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This article focuses on the design of a robust model predictive control law for constrained discrete-time time-
varying systems with additive uncertainties. The proposed solution to the control problem is a tube-based MPC
ensuring robustness and constraints fulfilment. Reachable sets are calculated online taking into account the
system dynamics by means of an adaptive local control law and additive uncertainties. The proposed method
represents a trade-off between small conservativeness and efficient real-time execution. This approach is applied
to solve the trajectory tracking problem of a mobile robot. Simulation results provide a comparison between the
tube-based MPC scheme and established motion control algorithms, showing the efficient execution and
satisfactory behaviour of the proposed controller.
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1. Introduction

Model Predictive Control (MPC) constitutes a popular

control technique to deal with constrained systems

(Morari and Lee 1999; Mayne, Rawlings, Rao, and

Scokaert 2000; Camacho and Bordons 2007).

However, in order to tackle uncertainty, robust MPC

formulations must be considered (Bemporad and

Morari 1999).
The problem of robustness has been widely

addressed in the context of MPC through different

approaches. The first possible approach is to rely on

the inherent robustness of deterministic MPC, which

guarantees some degree of robustness due to the own

feedback nature of predictive controllers (Limon,

Alamo, and Camacho 2002). The drawback of deter-

ministic MPC appears since the optimisation problem

is only solved for a nominal system. However due to

uncertainty the system can have different trajectories,

and this can lead to constraints violation.
A popular technique to robustify MPC is the open-

loop Min–Max MPC (Bemporad and Morari 1999).

This strategy finds the value of the control signal by

minimising the cost associated to the worst case of

expected disturbances and uncertainty. The main

drawback of open-loop Min–Max formulation is that

the control action may be excessively conservative

(Alamo, Ramirez, and Camacho 2005; Ramirez,

Alamo, Camacho, and de la Peña 2006). In order to

overcome the conservativeness, an attractive

alternative is the feedback or closed-loop MPC

(Scokaert and Mayne 1998). In the feedback MPC,

the decision variable is a sequence of control laws that

permits to reduce the spread of predicted trajectories

resulting from uncertainty. However, the computation

burden is often prohibitive since the related optimisa-

tion problem is non convex (Mayne et al. 2000). One

interesting result concerning the problem of computa-

tional complexity of the feedback MPC is (Goulart,

Kerrigan, and Maciejowski 2006).
An efficient technique for practical implementation

of robust MPC is the tube-based MPC. In the pioneer-

ing work (Bertsekas and Rhodes 1971), the design of a

robust control law ensuring hard constraints satisfac-

tion is addressed by means of the computation of a

sequence of state space regions, called reachability tube.

The term tube-based refers to those control techniques

whose objective is to maintain all the possible trajec-

tories of an uncertain system inside a sequence of

admissible regions by using set-theory related tools.

Such approach has been widely employed to robustify

MPC (Chisci, Rossiter, and Zappa 2001; Mayne

and Langson 2001; Langson, Chryssochoos, Rakovic,

and Mayne 2004; Mayne, Rakovic, Findeisen, and

Allgower 2009; Limon, Alvarado, Alamo, and

Camacho 2010; Trodden and Richards 2010).
Tube-based MPC approaches are motivated by the

fact that the predicted evolution of a system obtained
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using a nominal model differs from the real evolution
due to uncertainty. An MPC formulation that permits
to consider this mismatch in the controller synthesis is
the tube-based one, whose basis consists in computing
the region around the nominal prediction that con-
tains the state of the system under any possible
uncertainties (Limon, Bravo, Alamo, and Camacho
2005). This region can be obtained in two different
ways. One possibility is to calculate it at each step
within the prediction horizon, this leads to a sequence
of regions, {Ri}, called reachable sets, that is, the
smallest sets of states of the closed-loop uncertain
system that ensure to contain the state at time i of any
trajectory starting at the origin (Chisci et al. 2001). The
second possibility is to determine a single region, which
bounds the sequence of reachable sets, that is,
Ri�Riþ1�R, where usually R is a robust invariant
set (Mayne and Langson 2001; Langson et al. 2004).
The main difference between both approaches is that in
the former case, online computation is slightly heavier
since at each step within the prediction horizon is
necessary to calculate the reachable sets. However, the
latter case entails a higher degree of conservativeness,
since the invariant set can be seen as the limit of the
reachable sets and it contains every Ri, for linear
systems.

Tube-based MPC usually employs a pre-stabilising
control policy (Chisci et al. 2001; Mayne and Langson
2001; Goulart et al. 2006). A local feedback gain
compensates the mismatch between the nominal and
real evolution of the system and a deterministic MPC
controller is employed to stabilize the nominal system
for which tighter constraint sets are considered.

