ru∗

2 �c�+Fx2. Multiply
by � and (1 − �), respectively, and add to obtain Ru∗

� �c� +
Fx�. Thus, u∗

� is feasible, and therefore problem (5) has a
solution for x=x�. This implies that K∗ is convex and therefore
connected. �

Proposition 2. The point-to-set map �(x) is continuous on K∗.

Proof. A point-to-set map is continuous if it is both open and
closed (Hogan, 1973). From Theorem 12 (see Appendix A), �
is closed if ∀x ∈ K∗ each inequality of �(x) is lower semi-
continuous on K∗ × U. The affine inequalities of �(x) are
continuous (hence, they are lower and upper semi-continuous)
on K∗×U, thus � is closed on K∗ . On the other hand, �(x) ⊂
I (x), ∀x ∈ K∗, where I (x) is the closure of I (x)� {u ∈ U :
Ru < c� + Fx}. Thus, from Theorem 13 (see Appendix A), �
is also open on K∗ and, therefore, continuous. �

Theorem 3. The control law that arises from the solution of
the min–max problem (5) is continuous on K∗.

Proof. From Propositions 1 and 2, it is known that K∗ is con-
nected and �(x) continuous. Also from Section 2 it is known
that the solution is unique (thus, M(x) is single-valued) and that
J ∗(u, x) is continuous. Finally, by assumption, U is compact,
thus, from Theorem 14 (see Appendix A), M is continuous on
K∗ as all these conditions hold for ∀x ∈ K∗. This implies that
the control law is continuous. �

4. Piecewise affinity of the control law

In this section it is shown that the control law which arises
from the solution of the min–max problem is PWA on process
state. Note that for a given state x the maximum is attained at
a set of vertices of �. These vertices are said to be active, and
the subset of vert{�} that contains all the active vertices is the
active vertex set, which is formally defined in the following.

Definition 4. Let u∗(x) be the solution of the min–max prob-
lem (5) for a given x ∈ K∗. Then the active vertex set SI (x) is
defined as

SI (x) = {�i ∈ vert{�} : J ∗(u∗(x), x) = J (�i , u∗(x), x)},

where �i is the ith vertex of �.

Proposition 5. For a given x ∈ K∗ with active vertex set
SI (x), there exists Ki ∈ RNu×dim x and vi ∈ RNu such that the
solution of (5) for x is u∗(x) = Kix + vi .

Proof. The definition of SI (x) implies that for a given x ∈
K∗ the original min–max problem is equivalent to a reduced
min–max problem where only those vertices of � contained in
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SI (x) are taken into account,1 (Alamo, Ramirez, & Camacho,
2005b) i.e.,

u∗(x) = argmin
u∈U

max
�i∈SI (x)

J (�i , u, x)

s.t. Ru�c� + Fx.
(11)

Note that for x, all quadratic functions J (�i , u, x) in problem
(11) have the same value at the solution as only active vertices
are considered. Thus, the solution of the min–max problem for
x is the same as that of the following problem:

min
u∈U

J (�p, u, x)

s.t. J (�p, u, x) = J (�i , u, x) ∀�i ∈ SI (x)

Ru�c� + Fx, (12)

where �p ∈ SI (x) is an active vertex. The equality constraints
in (12) can be written as

2(�T
p − �T

i )M�uu = (�T
i M���i − �T

pM���p)

+ 2xTMT
�f

(�i − �p) ∀�i ∈ SI (x). (13)

Thus, all constraints in (12) are affine. Affine equality con-
straints can be easily removed from the problem (decreasing the
number of free moves). Suppose that the equality constraints
are grouped into matrix–vector form as RJEu=bJE(x) and that
u0 is any control sequence that satisfies these constraints. Then
let WJE ∈ RNu×Nur be a matrix whose range is the nullspace of
RJE , where Nur = Nu − Rank(RJE) (Boyd & Vandenberghe,
2004). Then, problem (12) is equivalent to the following QP
problem:

