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Abstract

Min-Max MPC (MMMPC) controllers [P.J. Campo, M. Morari, Robust model predictive control, in: Proc. American Control Con-
ference, June 10-12, 1987, pp. 1021-1026] suffer from a great computational burden which limits their applicability in the industry. Some-
times upper bounds of the worst possible case of a performance index have been used to reduce the computational burden. This paper
proposes a computationally efficient MMMPC control strategy in which the worst case cost is approximated by an upper bound based
on a diagonalization scheme. The upper bound can be computed with O(#°) operations and using only simple matrix operations. This
implies that the algorithm can be coded easily even in non-mathematical oriented programming languages such as those found in indus-
trial embedded control hardware. A simulation example is given in the paper.
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1. Introduction

In Min-Max MPC controllers [2,1], the value of the con-
trol signal to be applied is found by minimizing the worst
case of a performance index (usually quadratic) which is
in turn computed by maximizing over the possible expected
values of disturbances and uncertainty. Solving these prob-
lems can be very time consuming as they are of the NP-
hard kind [3-5]. Thus, the implementation of this type of
control is very difficult leading to a lack of experimental
results. Only a few applications to plants with slow dyna-
mics [6] or complex simulated models [7] have been
reported. For moderate fast dynamics the min-max prob-
lem can be solved numerically only when the number of
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extreme realizations of the uncertainty is relatively low.
This is the case when the prediction horizon is small or
when a complexity reduction strategy like that of [8] is
used. When fast dynamics are to be controlled the min-
max problem cannot be solved numerically, and approxi-
mate solutions have to be used [9,10]. However, these tech-
niques impose great rigidity in the controller parameters, as
well as a certain degree of approximation error.

Recently, the MMMPC control law has proven to be
piecewise affine when a quadratic [11] or 1-norm based cri-
terion [12,13] is used as the cost function. With these
results, together with those obtained when multiparametric
mathematical programming is applied [12], explicit forms
of the control law can be built. However, the number of
regions in which the state space has to be partitioned grows
with the prediction horizon in a combinatorial explosion.
Thus, storage requirements and searching time for the
appropriate region can be very high for practical values
of the prediction and control horizons. A search tree strat-
egy has been proposed to reduce the searching time in the
MPC context [14,15]. If the process model or the controller
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tuning parameters change, however, the computation of
the regions has to be done again. This field continues evolv-
ing and new and more elaborate robust predictive control-
lers based on multiparametric programming have appeared
in [16,17].

Often the computational burden issue is solved by using
a bound of the worst case cost instead of computing it
explicitly [18]. The upper bound can be computed by using
LMI techniques such as in [19-23]. The LMI problems
have a computational burden that cannot be neglected in
certain applications. Moreover, the interior point methods
used to solve the LMI depend on the initial solution and
the time needed to converge is not always the same.

We consider in this paper linear systems with bounded
additive uncertainties and a quadratic criterion. In this
case, computing the worst case cost implies the solution
of a quadratic maximization problem with a computational
complexity that is exponential with the prediction horizon.
In this paper an efficient upper bound of a quadratic max-
imization problem over a hypercube is presented. It is
based on simple matrix operations that can be performed
very efficiently and it is easy to implement in dedicated
embedded control hardware. Within the MMMPC context
it can be used as a substitute for the worst case cost for sys-
tems in which there is no computational power available to
solve the LMI problems on line or in which it is difficult to
implement an LMI solver. Moreover, in different simula-
tion examples the performance of this strategy is very close
to the one obtained using the LMIs and not very different
from the one corresponding to the exact worst case cost.
On the other hand, as illustrated by the simulations given
in the paper, the computational burden of the proposed
bound is much lower than that of the LMIs and the one
needed to compute the exact maximum.

The paper is organized as follows: Section 2 presents the
MMMPC controller. Section 3 presents the efficient upper
bound on the quadratic maximization problem and Section
4 presents a performance analysis of the proposed
bound compared to the LMI bound. A simulation example
is given in Section 5. Finally, Section 6 presents the
conclusions.