This article proposes a robust tube-based MPC
controller via reachable sets. Generally, reachable sets
calculation is related to time-invariant systems, where a
local feedback gain compensates the system realisation,
leading to small conservativeness (Chisci et al. 2001).
For the case of time-varying systems, the reachable sets
depend on the realisation of the system dynamics,
besides of on the uncertainty. Then, a proper time-
varying control feedback could be designed to obtain
smaller reachable sets and, then, to reduce the conser-
vativeness. The main contribution of this work is that
we calculate the reachable sets online compensating the
current system dynamics by means of an adaptive local
control law. Thanks to this approach, the conserva-
tiveness is reduced for the time-varying case and the
feasible region is enlarged in comparison to similar
approaches where reachable sets are solved offline
(Langson et al. 2004; Limon et al. 2005;
Gonzalez et al. 2011). Finally, Linear Matrix
Inequalities (LMI) are employed to determine a
Lyapunov function constituting the terminal cost for
the MPC optimisation problem (Boyd, El Ghaoui,

Feron, and Balakrishnan 1994; Kothare,
Balakrishnan, and Morari 1996). Furthermore, a
terminal robust invariant set is calculated through an
adaptation of the ideas presented in the works of
(Kolmanovsky and Gilbert 1998; Blanchini 1999).
Several simulations related to the motion control of
a mobile robot (where low computation burden is
required) are presented to show the advantages of the
proposed control scheme.

This article is organised as follows. Section 2
concerns with problem statement and control objec-
tives. In Section 3, the online robust tube-based MPC
control strategy is described. In Section 4, we demon-
strate the performance of the proposal through two
simulations related to the trajectory tracking problem
of a mobile robot. Finally, Section 5 presents some
conclusions and future research.

Notation: A polyhedron is the (convex) intersection of a
finite number of open and/or closed half-spaces and a
polytope is a closed and bounded polyhedron. Given
two sets X,Y�R

n, the Minkowski sum is defined by
X�Y ¼

4
(xþ y |x2X, y2Y ) and the Pontryagin set

difference is X@Y ¼
4
(x | x�Y�X ).

2. Problem statement

This article addresses the problem of designing a state
feedback control for the following uncertain, linear,
time-varying, discrete-time system

xkþ1 ¼ A�kxk þ Buk þ wk, ð1Þ

where k2Z
þ is the discrete-time, x2R

n the state,
u2R

m the control input and w a bounded additive
uncertainty, satisfying w2W, with W a polytope in the
state space R

n (Remark 1). The matrix A� 2R
n�n

depends on the time-varying parameter �, the input
matrix B2R

n�m is known and constant. For any
admissible realisation of parameter � 2�, a dynamic
matrix A� is obtained. It follows that A� 2A, with A
represents the set of system matrices.

Assumption 2.1: Assume that � is known a priori.
This implies that the system matrix A� is known at
each sampling instant and at each step within the
prediction horizon. The set � is a polytope in R

l and
the set of system matrices A is also defined as a
polytope in R

n�n. Note that this assumption makes
sense for applications where system matrix can be
known a priori, such as mobile robotics (Gonzalez et al.
2010, 2011).

Remark 1: The set W�R
n represents the uncertainty

affecting the state at each sampling instant. For
instance, this set could bound the uncertainty in the
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robot location during the motion of such mobile robot
(Thrun, Burgard, and Fox 2005).

The states and inputs are subject to the following
constraints

xk 2 X, uk 2 U, ð2Þ

where X�R
n and U�R

m are polytopes that contain
the origin.

We also define the nominal system as

~xkþ1 ¼ A�k ~xk þ Bgk, ð3Þ

where ~x 2 R
n is the nominal state, and g2R

m is the
control input for the nominal system. From now on,
for notational convenience we use Ak to express A�k.

Now, we calculate the difference between the real
and the nominal system as (Chisci et al. 2001)

�xk ¼ xk � ~xk, ð4Þ

where �x 2 R
n is the error state.

Then, the control objective is to compensate the
mismatch between the real and the nominal state, and
to steer the nominal system as close as possible to the
reference without constraints violation. For that pur-
pose, we consider the following control policy (Chisci
et al. 2001; Goulart et al. 2006)

uk ¼ Kk �xk þ gk, ð5Þ

where Kk is an adaptive local controller whose goal is
to compensate the system realisation at each sampling
instant (Section 3.1) and gk deals with the nominal
system (Section 3.4), once the uncertainty has been
confined by means of the reachable sets calculation
(Section 3.2).

Finally, the dynamics of the closed-loop error
system is defined replacing (1) and (3) into (4), that is,

�xkþ1 ¼ xkþ1 � ~xkþ1 ¼
�
Ak þ BKk

�
�xk þ wk: ð6Þ

The main features of the online robust tube-based
MPC strategy are:

. Robustness: following the tube-based MPC
policy, we take into account additive uncer-
tainties and time-varying dynamics in the
control design.

