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Abstract— In this paper we propose a stabilizing data-based
model predictive controller for systems subject to constraints in
which the prediction model is inferred from experimental data
of the plant using a machine learning technique. The inference
method is a modification of the kinky inference tailored for
model predictive control. In particular, the modified method has
a lower computational effort and provides smoother predictions
than the original method. The controller formulation considers
soft constraints in the outputs, hard constraints in the
inputs and guarantees closed-loop robust stability as well as
performance by means of the use of different control and
prediction horizons and a weighted terminal cost. Under the
assumption that the model of the system is Hölder continuous,
we prove that the closed-loop system is input-to-state stable with
respect to the estimation errors. The results are demonstrated
in a case study of a continuously stirred-tank reactor.

I. INTRODUCTION

Model predictive control (MPC) [1] is based on using a
dynamical model of the plant to predict the behavior of a
system given some sequence of future control actions. The
predictions are used to estimate the cost associated to the
predicted trajectory as well as the degree of satisfaction of
the constraints.

Since the decisions on control actions rest on the predictive
model, its accuracy is key. If accurate predictive models
can be derived from first principles, a wealth of work is
applicable that allow the design of MPC controllers with
strong theoretical performance guarantees. Unfortunately, in
reality, such models may not always be available. This may
be due to the complexity of their derivation or owing to the
controller operating in changing environments that exhibit a
priori unforeseen dynamics.

For such scenarios, data- or learning-based MPC methods
have attracted increasing attention in recent years. These
methods have the capability to infer prediction models based
on historically available data. Traditionally, this most of-
ten has been done offline by means of dynamic systems
identification techniques, often suitable to approximate the
dynamics of the system around a given operating point using
a linear model [2].

Recently, different predictive control schemes which are
based on non-linear machine learning methods have been
proposed in the literature. For example, Aswani et. al. [3]
have considered modified Nadaryana-Watson estimators to
estimate the global uncertainty of the system, in order to im-
prove predictions of an a priori linear model. Subsequently,
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Canale et. al. [4] proposed a data-based nonlinear predictive
controller that implicitly uses Lipschitz interpolation tech-
niques based on the assumption that a Lipschitz constant
of the dynamics as well as a finite bound on the noise are
known a priori. Unfortunately, it remained unclear how these
parameters can be chosen in practice and what the impact
of choosing them incorrectly might be. Thereby, it remains
an open question in how far this approach does exhibit
sufficient black-box learning capabilities to be considered a
fully fledged data-based controller.

In this paper we propose an extension and generalization
of this setup. In contrast to earlier works based on Lipschitz
interpolation, our approach is based on the more general class
of kinky inference methods [5]. Furthermore, the parameters
corresponding to the Lipschitz constants are also estimated
from the data, following the procedure in [6], known as
parameter optimised kinky inference (POKI).

As in standard nonparametric regression methods, the
computational effort when using POKI for making pre-
dictions grows with the sample size. Since in MPC, the
prediction model is frequently evoked to compute large
numbers of predictions, reducing computational effort for
prediction is important. To this end, we propose a variation
of kinky inference that is designed to speed up predictions.
Instead of making predictions on the basis of all observed
data, our approach is based on using a different reduced
subset of data for each region of a partition of the state space
to implement the smooth kinky inference method presented
in [5]. The use of different reduced data sets depending
on the current state decreases the computational effort of
the inference method. The smooth predictions yield smooth
control actions that result in better performance. The whole
method is called smooth projected kinky inference (SPKI),
which is an extension of existing data-based controllers such
as [7], [8].

In addition, a new controller formulation that guarantees
closed-loop robust stability as well as performance by means
of the use of different control and prediction horizons and
a weighted terminal cost is proposed. This controller is an
extension of the controller proposed in [9], which provides
a stabilizing design without the use of a terminal constraint.
The new controller takes into account an output feedback for-
mulation. Under the assumption that the model of the system
is Hölder continuous, we prove that the closed-loop system is
input-to-state stable with respect to the measurements noises
and prediction errors.

The proposed strategy can be designed using input-output
data collected from the application of standard test signals
and identification procedures [2] and, because of the gen-



erality of its formulation (output feedback control of input
constrained systems), it can be applied to a wide set of
control problems. The proposed controller has been validated
in simulation using the control of a continuous stirred tank
reactor case study.

The rest of the paper is structured as follows: Section
2 states the dynamical scheme of the control, defining the
scope of the problem. Section 3 introduces the prediction
scheme, which includes the definition of the prediction
function, the design of its parameter and a couple of
modification to enhance the performance of the method.
Section 4 introduces the model predictive controller and its
ingredients to ensure robust stability and recursive feasibility.
Finally, Section 5 illustrates the settings in a case study: a
continuously-stirred tank reactor.

Notation

Given two column vectors a, b, the notation (a, b) implies
[aT , bT ]T . Given a set Y ⊂ Rp and a point y ∈ Rp, the
distance of the point to the set is defined as d(y,Y) =
min
z∈Y
‖z−y‖∞ where ‖ · ‖ stands for a norm in the euclidean

space and ‖ · ‖∞ denotes the infinity norm. The ball of
radius R is defined as x ∈ B(R) = {x : ‖x‖∞ ≤ R}. The
set Iba stands for set of integers from a to b. |A| implies the
cardinality of the set A. Given two sets A;B, the Minkowski
sum A ⊕ B is defined as the set {a + b : a ∈ A, b ∈ B}.
Given a set A and a space B, ProjB(A) stands for the
projection of A in B. A function α : R≥0 → R≥0 is a
K function if α(0) = 0 and it is strictly increasing. It is
a K∞ function if besides that, it is unbounded. A function
β : R≥0×R≥0 → R≥0 is a KL function if β(s, t) is K∞ in
s for any value of t and limt→∞ β(s, t) = 0 for all s ≥ 0.