V (x) = k�(x) + min
ur∈Ur

1
2 uT

r Hur + bT
� (x)ur

s.t. Rrur �c�r + Fx,
(14)

where H = HT = 2WT
JEMuuWJE , bT

� (x) = 2(�T
pM�u +

xTMT
uf )WJE and k�(x) = �T

pM���p + 2xTMT
�f

�p + xTMff x +
uT

0 Muuu0 + (�T
pM�u + xTMT

uf )u0, Rr = RWJE and c�r =
c� + Ru0. Let z be z � ur + H−1b�(x). Then problem (14) is
equivalent to

Vz(x) = min
z

1
2zTHz

s.t. Rrz�v� + Sx
(15)

with Vz(x) = V (x) − c� + 1
2 bT

� (x)H−1b�(x), v� = c�r +
2RrH

−1WT
JEMT

�u
� and S = 2RrH

−1Muf WJE + F . The solu-
tion of problem (15) is a PWA function of x as proven in the
influential work of Bemporad, Morari, Dua, and Pistikopoulos
(2002). Thus, u∗

r (x) = Kix + vi , and u∗(x) = Kix + vi . �

1 This is more evident in the epigraphic form (Boyd & Vandenberghe,
2004) of the min–max problem

min
u,�

�

s.t J (�i , u, x)��, i = 1, . . . , 2N

Ru�c� + Fx

with � ∈ R. It is clear that this problem is equivalent to another in which
nonactive constraints have been removed. Those vertices �i for which the
constraints J (�i , u, x)�� become active are the active vertices.

In the following it will be shown that the solution of the
min–max problem is PWA on x. If the active vertex set does
not change in a neighborhood of x, the solution of the min–max
problem will remain the same as an mp-QP and, therefore, the
solution will be PWA in that neighborhood. This is the idea
used in the next theorem.

Theorem 6. Let u∗(x) be the solution of problem (5) where
x ∈ K∗. Then, u∗(x) is a PWA function of x.

Proof. Suppose that �p ∈ vert{�} is an active vertex for x ∈
K∗. From Definition 4 active vertices satisfy the following con-
ditions:

• C1: J (�p, u∗(x), x) = J (�i , u∗(x), x) ∀�i ∈ SI (x), i.e.,
its cost is equal to that of the remaining active vertices.
This implies that J (�p, u∗(x), x) = J ∗(u∗(x), x), that is,
J (�p, u∗(x), x) is equal to the worst-case cost, which in
turn implies the following condition.

• C2: J (�j , u∗(x), x) < J (�p, u∗(x), x) ∀�j ∈ vert{�} such
that �j /∈ SI (x), because nonactive vertices have lower cost
than the active ones.

These conditions are used to define a region of the (u, x) space
for the active set SI (x) in which all the pairs (u∗(x), x) with
active vertex set SI (x) are included. Let �I be the region of
the (u, x)-space defined by

�I =
{

(u, x) :
Ru �c� + Fx

J (�p, u, x)=J (�i , u, x) ∀�i ∈ SI (x)

J (�j , u, x)< J (�p, u, x) ∀�j /∈ SI (x)

}
.

From the definition of �I if u∗(x+) with x+ ∈ K∗ has the
active vertex set SI (x) then (u∗(x+), x+) ∈ �I . Moreover, if
(u∗(x+), x+) ∈ �I then SI (x

+) = SI (x).
Taking into account that u∗(x) is continuous, a small

bounded change �x in x will result in a bounded change �u of
u∗(x). Then a neighborhood of x will always exist such that all
pairs (u∗(x+), x+) included in that neighborhood will also be
in �I . This implies that in the neighborhood NCI (x) = {x+ ∈
K∗ : (x+ = x + �x, u∗(x+) = u∗(x) + �u) ∈ �I } the active
vertex set of the solution does not change and the solution of
the min–max problem is the same as that of (12), therefore it
is PWA. Thus, for every x ∈ K∗ there exists a neighborhood
of x in which the solution of (5) is PWA and therefore the
control law is piecewise affine. �

In the following CRA denotes the region of K∗ in which
the active vertex set is A ⊂ vert(�), i.e, CRA � {x ∈ K∗ :
SI (x) = A ⊂ vert(�)} and CRA its closure on K∗.