. Performance: an optimisation problem
(QP) is solved at each sampling instant
obtaining the proper control actions as a
compromise between small deviations from
the reference trajectory and suitable control
actions.

. Input and state constraints fulfilment: this
requirement is guaranteed by ensuring con-
straints satisfaction in the minimisation of the
MPC control law.

. Asymptotic stability for the deterministic
MPC: it is ensured through a quadratic
Lyapunov function determined using LMI
and a robust positively invariant set for the
terminal region.

. Conservativeness reduction: system dynam-
ics is taken into account by means of an
adaptive local control law. This leads to
reachable sets smaller than those obtained
offline (Langson et al. 2004; Limon et al. 2005;
Gonzalez et al. 2011), and hence to a wider
feasible region.

. Real-time applicability: a standard nominal
MPC is solved online to control the nomi-
nal system since the effect of the system
uncertainties are already included in the
restricted constraints. This fact implies that
the robust tube-based MPC strategy fits
properly to applications with fast dynamics
and where high sampling frequencies are
employed.

3. Online tube-based MPC

In this section, we present the online robust tube-based
MPC approach (Figure 1). First, online computation is
devoted to the calculation of the local feedback gain
depending on the system realisation at each step within
the prediction horizon (Section 3.1). Afterwards, reach-
able sets are calculated taking into account this
feedback gain and additive uncertainty (Section 3.2).
Then, a standardMPC problem with tighter constraints
concerning the nominal system is solved (Section 3.4).
Finally, LMI are employed to determine the terminal
cost for the MPC optimisation problem and a terminal
robust invariant set is calculated (Section 3.3).

The steps that will be explained subsequently to
implement the online robust tube-based MPC
approach are:

(1) Local control gain (Section 3.1). The local
control law, Kk, that compensates the effect of
the mismatch (4) has to be calculated. In this
case, an adaptive local feedback control gain
will be obtained. Such control strategy will be
calculated solving an optimisation problem
where constraints will be included in terms of
LMI ensuring asymptotic stability and perfor-
mance (Lyapunov function and LQR). In this
way, such adaptive local control gain is solved
online compensating the system realisation
(time-varying) at each step within the predic-
tion horizon

Kk ¼ �ðRþ BTPBÞ�1BTPAk,

International Journal of Control 1159



where Kk and Ak are the feedback gain and

system matrix at each step within the prediction

horizon, respectively, and matrix P, the positive

definite matrix associated with a Lyapunov

function, is obtained from an optimisation

problem. The rest of the parameters are the

input matrix, B, and matrix R which will be

defined subsequently.
(2) Reachable sets (Section 3.2). Reachable sets

representing a bound on the possible state of

the mismatch closed-loop system (6) affected by

uncertainty, are calculated online as

Rkþiþ1 ¼ ðAkþi þ BKkþiÞRkþi �W 8i ¼ 0, . . . ,N� 1:

ð7Þ

(3) Modification of state and input constraints

(Section 3.4). In order to take into account the

‘control effort’ spent to compensate the system

mismatch and the uncertainty, original state

and input constraints are replaced with more

restricted ones using the previously determined

reachable sets

~Xi ¼ X�Ri 8i ¼ 1, . . . ,N, ð8Þ

~Ui ¼ U� KiRi 8i ¼ 0, . . . ,N� 1: ð9Þ

Note that the modification of state and input

constraints is carried out online.
(4) Terminal constraints for MPC (Section 3.3).

Terminal cost and terminal invariant set ensur-

ing asymptotic stability of the nominal predic-

tive controller are calculated offline.
(5) A deterministic MPC strategy runs online for

the nominal system with tighter constraints (8),

(9) (Section 3.4).

Summing up, online computation is devoted to

calculate the feedback gain Kk taking into account

the system realisation at each step within the predic-

tion horizon. Then, reachable sets are calculated

considering the mismatch closed-loop system and

the uncertainty. Finally, a deterministic MPC with

tighter constraints is solved for the nominal system.

Note that when reachable sets are calculated offline

(Gonzalez et al. 2011; Limon et al. 2005), it entails a

certain degree of conservativeness, since the informa-

tion on the current dynamics is not used for computing

the reachable sets. On the other hand, when reachable
sets are replaced by an invariant set (Mayne and

Langson 2001; Langson et al. 2004), it also entails a

degree of conservativeness, since the invariant set

contains all the reachable sets (Ri�Riþ1�R).

The main weakness of the proposed strategy is

that computation time is slightly increased, due to

the computation of (8), (9) online. For the pro-

posed application (mobile robotics), admissible com-

putation times are achieved (see the results presented in

Section 4 where a sampling period of 0.35 [s] was

employed).