II. CONTROL OBJECTIVE

The objective of this research is to develop robustly
stabilizing output feedback predictive controllers whose
model is entirely based on data, for a nonlinear sys-
tem subject to hard constraints in the manipulable inputs
u(k) ∈ U ⊂ Rnu and soft constraints in the measured con-
trolled outputs y(k) ∈ Y ⊂ Rny such that it is steered to a
given reachable reference yr. It is assumed that the reference
is an equilibrium point that satisfies the constraints, such
that yr ∈ Y and ur ∈ U .

It is considered that the system can be described by a
NARX model [10], i.e. the dynamics can be written as
follows:

y(k + 1) = f(x(k), u(k)) (1)

where the state is

x(k) = (y(k), · · · , y(k−na), u(k−1), · · · , u(k−nb)) ∈ Rnx
(2)

with nx = (na + 1)ny + nbnu, for some memory horizons
na, nb ∈ Z. Note that x(k) is defined for nb ≥ 1; however,
we could have nb = 0, to indicate that the state xk only
depends on the past outputs.

It is considered that the model function f is unknown.
Instead, in order to infer the future evolution of the system,
a set of input and output trajectories obtained from experi-
mental data is available. The data set is denoted by D. To this
end, a machine learning inference method that uses directly
the information in the data set D to predict the system model
will be used. This prediction model is nonexplicit and it is
based on a machine learning method proposed in [6] known
as “parameter optimised kinky inference”, POKI.

The proposed controller decides the value of the current
inputs, given the latest measurements and inputs, the refer-
ence and the data set:

u(k) = κMPC(x(k), yr;D)

III. TRAJECTORY PREDICTION WITH SMOOTHED
PROJECTED KINKY INFERENCE

A. Kinky inference

The kinky inference (KI) approach is a class of nonpara-
metric regression methods that are described in [5], [11]. For
completeness, a brief outline of a subclass of these methods
is provided in this Section. The method is used to learn a map
f : W → Z . The map is assumed to be Hölder continuous
with Hölder constant L∗ and exponent 0 < α ≤ 1, so
∀w1, w2 ∈ W the following condition holds:

‖f(w1)− f(w2)‖ ≤ L∗‖w1 − w2‖α

From this map f , certain pairs of inputs and outputs
(possibly noisy) are known, forming the data set

D : = {(wi, f̃(wi))|i = 1, . . . , ND}

where f̃ stands for the noisy observation of f . The set
containing only the input data points is denoted as WD =
ProjW(D). Although the true function f remains unknown,
we assume that a bound on the observational error (̄e) is
known, so ∀w ∈ W : ‖f̃(w)− f(w)‖ ≤ ē ∈ R≥0.

Remark 1: Note that if α = 1 the Hölder definition
becomes the so-called Lipschitz continuity. However, the
extension to Hölder allows one to handle more general
systems where the Lipschitz continuity does not hold true,
whereas the Hölder continuity does. For instance, consider
the case of a tank with two holes, one at the bottom and
the other one at H = 1 m. If the water height were to be
controlled in a compact set such that 0.8 m≤ h ≤1.2 m (e.g.),
the NARX model of the problem is:

h(k + 1) = h(k) +
Tm

A
(qin(k)− qout(h(k)))

where Tm is the sampling time, A is the area of the tank,
qin the input flow and qout = k1

√
h+k2

√
max{(h−H), 0}

the output flow.
Figure 1 shows the function output flow qout to be iden-

tified for k1 = k2 = 1. The Lipschitz constant L∗(α = 1)
becomes infinite for h=1 m, while the Hölder continuity still
holds for α < 1.

Given an input q /∈ WD, the estimated value of the map
f̃ is built in the following way [5]:
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Fig. 1. Demonstration of the operation of KI with 20 samples in h, L=1.25
and α = 0.8 for qout.
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Fig. 2. Kinky Inference for f(x) = −x2
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f̂j(q; θ,D) =
1

2
min

i=1,...,ND

(
f̃i,j + LD‖q − wi‖α

)
+

1

2
max

i=1,...,ND

(
f̃i,j − LD‖q − wi‖α

)
(3)

where f̂j(q; θ,D) is the j-th component of f̂, f̃i,j is the j-th
component of the value of the observed map for the i-th data
point in D, wi is its corresponding input, ND is the number
of data points and θ are the parameters {LD, α}.

Figure 1 also shows the prediction for ND = 20 samples,
LD = 1.25 and α = 0.8. A simpler example of the geometric
interpretation of the Kinky Inference method is shown in
Figure 2, where f(x) = −x

2

2 + 3x
2 is predicted based on 6

noisy samples, with L = 1.5 and α = 1.
The value of the Hölder constant and the exponent of

the function are unknown. While in several works, a pri-
ori knowledge of the correct Hölder constant is presup-
posed [12], [13], other works have proposed methods of
adapting these parameters to the data [14], [11], [6]. In
this paper, we follow the so-called POKI method [6], which
optimises both parameters to minimize empirical risk and
appears to be capable of smoothing out noise effectively
without any distributional assumptions.

To this end, two different data sets are used: one for
conditioning and predicting, Dcond, and another one for val-
idation, Dval, where the prediction error is to be minimized.
Hence, grouping θ = (LD, α),

θ := arg min
θ

1

|Wval|
∑

w∈Wval

‖f̃(w)− f̂(w; θ,D)‖ (4)

where Wval = ProjW(Dval).
It is important to remark that the maximum estimation

error in the KI predictor, defined as µ = sup ‖f̃(w)− f̂(w)‖,
decreases tending to ē when the density of the input data set
increases, being able to predict the observed map f̃(·) with
arbitrary small error from a data set dense enough, provided
that the real map is Hölder continuous.