4.1. Types of solutions

The active vertex set of each region may contain one or more
vertices. Three different cases may occur:

(1) The solution is said to be type I when the active set has
only one vertex, i.e., SI (x) = {�p} with x ∈ K∗. In this
case the equality constraints in problem (12) are removed.
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(2) The solution is said to be type II when more than one vertex
is contained in SI (x). In this case, the min–max problem
is equivalent to problem (12).

(3) The solution is said to be type III when more than one
vertex is contained in SI (x) but the min–max problem is
also equivalent to another with SI (x) = {�p}. In this case
problem, (12) can also be reduced removing the equality
constraints.

The regions of K∗ in which the solution is type I, II or III are
said to be type I, II or III regions. Note that in types I and III
the solution of (5) is equal to the minimizer of J (�p, u, x), thus
the minimizer of J (�p, u, x) is also a minimizer of J ∗(u, x).

5. Boundaries between regions

In this section the transitions between regions due to different
active vertex sets are analyzed.

Lemma 7. Let CRA, CRB be two adjacent regions of K∗ in
which the solution is known to have certain active vertex sets
A ⊂ vert(�) and B ⊂ vert(�). Then, the common boundary
between CRA and CRB is contained in a hyperplane.

Proof. This follows from the continuity of the control law. Due
to continuity, the solution of (5) in CRA ∩ CRB must have the
same cost J (�i , u, x) and J (�j , u, x) ∀�i ∈ A , �j ∈ B ∀x ∈
CRA ∩ CRB , thus all x in the boundary must satisfy

J (�i , u∗
1(x), x) = J (�j , u∗

1(x), x), �i ∈ A, �j ∈ B (16)

∀x ∈ CRA ∩ CRB where u∗
1(x) is the solution of (5) in CRA.

Note that u∗
1(x) = M1(x)x + v1(x), where the matrix M1(x)

and vector v1(x) depend on x ∈ K∗. Thus, Eq. (16) can be
rewritten as

(�T
i M���i − �T

j M���j + 2(�T
i − �T

j )M�uv1(x))

+ 2(�T
i − �T

j )(M�uM1(x) + M�f )x = 0 (17)

which is the hyperplane that contains the boundary between
CRA and CRB . �

Proposition 8. If region CRA or CRB is type I or III, then the
part of the hyperplane (17) which is not the boundary between
CRA and CRB can be removed using affine constraints on x.

Proof. Suppose that CRA is type I or III and that the solution
of (5) ∀x ∈ CRA is equal to u∗

i (x) the solution of (12) with
�p = �i ∈ A. As �i ∈ A all x in CRA ∩ CRB must satisfy that
J (�i , u∗

i (x), x)�J (�j , u∗
i (x), x) ∀�j ∈ vert(�). Moreover, if

these conditions are met u∗
i (x) is a minimizer of the strict

convex J ∗(u, x). Thus, u∗
i (x) is the solution to (5) and the part

of (17) which is not the boundary of CRA and CRB can be
removed by imposing that

J (�i , u∗
i (x), x)�J (�j , u∗

i (x), x), �i ∈ A ∀�j ∈ vert(�)

which taking into account that u∗
i (x)=Mi(x)x+vi(x) x ∈ K∗

can be rewritten as

− (�T
i M���i − �T

j M���j + 2(�T
i − �T

j )M�uvi(x))

− 2(�T
i − �T

j )(M�uMi(x) + M�f )x�0 (18)

with �i ∈ A ∀�j ∈ vert(�), which are affine constraints on x.
�

Remark 9. If no constraint of (5) is active along the boundary
or no constraints are considered in (5) then the minimizer of
J (�i , u, x) can be computed easily as

u∗
i (x) = −M−1

uu Muf x − M−1
uu MT

�u
�i (19)

thus (17) and (18) can be rewritten as:

(�T
i M���i − �T

j M���j ) + 2xTMT
�f

(�i − �j )

− 2(�T
i − �T

j )M�uM
−1
uu (MT

�u
�i + Muf x) = 0 (20)

− (�T
i M���i − �T

k M���k − 2(�T
i − �T

k )M�uM
−1
uu MT

�u�i )

− 2(�T
i − �T

k )(M�f − M�uM
−1
uu Muf )x�0

∀k /∈ A ∪ B. (21)

Proposition 10. If no constraints are active along its bound-
aries (or the min–max problem is unconstrained) a region CRA

of type I or III cannot be adjacent to another region CRB type
I or III.