3.1 Online local compensation of system dynamics

In this section the calculation of the local feed-
back control gain is addressed. Note that we are

considering the closed-loop mismatch system (6) with-

out additive uncertainty, since this term will be

included in the reachable sets (Section 3.2).

Hence, we are only interested in obtaining the proper

local control gain, Kk, which compensates the mis-

match system.
When dealing with the problem of determin-

ing asymptotically stable controllers, one classical

way to proceed is to look for a Lyapunov function

determined by a positive definite matrix P40, i.e.
Vð �xÞ ¼ �xTP �x, such that (Boyd, El Ghaoui, Feron, and

Figure 1. Robust tube-based MPC control strategy. Reachable sets are solved online depending on the current state realisation.
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Balakrishnan 1994, Kothare, Balakrishnan, and

Morari 1996)

Vð �xkþ1Þ � Vð �xkÞ � 0, 8 �x 6¼ 0: ð10Þ

Furthermore, in order to take into account the

performance, the following quadratic objective is

considered (Kothare et al. 1996)

V
�

�x0
�
� min

u½0,1Þ

X1
k¼0

�xTkQ �xk þ uTkRuk, ð11Þ

where u[0,1) denotes the infinite sequence of uk, and

Q40 and R40 are symmetric matrices weighting the

state and input signals. Notice that V(	) is an upper

bound of the optimal cost related to the LQR (Kothare

et al. 1996).
Then, from previous requirements: asymptotic

stability (10) and performance (11), the following

optimisation problem can be proposed

min
P40 � j8� j

trðPÞ

subject to L
 8� j,
ð12Þ

where tr(	) means the trace of a matrix and L* is

defined by the following inequality

�xTðAj þ B� j ÞTPðAj þ B� j Þ �x� �xTP �x

� � �xTðQþ ð� j ÞTR� j Þ �x, 8 �x 2 R
n, ð13Þ

where Aj refers to the j-th extreme realisation of the set

A, � j is the j-th feedback gain. Note that, all the

required conditions are only imposed at the extremal

values of the polytopic set �, i.e. at the n� vertices of �.

Fulfilment of such conditions at the vertices yields

the satisfaction at any point within �, as stated in

Property 1 in (Gonzalez et al. 2010).
Previous optimisation problem can be solved using

LMI formulation (Boyd et al. 1994; Gonzalez et al.

2010). Denoting Aj
cl ¼ Aj þ B� j, we get

�xTððAj
cl Þ

TPAj
cl Þ �x� �xTP �x � � �xTðQþ ð� j ÞTR� j Þ �x,

ð14Þ

for every vertex � j of �, with j¼ 1, . . . , n�. Removing

state variables from previous equation, it follows

ðAj
cl Þ

TPAj
cl � P � �Q� ð� j ÞTR� j, ð15Þ

then, using the Schur complement (Boyd et al. 1994),

the previous inequality becomes

P�Q� ð� j ÞTR� j ðAj
cl Þ

T

A j
cl P�1

� �
� 0: ð16Þ

Operating previous LMI and replacing S¼P�1 and

Y j
¼ � jP�1, the linear matrix inequality to be fulfilled

is given by

S SðAj Þ
T
þ ðYj Þ

TBT SQ
1
2 ðYj Þ

TR
1
2

AjSþBYj S 0 0

Q
1
2S 0 I 0

R
1
2Yj 0 0 I

2
6664

3
7775� 0:

ð17Þ

This LMI is imposed for every vertex � j of �, with

j¼ 1, . . . , n�. The convex optimisation problem to be

solved is (Remark 2)

min
S40, Yj8� j

trðPÞ

subject to ð17Þ 8� j, j ¼ 1, . . . , n� ,
ð18Þ

The solution of the optimisation problem determines

the matrix P that guarantees the asymptotic stability

of the mismatch system (without additive uncertainty)

(Boyd et al. 1994; Kothare et al. 1996).

Remark 2: Matrix P is such that, for every possible

realisation of the dynamics, there exists an appropriate

feedback law such that the related quadratic function is

a Lyapunov function. Then, once P is precalculated

solving (18), we will see in the following how to choose

online a particular feedback gain such that the

quadratic function is decreasing. Note that an alter-

native approach could be to obtain matrix P online

taking into account the actual system realisation. This

would imply a conservativeness smaller than the one

obtained here. However, it would require to solve an

optimisation problem at each step within the predic-

tion horizon. This would lead to increase the online

computation burden with the risk of preventing to

achieve one of our main purposes, which is the real-

time applicability of the method to fast systems.