The kinky inference method has multiple advantages,
some of which are:
• Learning simplicity. It requires only two hyperparame-

ters, the Hölder constant LD and exponent α. Obtaining
the unknown constant given a noisy data set is also easy
to compute [6], [11].

• Online configurability. It is very simple to include new
data points, updating the predictor.

• Parallel prediction. The prediction is calculated by a
loop over the data points; hence, it is easily paralleliz-
able.

• Numerically stable, as opposed to Gaussian processes;
and computationally simpler - it can be computed in
few cycles on micro-controllers.

B. Prediction model

Given an experimental data set Dexp = {(yk, uk),∀k ∈
INexp
1 } including a sequence of input and output trajectories,

and a fixed na and nb, the data set for the prediction model
can be constructed as

D := {(wk, zk)|k = 1, . . . , ND}

defining wk = (x(k), u(k)) ∈ Rnw with nw = nx + nu
and zk = y(k + 1) ∈ Rny . The prediction model can be
calculated from D by means of the KI method and it can be
written as zk = f̂(wk; θ,D). With a slight abuse of notation,
this is expressed as follows:

ŷ(k + 1) = f̂(x(k), u(k); θ,D) (5)

Remark 2: Sometimes prior knowledge of the system is
available. Consider the system

y(k + 1) = g(x(k), u(k)) + f(x(k), u(k)), (6)

where g(x, u) stands for the known dynamics (e.g. a linear
behavior), and f(x, u) represents some unmodeled dynamics.
In this favorable case, it is always possible to include this
prior knowledge of the system in the prediction of the
evolution, and to learn and to predict, based on data, the
unmodeled part:

ŷ(k + 1)− g(x(k), u(k)) = f̂(x(k), u(k); θ,D).
As motivated in the previous Section, the KI method

enjoys properties that make it suitable for the estimation
of prediction models. However, the computational effort
depends linearly on the size of the data set. Furthermore, the



prediction may not be smooth, which may limit its real time
applications. This motivates the study of methods to reduce
the computation cost and to smooth the predictions. This is
particularly relevant in the derivation of prediction models
for model predictive control, because, as it was mentioned
before, the control techniques require the solution of an
optimisation problem at each sampling time.

C. Smoothed projected kinky inference

In this Section we present the proposed SPKI method.
This method is based on two modifications of the KI method,
namely the use of a reduced number of points to carry out the
predictions, reducing the computation time; and the filtering
of the outputs to smooth the result.

1) Smooth Kinky Inference: The term kinky inference
makes reference to the result of the predictor described
in equation (3). Due to the kind of interpolation done,
based on data and Hölder continuity of the function, the
resulting prediction f̂ is Hölder continuous but may be
nondifferentiable (see Figure 1), which may cause gradient
optimisation methods to present solving issues. To avoid such
problems we propose to use a version of the predictor known
as smoothed kinky inference (SKI) [5]. In this predictor, a
convex combination of various points surrounding the query
point w to be interpolated is used, as it is shown below:

f∗(w; θ,D) = σ0 f̂(w) +

nw∑
i=1

σi
2

(̂f(w + eiδ) + f̂(w − eiδ)) (7)

with weights
∑nw
i=0 σi = 1, where ei denotes the vector with

a 1 in the i-th coordinate and 0’s elsewhere, and δ is the
incremental factor. Note that the dependence of f̂ w.r.t. to θ
and D is omitted in favor of conciseness. The new predictor
f∗ is Hölder continuous and its Hölder constant is the same
as in the prediction function f̂(·) [5].

The KI predictions at each one of the dimensional compo-
nents of w can be used to calculate an approximation of the
gradient of f∗, and by extension, to estimate the gradient of
the cost. This gradient can be given to the optimiser in order
to increase the iteration speed. Such gradient is approximated
by:

∂f∗

∂wi
' f̂(w + eiδ)− f̂(w − eiδ)

2δ

2) Projected Kinky Inference: In its standard form, the
computation time to evaluate a prediction of the KI prediction
grows linearly with the number of training data points
contained in the data set. As predictions occupy a large
amount of time during the repeated optimisations performed
by our MPC controller, this property constitutes a serious
computational bottleneck. In this Section, we will address
this issue. To this end, we partition the input workspace W
into disjoint subsets and base the prediction of any given
query point q ∈ W only on sample points contained in the
same (and neighboring) subsets.

The input spaceW ⊂ Rnw of the data set D is divided into
several partitions Wi, such that the union of them conform

the original space W = ∪(Wi), and their intersection is
null: ∩i 6=jWi = ∅, ∀j. This partition is calculated offline and
then a classification algorithm is built to locate the partition
Wi to which a query point belongs to. This partition can
be calculated taking into account different objectives, as for
instance, to ensure a regular distribution of data points.

Once the set of the partition where the query q ∈ W is
located is found, the prediction is computed as

f?(q; θ,D) := f∗(q; θ,Di), (8)

only taking into account sample points of a local subset of
data points Di where

Di = {D|w ∈ WD : w ∈ (Wi ⊕ B(Ri))} (9)

and “ ⊕ ” represents the Minkowski sum. The selection of
the data set Di aims to include points in a ball of radius Ri
around any query state, to make predictions better for points
in the frontiers between partitions.

We call the prediction rule f?(·) smoothed projected kinky
inference (SPKI).

Note that the cardinality of the set Di is in general much
lower than the cardinality of the original data set D, and
hence obtaining a prediction is less cumbersome. The radius
Ri must be chosen appropriately, depending on the density
of the data set, increasing it to ensure a minimum number
of data points in Di. The Hölder constant is kept the same
for every partition data set.

It can be proven that if the partitions’ data sets are chosen
appropriately (that is, the value of Ri is large enough to
capture all relevant data points), the prediction error can be
equal to the prediction error of the inference obtained using
the full data set.