2. Min-Max MPC with bounded additive uncertainties

Consider the following state space model with bounded
additive uncertainties [2]

x(t 4+ 1) = Ax(¢) + Bu(z) + DO(t) 1)
y(t) = Cx(2)

with x(f) € R™, u(t) € R™*, (1) € {0 € R™ " - ||6] . <
0,,}, y(t) € RI™> Here it will be assumed (without loss of

generality) that 0,, = 1. If this is not the case, matrix D can
be scaled to 6,,D. Consider a sequence u = [u(f)" --- u(t +
N, — DT of values of the control signal over a control
horizon N, and 0=[0(r)" --- 0(t+ N — 1)"]" a sequence
of future values of 0(¢) over a prediction horizon N. Fur-

thermore, let J(0,u,x) be a quadratic performance index
of the form

N
J(0,u,x) th—l—]|t Ox(t + jlt)
Jj=0

Ny—1
+ Z u(t + jl6) Ryu(t + jlo) (2)

=0
where x(¢ + ]|t) is the prediction of the state for ¢ +j made
at  when the future values of the uncertainty are supposed
to be given by the sequence 0€ @ = {0cR" dim 6

0], <1}. On the other hand QjeRdim”dimx, R; €

Rdim wxdimu are symmetric positive definite matrices used

as weighting parameters.

Min-Max MPC [1] is based on finding the control
sequence u that minimizes J(6,u,x) for the worst possible
case of the predicted future evolution of the process state
or output signal. This is accomplished through the solution
of a min-max problem like
u'(x) = argmin J*(u,x)

uclU (3)
st. Lu<c+ Fx
with

J*(u,x) = maxJ(0,u,x) (4)
0co

with U C RNM-dim u’ Le Rncx(N,,-dim u)’ F e Rncxdimx and
¢ € R™, (where nc is the number of constraints). The linear
constraints in (3) impose the robust fullfilment of the con-
straints on u and x [18]. As usual in all predictive control
schemes, the solution of problem (3) is applied in a feed-
back manner using a receding horizon strategy. Note that
the results presented in this paper are valid when using a
semi-feedback approach [24,25] in which the control input
is given by u(t) = —Kx(t) + v(¢) where the feedback matrix
K is chosen to achieve some desired property such as nom-
inal stability or LQR optimality without constraints. The
MMMPC controller will compute the optimal sequence
of correction control inputs v(¢). Rewritting the state equa-
tion of system (1) as

x(t 4+ 1) = Acyx(¢) + Bo(t) + DO(¢) (5)

it is clear that such semi-feedback MMMPC can be casted
into problem (3) with 4-; = (A4 — BK).

Note that the model is linear on x, u, @ and the cost is a
quadratic criterion. Therefore the cost function can be
rewritten as [2,8]

J(0,u,x) = u"M,u+ 0" Mg0 + 20" My,u + 2x" M} u
ZxTMT 0+ x"M x (6)

where My, is positive semi-definite. Therefore J(0,u, x) is
convex on 0. As J*(u,x) corresponds to the maximization
of a convex function on the hypercube ©®, the maximum
is attained at least at one of the vertices of ® [26]. Thus,
J*(u, x) can be computed as

J*(u,x) = max J(6,u,x) (7)

Ocvert{ O}
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In order to find the value of J*(u, x) it is necessary to eval-
uate the function for all the vertices of @. Taking into ac-
count that the number of vertices is 2V4™ ¢ it is clear that
the problem can only be solved in real time for small values
of the prediction horizon and small dimensions of 0 (be-
cause this is a well known NP-hard problem).

A different strategy aimed to reduce the computational
burden is proposed here. Instead of minimizing J*(u, x) in
(3) an upper bound of J*(u, x) is minimized. As it is shown
in the following sections this upper bound is computation-
ally efficient as it is computed in polynomial time (the com-
putational cost is O(n%) instead of O(2")). The tradeoff is a
slightly more conservative control law, but, as illustrated in
Section 5, the performance will not be very different to that
obtained when computing J*(u, x) exactly.