Once determined a positive definite matrix P

related to the Lyapunov function V that ensures

asymptotic stability, the next step is to calculate a

local control law for the closed-loop system (6). Note

that the adaptive local control law could be obtained as

a convex combination of the previously determined

gains (� j). However, this computation would require to

solve online an LP problem for every step within the

prediction horizon, see (Gonzalez et al. 2010).
Here, we formulate an explicit local feedback

gain taking into account the online system realisation.

In this way, computation burden is reduced and

conservativeness would be similar to the time-invariant

case. Furthermore, in order to ensure stability, we are

explicitly considering the previous matrix P in the

formulation of the feedback gain.
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First, we follow an approach similar to the one
presented in (18), but now, we consider an explicit
solution for each sampling instant k. This leads to the
following minimisation problem

min
�k

�xTkQ �xk þ �
T
kR�k þ

�
Ak �xk þ B�k

�T
P
�
Ak �xk þ B�k

�
,

ð19Þ

where �k ¼ Kk �xk is the local control law for the closed-
loop mismatch system (6) without additive uncertain-
ties. In this way, the convex cost function with respect
to the control input � is given by

f 
 ¼ �xTkQ �xk þ �
T
kR�k þ �xTkA

T
kPAk �xk

þ �TkB
TPB�k þ 2 �xTkA

T
kPB�k: ð20Þ

The optimal solution is analytically solved differenti-
ating with respect to the control input �k and equating
to zero, that is,

@f 


@�k
¼ 2R�k þ 2BTPB�k þ 2BTPAk �xk ¼ 0, ð21Þ

producing

�k ¼ �ðRþ BTPBÞ�1BTPAk �xk: ð22Þ

Finally, the feedback control gain is defined as
(Remark 3)

Kk ¼ �ðRþ BTPBÞ�1BTPAk: ð23Þ

Remark 3: Note that the feedback gain (23) is
obtained solving analytically the convex optimisation
problem (19), which is related to a Lyapunov function
where matrix P was calculated in (18). Therefore, the
control gain (23) ensures asymptotic stability for the
closed-loop mismatch system (6) without additive
uncertainties. Recall that such uncertainties are
bounded inside reachable sets (see the following
section). The proof for a similar statement is found
in (Kothare et al. 1996), see Theorem 3.

3.2 Online reachable sets

This section focuses on the reachable sets calculation.
Consider the uncertain closed-loop system (6) whose
evolution depends on the local control action (Kk �xk)
and the uncertainties. Then, the reachable set at first
step within the prediction horizon is denoted as
Rk¼ {0}, where subscript k means current sampling
instant. The rest of reachable sets are recursively
calculated as (Remark 4)

Rkþiþ1¼
4
ðAkþi þ BKkþiÞRkþi �W 8i ¼ 0, . . . ,N� 1,

ð24Þ

where N is the prediction horizon.

Notice that Rkþiþ1 depends on the current system

realisation, Akþi, the control action, Kkþi, defined in
(23) and the set of uncertainties, W.

Remark 4: Since reachable sets are calculated online,
this means that large system uncertainty or large
system complexity could lead to increase computation
time. We remark that this is a mathematical problem

related to the implementation of Minkowski sum
algorithm and it is beyond the scope of this article.
However, as we will see in Section 4, we achieve a low
computation time for middle-size applications.

3.3 Terminal cost and terminal invariant set

A common approach to ensure the asymptotic stability
of MPC consists in incorporating both a terminal cost
(�) and a terminal constraint set (�) (Mayne et al.

2000). In this section, we are focusing in both issues
related to the nominal system (3). Notice that, stabil-
ity properties for analogous control strategies have
been analyzed in the literature, see for instance (Limon
et al. 2005).

The purpose of the terminal cost is to ensure
closed-loop stability. To this end, it requires the use of
a Lyapunov function with a stabilizing control law.
In our case, a similar procedure to (18) has been fol-

lowed for the nominal system (3), see (Gonzalez et al.
2011) for details.

On the other hand, the last element of the predicted
state sequence must belong to an invariant set
(Kolmanovsky and Gilbert 1998; Blanchini 1999).
Once a stabilizing control law is given, we follow a
similar approach to that found in (Kolmanovsky and
Gilbert 1998; Blanchini 1999) to obtain the maximal
robust invariant set for the uncertain system contained

in the state constraint set. In addition, constraints on
the input are considered. For that purpose, we employ
the concept of one-step operator as

Qj
Að�Þ ¼ fx2X : � jx2U, ðAjþB� j Þxþw2� 8w2Wg,

ð25Þ

whereAjmeans the j-th extreme realisation of the setA.
Note that the one-step operator is a standard

tool for the invariant sets calculation through itera-
tive procedures (Kolmanovsky and Gilbert 1998;
Fiacchini 2010).