The partition can be done using machine learning tech-
niques such us the K-means algorithm for clustering or
performing principal component analysis, useful given the
recursive characteristic of the NARX model. Some references
regarding this topic may be found in [5], [15]. In the case
study presented in Section V, the set of the partitions are
hypercubes, that is, they are done independently through
some dimensions of W ⊂ Rnw .

In what is to follow, we will describe this particular
approach in greater detail and analyse the computational
complexity. To this end, we modify the prediction to (with
high probability) only depend on a finite number of data
points that does not grow with number of data points while
avoiding loss of consistency.

For simplicity, assume the sample inputs were drawn i.i.d.
and are contained in a hypercube H = {w : wi ∈ [0, 1],∀i =
1, . . . , d} (once the samples are drawn, we can always ensure
this by appropriate rescaling of the workspace). We partition
H into md sub-hypercubes Hi indexed by the tuple i :=
(i1, ..., id). where ij ∈ {1, ...,m} (j = 1, ..., d). We define

Hij =
{
w : ij = min{m,max{1, bwjmc+1}},∀j = 1, ..., d

}
.



3) Computational complexity: For simplicity, for now,
assume predictions are based exclusively on one of the
hypercubes Hi, i.e. Hi =Wi. We will consider the following
question: Given a fixed partition of H into md hypercubes
and assuming we have drawn a sample of N = |D| data
points i.i.d. uniformly from H , what is the computational
complexity of making a prediction? That is, how many basic
computational steps TN,m are required to compute i and
subsequently f?(q; θ,D) for any given query q ∈ W?

To answer this question, we note that, for a given query
point q ∈ Hi computing the index i = (i1, ..., id) can be done
inO(d) basic computational steps (including potential rescal-
ing if necessary). Once i is determined, we can compute the
prediction f∗(q; θ,Di) in O(Ni) computational steps, where
Ni is the number of samples contained in Di = Wi. So,
predicting the value of the query can be done in at most

TN,m := aNi + b d+ c ∈ O(Ni + d)

computational steps for some (algorithm-dependent) param-
eters a, b, c.

Now, Ni is a random variable whose distribution depends
on the number of cubes md and the number of samples
N := ND. Assume the data contains N inputs (x1, ..., xN ).
Let Ei,k = {(x1, ..., xN ) : |{x1, ..., xN} ∩ Hi| = k}
be the event that hypercube Hi contains exactly Ni = k
sample points and let p := Pr[Hi] = m−d. We consider
this situation as a sequence of N Bernoulli trials with p
being the success probability. Given our assumption of i.i.d.
uniformity, Pr[Ei,k] =

(
N
k

)
pk(1 − p)N−k. Therefore, the

probability that Ni is within some desired interval [k, k̄] is

Pr[Ni ∈ {k, ..., k̄}] =

k̄∑
k=k

(
N

k

)
pk(1− p)N−k.

In summary, to answer our first question, given a partition
into md hypercubes, we have

Pr[TN,m ∈ {ak + b d+ c, ..., ak̄ + b d+ c}] (10)

=

k̄∑
k=k

(
N

k

)
m−dk(1−m−d)N−k. (11)

With Ni following a binomial distribution, the expected
value of the computational effort is

E[TN,m] = apN + bd+ c (12)

= am−dN + bd+ c ∈ O(m−dN + d). (13)

These results can be utilised to answer the question of how
to choose parameters m to control the average and maximal
computational effort per query point. This is of particular
importance in MPC where predictions are made repeatedly
during an optimisation process that needs to terminate within
a given time span that is smaller than the sampling period
length. Of course, in practise, we may furthermore cap the
per query prediction time by organising the data inDi in a list
and only utilising the data of that list to make a prediction
that can be processed within the prescribed computational
budget.

In our analysis, we have assumed that we only take
Hi into account when computing Di. To facilitate smooth-
ness of the prediction surface however, we also consider
a selection of adjacent hypercubes. In the full setting we
include samples from all neighbouring hypercubes in the
set {Hi+j |j ∈ {−1, 0, 1}d}. Of course, this means that the
computational complexity increases by a factor of O(3d).
If one desires to avoid this exponential dependence on d,
for high-dimensional problems in particular, it may instead
be desirable to achieve a compromise by only include those
neighbouring hypercubes that share a face with Hi. That is,
we only take into account samples from the union of the
hypercubes in the set

{
Hi+j |j ∈ {−1, 0, 1}d ∧ ‖j‖1 ≤ 1

}
.

Since the latter set only contains O(d) hypercubes, with this
choice, the overall complexity increases merely by a factor
that grows linearly with the input space dimensionality d.

As a final remark, it should be emphasised that several
extensions of our analysis might have to be made to adjust it
to better match conditions that might arise in reality. Firstly,
the collected data might not have been collected i.i.d. from
an uniform distribution. Indeed, the distribution might be
unknown (or distributional assumption questionable). In that
case, an approach would be to fit a distribution to the col-
lected data via standard density estimation techniques. In that
case, our hypercubes will have varying success probabilities
p that have to be taken into account when computing the
expected computational effort and the probabilistic bounds.
Secondly, the inputs may follow a different distribution or
none at all. In that case, depending on the case, one should
marginalise over the input distribution or might resort to
worst-case analysis.

IV. DATA-BASED PREDICTIVE CONTROL

This section presents a model predictive controller de-
signed to ensure robust stability of the real system in
closed-loop considering soft constraints in the outputs and
hard constraints in the inputs. In the proposed controller a
prediction horizon larger than the control horizon has been
considered in order to enhance the closed-loop performance
and to increase the domain of attraction. This is particularly
interesting when the system to be controlled is nonlinear.