3. Upper bound for the quadratic maximization problem
In this section a procedure to efficiently compute an

upper bound of the worst case cost is given. It can be seen
from (6) that

J*(u,x) = max 0750+ 20 p(u,x) + r(u,x) (8)
Ocvert{O}

where

S =My

p(u,x) = Mg, u+ Msx 9)

r(u,x) = u' M, u + 23 M u+ x" M jpx (10)

Therefore, the problem of computing J*(u, x) belongs to
the following class of problems:

7= max 0'S0+20"p+r (11)

Oevert{ O}

The following proposition introduces an equivalent qua-
dratic maximization problem.

Proposition 1. Problem (11) is equivalent to the following
augmented problem:

[9;]‘““ [HoHp ’;H%] (12)

evert{On }

where 0, € R and @4 is the augmented unitary hypercube,
ie.

0.
@A—{[G],QEER,|98|<I,9€@}

Proof. Problem (11) can be rewritten as

T <10
06ve§{9} 0 p S 0

7" = max
-177 T1r-1
=] [ 5 ][0 ™
Oevert{®} | —0 p S —0

Note that if every vertex in vert{®} is multiplied by —1
then the resulting set of vertices does not change (that is,
vert{®@} = {—0:0 € vert{®}}). Thus,

= 5] [ 610
Y max
Oevert{O} —0 P S -0

-17"7 TI7-1
w0 15 510 a8
Oevert{O} 0 p S 0

The augmented problem (12) is equivalent to

max max , max
Oevert{O} 9 p S 0 Oevert{O®} 9 p S 9

which taking into account Egs. (13) and (14) is equal to

max{y",7"} ="
therefore

e [T 10

evert{Ox}

Thus, the augmented problem (12) provides the same max-
imum as problem (11) and this completes the proof. [

The augmented problem can be rewritten as

7" = max z Hz (15)

zevert{Ox }

where H € R"". Now suppose that 7 is a diagonal matrix
such that T > H, then

THz ' Tz = Z Tyz> < trace(T)||z||, < trace(T)
=1

thus
v* < trace(T)

Therefore a conservative upper bound of 7" can be
found solving the following LMI problem:
¢" =min trace(T

m »

st. T > H T diagonal

If H > 0 this upper bound of y* satisfies [27]:

This means that ¢" provides both an upper and lower
bound. Moreover, the conservativeness of the bound does
not depend on the dimension of H. Thus, ¢* is an appropri-
ate bound to be used within a worst case MPC strategy as a
conservative substitute of the worst case cost, i.e.

J (u,x) <min trace(7)
st. T > {““’x) PT(“’x)} (17)
o ~ | p(u,x) S
T diagonal
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However, solving the LMI problem (17) is computation-
ally demanding enough to pose a problem when the sam-
pling time is small and the dimension of H is moderately
high. Furthermore, its implementation can be challenging
in industrial hardware where complex numerical libraries
are seldom found. We propose another method to find a
conservative upper bound of J*(u, x).

The goal here is to find the smallest (i.e. minimum trace)
diagonal matrix 7 such that 7 > H. The strategy is to
obtain a diagonal matrix adding to Hn — 1 semi-definite
positive matrices of the form v;v]

H—i—vlvlT—i—vzv;—i-vwg+-~-+v,,,1vT =T

n—1
where T is a diagonal matrix. Thus the problem is to find v;,

i=1,...,n— 1 such that T is diagonal and the conserva-
tiveness of the bound is kept as low as possible. Suppose

bT
that H = | ¢
a {b H, |
in such a way that

a € R and that we want to add v,v]

bT d 0

0 H,

a

b H,

—&—vwf:[ ], dcR (18)
Once v is found, the process continues by choosing v, such
that H, is also partTially diagonalized and so on. If v; is cho-
sento be [o €] then vjv] becomes

o oF  oel
HIEEs

e oe ee
with «>0. This implies that ase=—b thus e=L,
d=a+o*and H, = H, + 2.

o

The parameter o should be chosen to minimize the error
introduced by the diagonalization in the original aug-
mented maximization problem. This error is

o
T
valvsz—zT{ b}[a —”7}2
T

The error is maximum when z turns out to be

. o
zf = mgn[ b]