Then, given the one-step operator (25), the maxi-
mal robust invariant set for the uncertain system (1) is
obtained by means of the following iterative procedure:

(1) Initialisation: �0¼X\ {!2R
n�n: � j!2U 8j¼

1, . . . , n�}.
(2) Iteration: �kþ1 ¼ �k \Q

j
Að�kÞ 8j ¼ 1, . . . , n� .

1162 R. Gonzalez et al.



(3) Termination condition: stop when �kþ1¼�k

or �kþ1¼;. Set �¼�1¼�kþ1.

An important issue when dealing with algorithmic
procedure for computing the robust invariant sets is its
finite determinedness, that is, the conditions under
which the algorithm provides a solution after a finite
number of iterations. Results regarding the problem of
finite determination can be found in (Kolmanovsky
and Gilbert 1998; Blanchini 1999). We have not proved
finite determinedness for our case, since it is beyond
the scope of this article.

3.4 MPC Strategy

Finally, once local feedback control law and reachable
sets have been discussed, we focus on the online
computation aspect related to MPC. Notice that, MPC
policy deals with the nominal system, since the
mismatch between the real system and the nominal
one is compensated by the local control law in the
reachable sets (24). For that reason, as explained
in Figure 1, original constraints (2) must be
replaced with more restricted ones. Following the
ideas presented in (Chisci et al. 2001), imposing
that ~x 2 ~Xi, 8i ¼ 1, . . . ,N, where ~Xi is defined as

~Xkþi ¼ X�Rkþi 8i ¼ 0, . . . ,N, ð26Þ

the constraints satisfaction is ensured and feasibility is
also preserved in the presence of uncertainties in the
system (1). In addition, the input constraints are
replaced by

~Ukþi ¼ U� KkþiRkþi 8i ¼ 0, . . . ,N� 1: ð27Þ

Assumption 3.1: We assume that ~Xkþi and Ũkþi are not
empty sets.

From previous discussion, the MPC optimisation
problem to be solved at each sampling instant is
given by

min
Gk ¼
4
fgk,...,gkþN�1g

JNð ~xk,GkÞ ¼
XN�1
i¼0

~xTkþijk� ~xkþijk

þ gTkþijk�gkþijk þ�ð ~xkþNjkÞ

ð28Þ

subject to ~xkþijk 2 ~Xi 8i ¼ 1, . . . ,N, ð29Þ

gkþijk 2 ~Ui 8i ¼ 0, . . . ,N� 1, ð30Þ

~xkþNjk 2 ��RN, ð31Þ

where ~xkþijk denotes the predicted state vector at time
kþ i, obtained by applying the input sequence

Gk ¼
4
{gk, . . . , gkþN�1} to model (3) starting from the

state ~xk. The terminal cost �(	), and the terminal
constraint set given by the region � were both
calculated in previous section.

Notice that the MPC includes the new state
and input constraints (26), (27). Finally, matrices
� and � defined as �¼�T

� 0 and �¼�T40,
constitute tuning parameters for the MPC
control law. Depending on their values, more
attention will be given to the states or to the control
signals.

4. Illustrative examples

The aim of this section is to validate the performance
of the online robust tube-based MPC control law and
to compare it with existing robot motion controllers.
In this case, we have considered the trajectory tracking
problem of a mobile robot in slip conditions.1

The control objective is to steer a mobile robot such
that it tracks a reference trajectory as close as possible
along time. For comparison purposes, we have imple-
mented a robust tube-based predictive controller
based on reachable sets which are calculated offline.
For that purpose, reachable sets include both a
bounding set dealing with the system variation
and a bounding set related to additive uncertainty,
see (Gonzalez et al. 2011) for further details.
Furthermore, the linear feedback controller pre-
sented in (Gonzalez et al. 2009) has also been
implemented.

To test the online robust tube-based MPC control
strategy, we consider the following linear, time-
varying, discrete-time system, which corresponds to
the trajectory tracking error model of a mobile
robot considering longitudinal slip (Gonzalez et al.
2010, 2011)

ekþ1 ¼ A�kek þ Buk þ wk, ð32Þ

where e¼ [ex ey e�]
T
2R

3 is the state (location error),

u¼ [u1 u2]
T
2R

2 is the control input, and w is a
bounded additive uncertainty2 satisfying w2W, where
W is a polytope in the state space R

3. The matrices A�

and B are defined as

A�k ¼
1 "ðkÞ 0
�"ðkÞ 1 �ðkÞ
0 0 1

2
4

3
5, B ¼

Ts 0
0 0
0 Ts

2
4

3
5, ð33Þ

where "ðkÞ ¼ Tsð
ð1��irÞv

ref
r ðkÞ�ð1��il Þv

ref
l
ðkÞ

b Þ and �ðkÞ ¼

Tsð
vrefr ðkÞþv

ref
l
ðkÞ

2 Þ, Ts is the sampling period, �ir and �il

are the nominal slips, vrefr and vrefl are the reference
linear velocities of right and left wheels, respectively,
and b is the width of the robot. Note that system
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matrix A� depends on a parameter � ¼
½vrefr vrefl �

T
2 R

2 which is a time-varying vector such

that �k2�, 8k2Z
þ, where ��R

2 is a polytope

(Assumption 2.1). For that reason, the minimisation
problem formulated in term of LMI (18) has been

solved for n�¼ 22 vertices.
Simulations have been carried out in Matlab� suite

using the LMI toolbox (Gahinet, Nemirovski, Laub,
and Chiali 2004) and MPT toolbox (Kvasnica,

Grieder, and Baotić 2004). The reference trajectories

have been calculated based on unicycle kinematics

(Siegwart and Nourbakhsh 2004).
The parameters used for the simulations are:

Ts¼ 0.35 [s], b¼ 0.5 [m], nominal slip is 0.10 (10 [%]),

the uncertainty set is given by W¼ {w1,w22�

0.0035 [m],w32�0.25 [

]}. State constraints are

E¼ {ex, ey2�0.5 [m], e�2� 20 [
]}, reference linear

track velocities are restricted to fvrefr , vrefl 2

½0:1, 1:4� ½m=s�g, and real linear wheel velocities are
restricted to {vr, vl2 [�2, 2] [m/s]}, Q¼ diag([1 1

0.0001]) and R¼ I2, �¼ diag([1 1 0.0001]) and �¼ I2.

The parameters of the linear feedback controllers are

set to �¼ 1 and �¼ 0.6 in order to reach a soft
overdamped closed-loop behaviour. The initial loca-

tion of the mobile robot is always [0 0 0]T.

4.1 Simulation 1. Challenging trajectory

First, a reference trajectory that comprises the full

reference velocity range has been tested. In this case,
the reference trajectory is always changing of direction

and the reference velocities are always changing

between the bounds and never become constant.

The total travelled distance is close to 70 [m]. In this

first experiment, a prediction horizon N¼ 3 was

selected.
Figure 2a shows the reference trajectory and the

followed trajectories using the three control strategies.

In the figure, the robust tube-based MPC with online

reachable sets calculation is denoted as ‘Online MPC’,

the offline robust tube-based MPC approach as

‘Offline MPC’, and the linear feedback controller

(LF) is labelled as ‘Slip comp.’. In this case, it can be

observed that the predictive controllers fix the refer-

ence. Figure 2b shows the simulated slip values. Notice

that those slip values vary within the range previously

defined. In this case, it has a mean value of 16 [%].
The errors between the reference trajectory and

those steered by the compared controllers are displayed

with respect to the travelled distance in Figure 3.

Notice that, although a small random noise was added

to the states, the online MPC controller achieves an

almost zero error in the longitudinal and lateral

directions, and in the robot orientation. The offline

MPC controller also achieves an almost zero longitu-

dinal error. However, it achieves a small oscillatory

behaviour in lateral direction and in the orientation

error. The LF controller obtains a greater error

(maximum lateral error ¼ �0.10 [m], maximum longi-

tudinal error ¼ 0.07 [m], and maximum orientation

error ¼ �3.16 [
].
Figure 4 displays the control inputs or linear

velocities of the wheels. Notice the non-static refer-

ence velocities comprising all the range, that is, from

0.1 [m/s] to 1.4 [m/s]. In this figure, it is observed how

controllers compensate the effect of longitudinal slip,

that is, the motion controllers increase the set-points

in order to compensate the loss of traction due to the

slip effect.
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Figure 2. Simulation 1. Followed trajectories and simulated slip profile.
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Figure 3. Simulation 1. Errors with respect to the reference trajectory. (a) Logitudinal error, (b) lateral error and (c) orientation
error.
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Figure 4. Simulation 1. Control signals to be sent to the wheels. (a) Right wheel and (b) left wheel.
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Finally, Figure 5 shows the constraints sets for the
last step within the prediction horizon for both robust
tube-based strategies. It is possible to note that the
state constraint set, �E3 is slightly larger for the case of
the online MPC than for the case of the offline
predictive controller. The input constraint set, �U3,
obtained for the approach based on online reachable
sets calculation is larger than the approach where
reachable sets are solved offline. This implies that the
domain of attraction for the nominal predictive con-
troller is bigger than in the case in which reachable sets
are solved offline. This fact explains why the pro-
posed tube-based controller leads to a smaller conser-
vativeness in comparison to similar approaches where
reachable sets are calculated offline. Computation time

is slightly higher in the case of the online MPC but it is
always smaller than the sampling period.