For a given state of the plant and a sequence of future con-
trol actions (û0,. . .) at sampling time k, the state prediction
model to be used in the MPC is derived from the prediction
function (7) as follows:

x̂(j + 1|k) = F̂ (x̂(j|k), û(j); θ,D)

ŷ(j|k) = Mx̂(j|k)

where the predicted state

x̂(j|k) = (ŷ(j|k), · · · , ŷ(1|k), y(k), · · · , y(k + j − na),

û(j − 1), · · · , û(0), · · · , u(j − nb)),

includes real measurements y or u if na ≥ j or nb > j,
respectively, and only estimated values ŷ or û otherwise.



The model is:

F̂ (x̂(j|k), û(j); θ,D) = (f?(x̂(j|k), û(j); θ,D),

ŷ(j|k), · · · , y(k), · · · ,
y(k + j − na + 1),

û(j), · · · , û(j − nb + 1))

and the output matrix is M = [Iny , 0, . . . , 0] ∈ Rnx , being
Iny the identity matrix.

To derive the predictive controller, a positive definite stage
cost function `(y, u) is defined as:

`(y, u) = `t(y − yr, u− ur) + `b(y)

where the term `t(y−yr, u−ur) penalizes the tracking error
of inputs and outputs w.r.t. the reference set-point given by
(yr,ur) and `b(y) is a barrier function that implements the
soft constraint on the outputs. The barrier cost function `b(·)
must satisfy that `b(y) = 0 for all y ∈ Y and there exists
two K functions αb and βb such that

αb( d(y,Y)) ≥ `b(y) ≥ βb( d(y,Y)) ∀y

Assumption 1: There exist two K-functions αy and αu
such that

`(y, u) ≥ αy(||y − yr||) + αu(||u− ur||).

Besides, `(y, u) is assumed to be continuous.
The optimisation problem PNc,Np(x(k),D) to be solved

is the following:

min
û

JNc,Np(x(k), û) =

Nc−1∑
i=0

`(ŷ(i|k), û(i))

+

Np−1∑
i=Nc

`(ŷ(i|k), κf (x̂(i|k))

+λVf (x̂(Np|k)− xr) (14a)

s.t. x̂(0|k) = x(k) (14b)

x̂(j + 1|k) = F̂ (x̂(j|k), û(j); θ,D), j ∈ INp−1
0 (14c)

ŷ(j|k) = Mx̂(j|k) (14d)
û(j) ∈ U (14e)

where λ ≥ 1 is a design parameter of the controller, Np
is the prediction horizon, and Nc ≤ Np is the control
horizon. Asymptotic stability is ensured by designing a
suitable terminal cost function Vf (·) and a terminal control
law κf (·). Notice that no terminal constraint is considered
since the terminal cost function Vf is weighted by a factor
λ ≥ 1, following the procedure proposed in [9], and extended
for a prediction horizon larger than the control horizon.

The MPC control law is u(k) = κMPC(x(k), yr; θ,D) =
û∗(0), which depends on the regressors of the system and
the collected historical data set D.

A. Stability analysis of the controller

In order to demonstrate the stability of the proposed
controller, first the asymptotic stability of the nominal case
will be proven, that is, when the proposed controller is used
to regulate a system whose model is equal to the prediction
one (5).

Theorem 1: There exists a terminal controller κf (·) :
Rnx → Rnu , a terminal cost function Vf (·) : Rnx → R
and a region Ωβ = {x : Vf (x) ≤ β}, where β is a positive
constant such that for all x ∈ Ωβ :

α1(‖x− xr‖) ≤ Vf (x) ≤ α2(‖x− xr‖),

Vf (x+)− Vf (x) ≤ −`t(y − yr, κf (x)− ur),

Mx ∈ Y,

κf (x) ∈ U .

Consider the region

XNc,Np(λ) =
{
x : J∗Nc,Np(x(k)) ≤ (Np − n)γ + λβ

}
,

where γ is a positive constant and n = max(na, nb).
Then, given Np ≥ n, for all λ ≥ 1 and all

x(0) ∈ XNc,Np(λ), the closed-loop system x+ =

F̂ (x, κMPC(x; θ,D); θ,D) is asymptotically stable.
Proof:
Notice that if x ∈ Ωβ , y ∈ Y so `b = 0, and thus `(y, u) =
`t(y − yr, u − ur). For the sake of clarity it may be used
xj or x(j|k) indistinctly. The proof uses the following three
lemmas:

Lemma 1: If the assumptions of Theorem 1 hold, then
J∗Nc,Np(x(k)) ≤ λVf (x(k)) ∀x(k) ∈ Ωβ .

Proof: for any system controlled by u(j|k) = κf (x(j|k))

Vf (x(j|k))− Vf (x(j + 1|k)) ≥ `(y(j|k), κf (x(j|k))).

Summing for the whole sequence:
Np−1∑
j=0

Vf (x(j|k))− Vf (x(j + 1|k))

= Vf (x(k))− Vf (x(Np|k)) ≥
Np−1∑
j=0

`(y(j|k), κf (x(j|k)))

and by optimality, provided that λ ≥ 1, ∀Np ≥ Nc ≥ 1

λVf (x(k)) ≥
Np−1∑
j=0

`(y(j|k), κf (x(j|k))) + λVf (x(Np|k))

≥ J∗Nc,Np(x(k)). (15)

�
Lemma 2: If x∗(j|k) /∈ Ωβ , ∀j = 0, · · · , Np − 1, then

J∗Nc,Np(x(k)) ≥ (Np − n)γ + λβ.

Proof: let define `ext(x, u) as the stage cost extended to
consider a positive definite function of the whole state:

`ext(x(k), u(k)) =
1

n

n∑
i=0

`(y(k − n+ i), u(k − n+ i)),



where n = max(na, nb), and with a slightly abuse of
notation, the terms y(k− n+ i) and u(k− n+ i) are set to
yr and ur if y(k − n+ i) or u(k − n+ i) are not included
in x(k), respectively.