(and also when it is of opposite sign). Taking into account
that

T
[a _b_]z*:
o

(where ||x||; is the 1-norm equal to the sum of the absolute
values of the components of x), the maximum error is

The value of o that minimizes the maximum error can eas-
ily be computed by finding the value that makes the deriv-
ative of

o
_b
o

1

2
o

b

o

1

1
= o+ —||b
o+ [I5ll;

1

equal to zero. Such value is
o =/[l5]]; (19)

The procedure to compute the upper bound ¢, is sum-
marized in the following steps:

Procedure 1. Procedure to compute o,(H), such that
ou(H) > maX.cyen(o,)2 Hz.

1. Let T = H € R™",

2. Fork=1ton—1.

3. Let Hyp = [Ty] for ij=k,...,n.

4. Compute o for Hgy, = baT 1_[; } from (19).

5. Make v} = [cx ;5}

6. Make v} = [0 0 v|eR".

7. Update T by making T = T + v,0..

8. Endfor.

9. Compute the upper bound from ¢,(H) =Y T;.

By construction 7' > H. Therefore, maX.cyerfo,)2 Hz <
MaX.cyenfo,)2' 12z = trace(T) = o,(H). That is, J*(ux)=
7(u,x) pT(u,x)}Zg o < [r(u,x) pT(u,x)} >
plux) S plu,x) S

Note that only simple matrix operations are needed to
compute the upper bound using the procedure given
before. This implies that the algorithm can be coded easily
even in non-mathematical oriented programming lan-
guages such as those found in industrial embedded control
hardware. This is relevant because a difficult implementa-
tion is a drawback when applying complex control strate-
gies in the industry.

Proposed strategy: The proposed control strategy will be
to apply the solution of

T
MmaX;cvert{©,}2 |:

-y o500 7)),

st. Lu<<c+Fx

in a receding horizon manner, where p(u, x), r(u,x) and S
are computed as in (9) and (10) and g, is computed using
Procedure 1.

Note that Procedure 1 runs for n — 1 iterations each one
with a computational complexity of O(x?), thus it is an
O(n’) algorithm. The matrix dimension n is in turn
(N - dim 0) + 1, therefore the number of necessary compu-
tations is roughly ¢;((N - dim6) + 1)°. Instead of minimiz-
ing a cost function that requires an exponential number
of operations (roughly ¢,(2¥4™ %), here it is proposed to
minimize an upper bound of this cost function that can
be evaluated in polynomial time. The overall computa-
tional burden will be much lower as illustrated in the exam-
ple given in Section 5.

Remark 1. Note that in Procedure 1 the goal is to find a
diagonal matrix 7 such that 7 > H > 0. The maximiza-
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tion problem maxzeven{@A}ZTTz will then be solved by
=3 Ty Suppose that at a certain iteration of
Procedure 1 we have a partly diagonalizated matrix
T > H in which Hg, of step 3 has all its elements non-
negative. Then maxX.cyero,)2' 72 = ||T||; = y*. Therefore,
it is not necessary to continue the diagonalization of T as
MaX.cverfo,)2" 1z is readily solved by o, = || T1|;.

4. Performance analysis of the proposed bound

Here the accuracy of the proposed upper bound is dis-
cussed. The upper bound will be compared with the LMI
bound and the 1-norm of the matrix H, which is itself a
very rough upper bound

N N
o= ||H|, = Z Z|Hij|
=1 j=1

The 1-norm will be equal to the maximum when all the ele-
ments of z* are non-negative. In the following it will be
shown that ¢, < 0.

Taking into account the block structure of H given in
(18) the 1-norm of H can be computed as

or = [|Hly +2[16]], + |a]

On the other hand, the 1-norm after a diagonalization
step can be computed as

Cflatlsl 0
S s
T
< b+ 8l + 1721, + Hﬁ’,j' a1
Taking into account that || ‘f}fHT I, = ||2||, it follows that
0y < 0 (22)

Thus, the diagonalization scheme proposed in Section 3
provides a succession of improved upper bounds.