Proof. Two adjacent regions share a common boundary in
which the solution of the min–max problem is unique. Thus,
due to continuity, the solutions that come from both QP prob-
lems associated to each region must be the same. Assume that
in CRA the solution u∗

i (x) is the unconstrained minimizer of
J (�i , u, x), that is (19). Furthermore, suppose that CRB is type
I or III, and that the solution u∗

j (x) is equal to the unconstrained
minimizer of J (�j , u, x). Thus, by continuity

u∗
i (x) − u∗

j (x) = 0 ∀x ∈ CRA ∩ CRB . (22)

Taking into account (19) for both �i and �j this can be rewritten
as

−M−1
uu MT

�u
(�i − �j ) = 0. (23)

Eq. (23) cannot be fulfilled unless2 �i =�j . Thus, it will never
hold for different quadratic functions. This implies that CRA ∩
CRB = ∅, thus CRA and CRB cannot be adjacent. �

6. An illustrative example

In order to illustrate these results consider a first order sys-
tem, described with a CARIMA (Camacho & Bordóns, 2004)
model:

y(t + 1) = 1.9y(t) − 0.9y(t − 1) + 0.5�u(t) + �(t) (24)

2 This is true because the matrices appearing in (23) are full rank.
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Fig. 1. Solution (top) and partition of the process state space (bottom) for
the example.

with −0.1���0.1 and � = 1 − z−1. Note that in this case
x(t) = [y(t) y(t − 1)]T. A constrained min–max MPC control
law was calculated with the following parameters: Nu =2, N =
2, and Q1, P , L1 and L2 unit matrices of dimension 2. The
following constraints were taken into account: −2��u(t)�2,
−0.5�y(t)�0.5. Thus, in this case K∗ � {x ∈ R2 : ∃u ∈
R2, ‖u‖∞ �2, ‖x‖∞ �0.5} with u = [�u(t) �u(t + 1)]T and
x = [x(t + 1|t, �) x(t + 2|t, �)]T.

Fig. 1 (top) shows the solution for the min–max problem
computed numerically. There are three regions due to different
active sets. The lower region is a type I region, CRSI1 , in which
the active vertex set is SI1(x) = {�1}, with �1 = [0.1 0.1]T.
This implies that in CRSI1 the solution of (5) is equal to the
constrained minimizer of J (�1, u, x). In the upper region the
active vertex set is SI4(x) = {�4}, with �4 = [−0.1 − 0.1]T.
Thus, CRSI4 is another type I region. On the other hand, in
the central region the active vertex set is SI41(x) = {�1, �4},
that is, CRSI41 is a type II region. Therefore in CRSI41 the
solution of (5) is equal to the constrained minimizer of either
J (�1, u, x) or J (�4, u, x) subject to the additional constraint
J (�1, u, x)=J (�4, u, x). The boundaries between each region
can be computed as in (20) because the constraints are not

active along the boundaries yielding,

CRSI1 � {x ∈ K∗ : −0.22 + [−0.99 1.62]x�0},
CRSI4 � {x ∈ K∗ : −0.22 + [0.99 − 1.62]x�0},

CRSI41 � {x ∈ K∗ : −0.22 + [0.99 − 1.62]x�0,

− 0.22 + [−0.99 1.62]x�0}.