Then γ is defined as a positive constant such that ∀x /∈
Ωβ , `ext(x, u) ≥ γ. Hence,

J∗Nc,Np(x(k)) =

Np−1∑
j=0

`(y∗(j), u∗(j)) + λVf (x∗(Np))

≥

⌊
Np
n

⌋
−1∑

k=0

n∑
i=0

`(y∗(k + n− i), u∗(k + n− i)) + λVf (x∗(Np))

≥
⌊
Np
n

⌋
nγ + λβ

≥ (Np − n)γ + λβ.

�
Lemma 3: If the assumptions of Theorem 1 hold, and if

x∗(Np|k) /∈ Ωβ , then x∗(j|k) /∈ Ωβ , ∀j = 0, . . . , Np−1.
Proof: it is proven by contradiction: (i) assume that there

exists any instant i < Nc in which x∗i ∈ Ωβ . From Lemma
1 it is inferred that for a problem of horizons Nc− i, Np− i

λVf (x∗i ) ≥ J∗Nc−i,Np−i(x
∗
i )

From Bellman’s optimality principle, and provided that
`(y, u) is positive definite, it is derived that

J∗Nc−i,Np−i(x
∗
i ) ≥ λVf (x∗Np)

and given that x∗Np /∈ Ωβ , then

λVf (x∗Np) > λβ

Hence λVf (x∗i ) > λβ, which is a contradiction, so x∗i /∈ Ωβ .
(ii) Assume there exists any instant i ≥ Nc in which x∗i ∈

Ωβ , then x∗j+1 = F̂ (x∗j , kf (x∗j )) for j = i, . . . , Np. Since
Ωβ is a positi ve invariant set for this system, we have that
x∗j ∈ Ωβ for j = i, . . . , Np, leading again to a contradiction.
�

Given these three lemmas, we have that ∀x ∈ XNc,Np(λ),
if x∗Np /∈ Ωβ , then x∗j /∈ Ωβ ∀j = 0, . . . , Np − 1, and
therefore

J∗Nc,Np(x(k)) ≥ (Np − n)γ + λβ.

So on the contrary, if J∗Nc,Np(x(k)) ≤ (Np − n)γ + λβ,
then x∗Np ∈ Ωβ . Next, we are ready to prove the statement
of the theorem. First, recursive feasibility is proven:

Assume that x(k) ∈ XNc,Np(λ), then x∗Np ∈ Ωβ . Define
the sequence of future control inputs for x(k + 1) as

ũ(j|k + 1) =

{
u∗(j|k) j = 0, . . . , Nc − 1
κf (x̃(j|k + 1)) j = Nc, . . . , Np − 1

and define x̃(j|k + 1) as the predicted trajectory. Then,
from standard arguments of MPC proofs, this sequence is
feasible for the optimisation problem since u∗(k) is feasible.
Besides, the difference between the costs associated to these
trajectories is:

J̃Nc,Np(x(k + 1))− J∗Nc,Np(x(k))

= −`(y(k), u∗(k)) + [`(ỹ(Np|k + 1), κf (x̃(Np|k + 1))) +

+λVf (x̃(Np|k + 1))− λVf (x∗(Np|k))].

The sum among brackets is negative, since x∗Np ∈ Ωβ , thus

J̃Nc,Np(x(k + 1))− J∗Nc,Np(x(k)) ≤ −`(y(k), u∗(k)),

and by optimality

J∗Nc,Np(x(k + 1)) ≤ J̃Nc,Np(x(k + 1))

J∗Nc,Np(x(k + 1))− J∗Nc,Np(x(k)) ≤ −`(y(k), u∗(k)) (16)

So since x(k) ∈ XNc,Np(λ) implies that J∗Nc,Np(x(k)) ≤
(Np−n)γ+λβ, and then J∗Nc,Np(x(k+1)) ≤ (Np−n)γ+λβ,
which implies that x(k + 1) ∈ XNc,Np(λ). Therefore the
closed-loop system is recursively feasible.

Then, asymptotic stability is proven. Given the definition
of x(k) in (2),

k∑
j=k−n

`(y(j), u(j)) ≥
n∑
j=0

αy(‖y(k − j)‖) + αu(‖u(k − j)‖)

≥ αx(‖x(k)‖) + αu(‖u(k)‖)
≥ αx(‖x(k)‖),

(17)

where n = max(na, nb) and αy, αu, and αx are K functions.
Defining

W (xk) =

n∑
j=0

J∗Nc,Np(x(k − j)),

we can infer that

W (x(k + 1))−W (x(k))

= J∗Nc,Np(x(k + 1))− J∗Nc,Np(x(k − n))

≤ −
k∑

j=k−n

`(y(j), u(j)) ≤ −αx(‖x(k)− xr‖)

where the first inequality is derived by recursion of (16), and
the second inequality comes from (17). Besides, W (x) ≥
k∑

j=k−n
`(y(j), u(j)) ≥ αx(‖x − xr‖) and, by Prop. B.25

in [16], there exists a certain K function α2(·) such that
W (x) ≤ α2(‖x − xr‖). Hence W (x(k)) is a Lyapunov
function of the system, which is asymptotically stable. �

Remark 3: Whereas Np and λ are design parameters, γ
and β are problem-dependent parameters. They require solv-
ing three global optimization problems, whose ingredients
are sketched below.

According to the definition of β in Theorem 1, let us define
β1 as:

β1 = arg min
x
Vf (x) (18)

s.t. λVf (F̂ (x, κf (x); θ,D))− λVf (x) ≥ −`(Mx, κf (x))



It must also be guaranteed that for all Vf (x) ≤ β, κf (x) ∈ U ,
so we define

β2 = max
β

β (19)

s.t. κf (x) ∈ U
Mx ∈ Y, ∀x ∈ {x : Vf (x) ≤ β}

Then β = min(β1, β2). γ is obtained as:

γ = min `ext(x, κf (x)) (20)
s.t. Vf (x) ≥ β.