Now both the proposed bound and the 1-norm will be
compared with the LMI bound. Consider Fig. 1 which
shows the mean deviation of the proposed bound (solid
plot) from the LMI bound (computed as (% — 1) x 100)
as a function of the dimension of H. For this comparison,
a group of random positive definite matrices where the
mean value of its non-diagonal elements is zero have been
generated' (200 matrices for each dimension). It can be
seen that the deviation from the LMI bound grows with
matrix dimension, as it can be expected from the error
introduced at each diagonalization step. Even though, it
is noteworthy that for much of the range needed in control
applications (up to dim{H} =30, which accounts for
1,073,741,824 vertices in @) the deviation from the LMI
bound remains under 20%. Moreover, it can be seen that

! These matrices are generated subtracting two uniformly distributed
random matrices created using the Matlab rand function. Then, every
matrix is multiplied by itself transposed to make it positive semi-definite.

160} ]
140} + 1

120t N -

8of + 1

deviation from LMI bound (%)
+

0 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

matrix dimension

Fig. 1. Mean deviation from the LMI bound plotted as a function of
matrix dimension for a group of randomly generated matrices (see text for
details). 1-norm dotted, proposed bound solid.

the I-norm is always worse (more conservative) than the
proposed bound.

Another interesting property is that, taking into account
Remark 1, the deviation of the proposed upper bound from
the LMI bound depends on the mean value of the elements
of Hy, with H = H{H,. As illustrated by Fig. 2, the highest
error is when the mean is around zero, quickly dropping to
very small values when the mean goes to positive or nega-
tive values. In MMMPC control problems, as found by the
authors through many simulations, the mean of the sum of
the elements of matrix Hy is generally neatly different from
zero, although not all its entries share the same sign. This
means that the bound accuracy will be close to that of
the LMI bound.

40
30

20

deviation from LMI bound (%)

30 0

-0.5

matrix dimension 1
mean of H, elements

Fig. 2. Mean deviation from the LMI bound plotted as a function of the

mean of the elements of H, for a group of randomly generated matrices of

dimension between 20 and 50.
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800

speed-up factor
[ ¢, B o) BN
o O O O O
o O O ©O O

= N
o o
o o

8o

20 -2

matrix dimension mean of Ho elements

Fig. 3. Speed-up factor (computed as fﬁg’%) between the proposed
propose

upper bound and the LMI bound for a group of randomly generated
matrices with different mean and dimension.

4.1. Computational burden of the upper bound

The proposed bound has lower computational burden
than the LMI bound. Fig. 3 shows the speed-up factor

fl
(computed as 5 M where flopspyy and flopsyroposed

OPSproposed
are the flops needpecli to compute the LMI and proposed
upper bounds respectively) for a group of random matrices
with different mean and dimensions.” Remark 1 has been
taking into account when computing the proposed bound.
It can be seen that the proposed bound can be computed
using many times less floating point operations® than the
LMI bound. This can be exploited to apply worst case con-
trol for systems with fast dynamics or to use hardware with
low computational power.

It is noteworthy that as matrix dimension grows no clear
trend is seen when the mean of H,, is around zero. The com-
putational cost for the proposed bound grows as O(n°)
where 7 is the matrix dimension. On the other hand, the
interior point methods used for this class of LMI problems
are also O(n’) algorithms, hence the relatively constant
speed-up factor seen in Fig. 3 for zero mean matrices. Note
however that the underlying constant in the number of
operations needed by the LMI solver is bigger, leading to
the speed-up factor shown. On the other hand, as illus-
trated in Fig. 3, the mean of the entries and the dimension
of H,, where H = H,H,, affects the speed-up factor
severely when this mean is different from zero. In this case,

2 To make this comparison as fair as possible, the LMI bound has been
obtained using the solver by F. Rendl that can be downloaded from
http://www.math.uni-klu.ac.at/or/Software. This solver, spe-
cific for problem (16), proved to be very much efficient than the standard
solver provided with the LMI Toolbox of Matlab.