4.2 Simulation 2. Agriculture-like trajectory

In this second simulation, an agriculture-like reference
trajectory has been tested. Particularly, this reference
trajectory looks like those trajectories employed in
agricultural tasks. The total travelled distance is
close to 160 [m]. In this case, the prediction horizon
was N¼ 5.

Figure 6a shows the reference trajectory and the
trajectories obtained using the compared controllers.
As in previous simulation, it is possible to observe that
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Figure 6. Simulation 2. Followed trajectories. (a) Trajectories and (b) slip profile.

Figure 5. Simulation 1. Reduced constraints sets ( ~E3, Ũ3). (a) State constraints and (b) input constraints.
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the predictive controllers achieve the best results. In

Figure 6b, the simulated slip values for each wheel are

plotted. It has a mean value of 10 [%].
Figure 7 presents the errors. As in previous simu-

lation, the online MPC controller achieves an almost

zero error in the lateral and longitudinal directions and

a small oscillatory orientation error. The offline MPC

strategy achieves a small lateral, longitudinal and

orientation errors. The LF controller obtains a maxi-

mum lateral error of �0.07 [m], a maximum longitu-

dinal error of 0.09 [m], and a maximum orientation

error of �2.61 [
]. Again, the online robust tube-based

MPC strategy achieves the smallest errors.
The velocity profiles are shown in Figure 8. As in

previous simulation, the motion controllers have to

increase the control actions in order to compensate the

negative slip effect.
Finally, Figure 9 shows the constraints sets �E5 and

�U5. Again, online adaptive controller reduces the

conservativeness of the offline tube-based MPC

approach. In relation to this issue, the state and input
constraint sets �E5, �U5, obtained for the approach based

on online reachable sets calculation are larger than the
approach where reachable sets were solved offline.

5. Conclusions

This article presents an online robust tube-based
predictive control law for constrained time-varying

systems with additive uncertainties. This is achieved via
online calculation of an explicit local controller that

compensates the system realisation at each step within
the prediction horizon. Thanks to this approach, the

conservativeness is reduced for the time-varying case
and the feasible region is enlarged in comparison to

other approaches, such as tube-based predictive
control using an invariant set (Langson et al. 2004)
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Figure 7. Simulation 2. Errors along the travelled distance. (a) Longitudinal error, (b) lateral error and (c) orientation error.
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or calculating offline reachable sets (Limon et al. 2005;
Gonzalez et al. 2011).

This control strategy has been tested through the
trajectory tracking problem of mobile robots subject to
slip conditions and hard constraints. In this case, the
control objective was to steer a mobile robot as close as
possible to the reference trajectory at each sampling
instant. The results have revealed the satisfactory
behaviour of the control law compared to typical
motion controllers.

Simulations have shown the achievement of the
main goals of the proposed online tube-based predic-
tive controller in relation to similar approaches:
small conservativeness and efficient real-time
execution. Following the proposed approach, small
reachable sets are obtained leading to a larger

feasible region in comparison to the offline MPC
strategy. Furthermore, after many experiments, we
have checked that the offline tube-based approach
becomes unfeasible for a prediction horizon greater
than 5. Following the proposed strategy (online tube-
based MPC), we have obtained feasible solutions for
N410. Regarding online computation, the proposed
control law has been ensured for a small sampling
period (0.35 [s]).

Notice that with the proposed approach, larger
conservativeness reduction can be reached for those
applications with more changing process dynamics and
more restricted process constraints. Future works
will include the test of the current control strategy
through physical experiments. Another attractive
future research line can be to replace polytopic
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Figure 8. Simulation 2. Control signals to be sent to the tracks. (a) Right track and (b) left track.

Figure 9. Simulation 2. Comparison of the reduced constraints sets ( ~E5, Ũ5). (a) State constraints and (b) input constraints.
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structures by zonotopes to reduce further the online
computation burden.
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Notes

1. Slip is a phenomenon that affects the motion of a mobile
robot in off-road conditions. It induces traction/velocity
loss during the robot motion, which can adversely
influence the mobility and controllability (Wong 2001;
Gonzalez et al. 2009). Slip can be present in lateral and
longitudinal directions. Lateral slip is due to the
deformation of the pneumatic tire surface and large
centrifugal force. Longitudinal slip is mainly caused by
the wheel-soil interaction, such as the sinkage effect. In
this case, we only consider longitudinal slip which is a
unavoidable phenomenon, even for mobile robots
working at low velocities.

2. Notice that, the additive term W includes the devia-
tion between the non-linear continuous-time
model and the linear discrete-time model (Gonzalez
et al. 2011). Furthermore, we enlarge it to take into
account the effects of the noise in the slip measurements
and the uncertainty in the estimation of the robot
location.
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