Note that these calculations are done offline.
Corollary 1: Under the assumptions of Theorem 1, it can

be proven that:

(i) XNc,Np(λ1) ⊆ XNc,Np(λ2) ∀λ1 ≤ λ2

(ii) XNc,N1(λ) ⊆ XNc,N2(λ) ∀N1 ≤ N2

Proof: first it is proven that if λ1 ≤ λ2 and x ∈ XNc,Np(λ1),
then x ∈ XNc,Np(λ2). Define û∗, x̂∗ and Ĵ∗Nc,Np as the
optimal solution for x ∈ XNc,Np(λ1) and ũ∗, x̃∗ and J̃∗Nc,Np
as the optimal solution for x ∈ XNc,Np(λ2). Taking into
account that û∗ is a feasible solution of the optimisation
problem for λ2,

J̃∗Nc,Np(x) =

Np−1∑
i=0

`(x̃∗i , ũ
∗
i ) + λ2Vf (x̃∗Np)

≤
Np−1∑
i=0

`(x̂∗i , û
∗
i ) + λ2Vf (x̂∗Np)

=

Np−1∑
i=0

`(x̂∗i , û
∗
i ) + λ1Vf (x̂∗Np) + λ2Vf (x̂∗Np)− λ1Vf (x̂∗Np)

= Ĵ∗Nc,Np(x) + (λ2 − λ1)Vf (x̂∗Np)

≤ Ĵ∗Nc,Np(x) + (λ2 − λ1)β

≤ (Np − n)γ + λ1β + (λ2 − λ1)β

= (Np − n)γ + λ2β

and hence x ∈ XNc,Np(λ2). �
Now it is proven that if N1 ≤ N2 and x ∈ XNc,N1

(λ),
then x ∈ XNc,N2

(λ).
Provided that J∗Nc,N1

(x(k)) ≤ (N1 − n)γ + λβ ∀x ∈
XNc,N1(λ) and N1 ≤ N2, from (15) it is derived that

Vf (x∗N1
) ≥

N2−1∑
j=N1

`(y∗j , κf (x∗k)) + Vf (x∗N2
)

which implies that J∗Nc,N1
≥ J∗Nc,N2

, so

J∗Nc,N2
≤ J∗Nc,N1

≤ (N1 − n)γ + λβ ≤ (N2 − n)γ + λβ

and hence XNc,N1
⊆ XNc,N2

∀N1 ≤ N2. �
Remark 4: From standard theory of MPC, it is well

known that increasing the control horizon Nc increases the
domain of attraction XNc,Np(λ), with the respective increase
in the number of decision variables. Corollary 1 provides
other two ways of increasing the domain of attraction of the

MPC: (i) increasing the weighting factor λ and (ii) increasing
the prediction horizon Np. A larger weighting factor provides
a larger domain of attraction, but the performance might
be worse. On the other hand, a larger prediction horizon
does not only increase the domain of attraction, but it also
improves the performance, since J∗Nc,N2

≤ J∗Nc,N1
. The

number of decision variables does not increase with Np,
but it increases the number of constraints in the optimisa-
tion problem, which might lead to a mild increase of the
computational cost.

Once the nominal asymptotic stability is proven, then it
is shown that the real plant controlled with the proposed
predictive control law is input-to-state stable w.r.t. the model
mismatches under the following assumption.

Assumption 2: It is assumed that the radius Ri in equa-
tion (9) is large enough to ensure that the function f?(·, ·) is
Hölder continuous.

Definition 1: A system x+ = f(x) + ν is
input-to-state stable (ISS) w.r.t. ν if there exists
a KL function β and a K function α such that
‖x(k)‖ ≤ β(‖x(0)‖, k) + supj∈[0,k] α(‖ν(j)‖).

Now, the stability result is stated in the following theorem:
Theorem 2: Assume that the stage cost function `(·, ·),

the terminal control law κf (·) and the terminal cost function
Vf (·) are uniformly continuous functions in the feasibility
region XNc,Np(λ). Assume that the hypotheses of Theorem 1
and Assumption 2 hold. Then real plant, given by the
system (1), controlled by u(k) = κMPC(x(k), yr; θ,D) is
input-to-state stable w.r.t. the model mismatch signal:

d(k) = f(x(k), u(k))− f?(x(k), u(k); θ,D)
Proof: First, notice that the model of real plant can be

posed as f(x(k), u(k)) = f?(x(k), u(k)) + d(k) and the
signal d(k) is bounded by µ. Given that the function f?(·, ·)
is Hölder continuous, the model function F (·, ·) is also
Hölder continuous. Since the stage cost function `(·, ·) and
the terminal cost function Vf (·) are continuous functions
and XNc,Np(λ) is a compact set, then they are uniformly
continuous. From Proposition 1, case C1, in [17] it is inferred
that the closed-loop system is ISS w.r.t. the signal d(k) that
describes the model mismatch. �

Remark 5: This theorem resorts on Assumption 2, which
may be difficult to demonstrate. Notice that the assumption
can always be satisfied since for Di = D the model
function is Hölder continuous. In case one cannot ensure
Hölder continuity, stability is not lost. Instead, according to
the definition of input-to-state practical stability (ISpS, see
Definition 6 in [17]), it can be proven that if the discontinuity
jump is upper bounded by c, then

‖f?(w + ∆w, u)− f?(w, u)‖ ≤ σ(c) + L̂‖∆w‖α

where σ is a K function. Using similar arguments to the
proof of Theorem 2 and Definition 6 in [17], it can be proven
that the closed-loop system is ISpS, since there exists a KL
function β and K functions α and ω such that:

‖x(k)‖ ≤ β(‖x(0)‖, k) + sup
j∈[0,k]

α(‖d(j)‖) + ω(c)



Remark 6: The calculation of the control action requires
the solution of a mathematical programming problem on
line. This is typically a gradient-based algorithm that may
be sensitive to abrupt variations of the gradients, which
may be derived from discontinuity of the derivative of the
models. As it is illustrated in the case study, this may produce
convergence issues leading to spikes in the evolution of
the control action. To avoid this effect, the tracking stage
cost function can be modified adding a term penalizing the
variation of the control input, i.e. ‖ û(i) − û(i − 1) ‖2S .
The resulting tracking stage cost can be recasted, w.l.o.g. as a
function of the state (that is, the regressor), `t(x−xr, u−ur),
provided that nb ≥ 1. The stability analysis presented can
be extended to this case.