3 The number of operations needed for computing each bound have
been obtained using the Matlab flops function. The precision of the LMI
solver was left to default.

in the light of Remark 1, the proposed upper bound is com-
puted much faster than the LMI bound. In fact, when most
of the entries of matrix Hy (and therefore H) share the same
sign, the speed-up factor between the proposed bound and
the LMI bound grows progressively showing a linear trend.
This can be interpreted as an evidence that for those matri-
ces, the proposed bound tends to be O(n%) and not O(1°)
which is the case when the mean is around zero.

5. Simulation example

Consider the two-tank network shown in Fig. 4. For this
process, liquid streams flow into tanks 1 and 2 at respective
volumetric rates F}, and F,; the outflow from each tank is
assumed to be proportional to the respective liquid levels /;
and /, in each tank. The liquid leaving tank 2 is split into
two with a fraction F exiting, and the remainder R pumped
back to the first tank. Thus, this is a two-input, two-output
system, with the flow rates of the two inlet streams as the
two inputs, and the liquid level in each tank as the two out-
put variables.

Let the section for tank 1 be 3 m? and that of the second
tank 2 m%. Moreover, assume that the constants of propor-
tionality are identical and given as a; = a» = 0.5 m”> min ™!
and that 40% of the amount of liquid leaving tank 2 is recy-
cled back to tank 1. With these assumptions the following
continuous time state-space model can be obtained (see
chapter 20 of [28] for details):

0,=a,h, F
2

I h2
02:a2h2
F

Fig. 4. A two-tank network.

A 4

"
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Fig. 5. Liquid levels and inlet flows for the proposed MMMPC (tank 1:
solid plot, tank 2: dashed plot).

05 02 1
3 3 30

X = X+ u
05 05" |,
) 2 2 (23)
(1 0

y= x
0 1

A discrete time model has been obtained from (23) sam-
pling at 0.2 minutes using a zero-order holder. Fig. 5 shows
the results of the proposed controller applied to the two-
tank model. The set-point for the liquid level of each tank
was 0.4 m and 0.5 m, respectively. The prediction and con-
trol horizons were N =15 and N, = 10 respectively. Note
that being this a two-input, two-output system the number
of vertices to be considered is 2** instead of 2'°. Further-
more, the number of decision variables in the optimization
problem is doubled. The weighting matrices were

0= 1 0 ' 12 0

o1 Lo 12
An uncertainty of £0.02 m is considered to affect both
liquid levels. Note that a random noise of +0.01 m has
been added to both levels. On the other hand, tank 1 suffers
an unexpected loss of liquid at sampling time ¢ = 60 that
reduces the level 0.1 m. Finally, in the simulation the fol-

lowing constraints were taken into account when comput-
ing the control signal

0] _ . _[os 0] _ [0S
o) lua] [o] << i)

~00s] _ - [00s 9
005 | SAB <605 24)

This example will be used to discuss how the increasing
horizons affect the computational burden of the proposed

10%q . . . ; ;

10°

10*

10°

speed-up (average plus max—min)

100I N L I L L
4 5 6 7 8 9

prediction horizon

Fig. 6. Maximum, average and minimum speed-up over the original min-
max problem for different values of the prediction horizon. Note that a
logarithmic scale is used in the vertical axis. Speed-up is computed at each
sampling time as DODSorigat

flopSproposed

900 T T T T T T T

800

700

600} T

5001 T

4001

300

200

speed-up (average plus max—min)

100

Ol 1 1 1 1 1 1 I
4 6 8 10 12 14 16 18 20

prediction horizon

Fig. 7. Maximum, average and minimum speed-up over the minimization
of the LMI upper bound problem for different values of the prediction

horizon. Speed-up is computed at each sampling time as ﬂf;’f’J

proposed

strategy compared to that of the original min-max prob-
lem.* Fig. 6 shows the average, maximum and minimum
speed-up (computed as f;];fsiii:) for different values of
the prediction horizon. It can be seen that even when the
number of vertices is small (i.e., N small) the speed-up is
rather high. Moreover, as the prediction horizon grows
the speed-up increases exponentially. Thus, for a given
hardware the user can pick the desired prediction horizon
from a wider range of admissible values. Note how the