The multiparametric QP algorithm of Bemporad et al. (2002)
has been applied to the constrained QP problems related to
CRSI1 , CRSI4 and CRSI41 , yielding a Constrained min–max
MPC controller in explicit form, in which �u(k) can be com-
puted as

v4x if

[
0.99 −1.62
−0.99 1.62

]
x�

[
0.22
0.22

]
(reg. R41),

c1 + v1x if

⎡
⎢⎣

0.61 −1
−0.40 1
−0.69 1
0.40 −1

⎤
⎥⎦ x�

⎡
⎢⎣

−0.13
0.41
0.37
0.29

⎤
⎥⎦ (reg. R1),

c2 + v2x if

⎡
⎢⎣

−0.62 1
−0.25 1
0.25 −1
0.69 −1

⎤
⎥⎦ x�

⎡
⎢⎣

0.93
0.43
0.64

−0.37

⎤
⎥⎦ (reg. R2),

c3 + v3x if

⎡
⎢⎢⎢⎣

0.61 −1
−0.47 1

0 1
0.40 −1
0.25 −1

⎤
⎥⎥⎥⎦ x�

⎡
⎢⎢⎢⎣

−0.13
0.74
1.06

−0.41
−0.43

⎤
⎥⎥⎥⎦ (reg. R3),

− c1 + v1x if

⎡
⎢⎣

−0.61 1
0.40 −1
0.69 −1

−0.40 1

⎤
⎥⎦ x�

⎡
⎢⎣

−0.13
0.41
0.37
0.29

⎤
⎥⎦ (reg. R4),

− c2 + v2x if

⎡
⎢⎣

0.62 −1
−0.25 1
0.25 −1

−0.69 1

⎤
⎥⎦ x�

⎡
⎢⎣

0.93
0.64
0.43

−0.37

⎤
⎥⎦ (reg. R5),

− c3 + v3x if

⎡
⎢⎢⎢⎣

−0.61 1
0.47 −1

0 −1
−0.40 1
−0.25 1

⎤
⎥⎥⎥⎦ x�

⎡
⎢⎢⎢⎣

−0.13
0.74
1.06

−0.41
−0.43

⎤
⎥⎥⎥⎦ (reg. R6),

with c1 = −0.14, v1 = [0.89 − 1.53], c2 = 0.15, v2 = [1.43 −
2.31], c3 = 0.8, v3 = [1.8 − 3.8], v4 = [1.8 − 3.8]. The state-
space partition can be seen in Fig. 1 (bottom).

7. Conclusions

It has been shown that min–max MPC with bounded additive
uncertainties and a quadratic criterion result in a PWA and con-
tinuous control law. This opens new possibilities for studying
robustness and stability properties. However, many open ques-
tions remain to be addressed, the most interesting being how to
compute the explicit form of the control law in an automated
way.
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Appendix A. Known results in point to set maps

Definition 11. Let � : X �→ U a point to set map. Then
(Hogan, 1973)

(1) � is open at x ∈ X if a sequence contained in X, {xk} ⊂ X

such that xk → x and u ∈ �(x) imply the existence of
an integer m ∈ Z and a sequence {uk} ⊂ U such that
uk ∈ �(x) for k�m and that uk → u.

(2) � is closed at x ∈ X if a sequence contained in X, {xk} ⊂
X such that xk → x and a sequence {uk} such that uk ∈
�(xk) and uk → u imply that u ∈ �(x).

(3) � is continuous at x ∈ X if it is both open and closed at x.
(4) � is open, closed or continuous on X if it is open, closed

or continuous ∀x ∈ X.

Let P(x) be a point to set map determined by inequali-
ties P(x)� {u ∈ U : g(x, u)�0} where g : X × U �→
[−∞, +∞]m. Furthermore, let I (x)� {u ∈ U : g(x, u) < 0}.

Theorem 12 (Theorem 10 of Hogan, 1973). If each component
of g is lower semi-continuous on x × U then P is closed at x.

Theorem 13 (Theorem 13 of Hogan, 1973). If each component
of g is upper semi-continuous on x × I (x) and P(x) ⊂ I (x)

(where I (x) is the closure of I (x)) then P is open at x.

Suppose a constrained minimization problem as in (10), � :
X �→ U a point to set map and M(x) the set of minimizers of
(10) for x ∈ X.

Theorem 14 (Corollary 8.2 of Hogan, 1973). Suppose � is
continuous on X, X is connected, U is compact, f is continuous
on X × U, andM is single valued at x. Then M is continuous
at x.
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