4 For both cases, the min-max problem was solved using the same
numerical solver provided with finincon function of Matlab.
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Table 1

Deviation from the original MMMPC optimal cost and the LMI bound optimal cost (minimum, average and maximum) for different values of the

prediction horizon (N) in the simulation example of Section 5

N Real (min.) % Real (avg.) %

Real (max.) %

LMI (min.) % LMI (avg.) % LMI (max.) %

4 2.88 19.3 44.2
5 1.69 17.8 43.9
6 1.07 14.7 42.7
7 1.19 11.1 36.97
8 1.03 12.2 27.1
9 0.27 5.59 25.5
10 n/a n/a n/a
15 n/a n/a n/a
20 n/a n/a n/a

0.00 0.44 4.74
0.00 1.22 4.76
0.00 2.18 4.77
0.00 2.5 5.47
0.00 2.76 7.21
0.00 2.21 7.44
0.00 2.17 7.7

0.00 243 9.71
0.00 1.88 10.3

speed-up is clearly variable for any given value of N. This is
due to the different number of iterations of the numerical
solver depending on the value of x and the constraints.

Furthermore, the computational burden of the minimi-
zation of the proposed upper bound is lower than that of
the minimization of the LMI bound. This is illustrated in
Fig. 7 in which the average, maximum and minimum
speed-up over the LMI bound is plotted. Note that the
average speed-up grows in a linear trend that leads to a
much lower computational burden for typical values of
the prediction horizon.

The accuracy of the proposed bound in the predictive
control scheme proved to be very high. Table 1 shows the
deviation from the optimal cost obtained using the exact
maximum and the upper bound computed using the LMI
solver. Different simulations using different values of N
have been made and the minimum, average and maximum
deviations have been computed. Whereas the maximum
deviation from the real optimal cost can be noticeable for
lower values of A, it is quite remarkable that it tends to
be smaller as the prediction horizon grows. Moreover, the
average deviation is much lower and also decreases with
higher horizons. On the other hand, the deviation from
the optimal cost obtained with the LMI bound is always
very small even at its maximum. Notice here that the devi-
ation tends to grow with the prediction horizon. It is, how-
ever, very small even for values of N =20 (an average
deviation under 5%, and a maximum about 10%).” Figs. 8
and 9 illustrate the evolution of the deviation between the
optimal costs using the proposed bound and both the exact
cost and the LMI bound cost. It can be seen that the max-
imum deviation from the exact cost is when the state is very
far from its desired value. However, the optimal costs are
very close when the state is nearer its desired state. On the
other hand, as expected from data in Table 1, the optimal
costs using the proposed bound and the LMI bound are
nearly the same through the entire simulation. Thus, from
this example it can be concluded that the proposed scheme
is much more efficient, from a computational point of view,

> Note that in this two input, two output system a prediction horizon
N = 20 yields an augmented matrix of dimension 41 in the maximization
problem.

optimal cost

P

40 60 80 100 120
samples

Fig. 8. Optimal cost for the original MMMPC (dotted) and the proposed
controller (solid) for a simulation with N, =5, N=09.

15 T T T T T T

optimal cost

1 20 40 60 80 100 120
samples

Fig. 9. Optimal cost when the upper bound is computed using the LMI
bound (dotted) and the proposed bound (solid) for a simulation with
N,=5, N=20.

than the original MMMPC and the LMI bound. Further-
more its accuracy is comparable to that of the LMI bound.
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When the computational burden of the original min-max
problem is taken into account it seems that the little average
deviation from the exact maximum is a price very low for a
much greater range of processes to which this type of con-
trol can be applied.

6. Conclusions

An MMMPC based on an efficient upper bound of the
worst case cost has been presented in this paper. It has a
much lower computational burden than other approaches
based on LMI techniques and can be implemented in ded-
icated industrial control hardware. The price to be paid is a
moderate increment in the conservativeness of the bounds
obtained. However, its little computational burden opens
new fields of applications of MMMPC controllers.
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