V. CASE STUDY

In this Section we consider the control of a continuously-
stirred tank reactor presented in [18]. The experiments car-
ried out to generate the data sets and the procedure to tune
the proposed controller are described in detail.

The input of the reactor is the reference of the coolant
temperature Tr (K) and the output is the concentration of
the reactant, CA (mol/l), in the reaction A → B. The
temperature of the tank and the coolant are given by T and
Tc respectively (K). It is assumed that the evolution of the
plant is given by the following set of differential equations:

dCA(t)

dt
=

q0

V
· (CAf − CA(t))− k0 · e(−

E
R·T (t) ) · CA(t)

dT (t)

dt
=

q0

V
· (Tf − T (t)) +

+
(−∆Hr) · k0

ρ · Cp
· e(−

E
R·T (t) ) · CA(t) +

+
U ·A

V · ρ · Cp
· (Tc(t)− T (t))

dTc(t)

dt
=

Tc(t)− Tr(t)
τ

The parameters of the model are given in Table I. Note
that the model is only used to carry out simulations, no
information is used to design the controller. It is also assumed
that the concentration sensor adds an error of 2.5% of the
measurement. The error is generated randomly for each mea-
surement using an uniform distribution. The constraints in
the input are 335 K ≤ Tr ≤ 372 K, and no hard constraints
in the states or the outputs are considered.

A. Obtaining the data set

The workspace is bounded by Tmin
r = 335 K and

Tmax
r = 372 K. First, the static characteristic is estimated

using a sequence of steps in the input from Tmin
r to Tmax

r

with 0.5 K increments, and each step long enough to reach
a steady sate, since the CSTR is stable. The result is shown
in Figure 3. Besides obtaining the equilibrium points of the
system, this test is used to adjust the sampling time, which
is set to τ/20 =30 s, where τ stands for the mean settling
time of the sequence of steps applied.

TABLE I
PARAMETERS OF THE SYSTEM

Param. Definition Value Units
q0 Input flow of the reactive 10 l/min
V Liquid volume in the tank 150 l
k0 Frequency constant 6× 1010 1/min
E/R Arrhenius constant 9750 K
−∆Hr Enthalpy of the reaction 10000 J/mol
UA Heat transfer coefficient 70000 J/(min K)
ρ Density 1100 g/l
Cp Specific heat 0.3 J/(g K)
τ Time constant 1.5 min
CAf CA in the input flow 1 mol/l
Tf Temperature (input flow) 370 K
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Fig. 3. Static characteristics.

This test is also used to bound the output variable CA,
which is defined by Cmax

A = 0.8053 mol/l and Cmin
A =

0.2 mol/l (note that the system has an inverse static char-
acteristic). This restriction is treated by means of a soft
constraint using a barrier cost, as it will be explained later. In
addition, an equilibrium point is chosen to be the reference
operating point, i.e. C ref

A = 0.439 mol/l, T ref
r = 356 K.

After defining the static characteristic, a set of experiments
are carried out to obtain the data for the predictor. The experi-
ments are designed using the methodologies presented in [19]
to identify the dynamics of a system within a workspace: a
relay test is carried out to estimate the crossover frequency of
the system around the operating point [20], with limits Tmax

r

and Tmin
r . The crossover frequency estimated is 3.7 mHz.

Figure 4 shows the simulation. Then, a sequence of chirp
signals covering the workspace are applied to generate the
raw data set containing the trajectories of concentrations
and temperatures, Draw. The parameters of the chirp signals
(length of the signal τf , initial and final frequency f0, ff ,
center Tr0 and amplitude A) are shown in Table II. The
simulation is shown in Figure 5,

The points of the static characteristics are added to the
data set obtained with the chirp signals (the resulting data
points are represented in Figure 6).

In addition, several tests with random input signals are
carried out in order to obtain data sets for cross-validation
(see Figure 7). The same input signal is applied several times
in order to estimate a bound of the measurement error of CA.
This error is estimated as ē = 0.02 mol/l, which is the
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Fig. 5. Chirp signals used to obtain the data set.

expected value given the 2.5% measurement error used to
generate the simulation.

In order to implement the prediction and optimisation
problem, it is desirable that the input-output variables are
suitably scaled, so every component is expressed in the
range [0,1]. The data set Draw is scaled, obtaining the scaled
input and output trajectories data set Dexp = {y, u}
using the following expressions (also used for the maximum,
minimum and reference values):

u =
Tr − Tmin

r

Tmax
r − Tmin

r

y =
CA − Cmin

A

Cmax
A − Cmin

A

To obtain the SPKI model, the parameters na and nb of the
NARX regressor have to be chosen. To this end, for various
values of these parameters, the SPKI predictor is designed
and its corresponding validation error is computed, to choose
the best set of parameters.

For each set of parameters, a data set D = {zk, wk}, with
k = 1 . . . ND, is obtained from the experimental data as
explained in Section III.

Thus, for various combinations of the memory horizons,
the Hölder parameters of the system are obtained using (4).
Using the obtained constant and exponent, the SPKI predictor
can be defined as in (8).

The SKI filtering of equation (7) is done predicting with
σ0 = 2/(nw + 2), σi = 1/(nw + 2), and increment δ set
to 0.015. For this reason the computation time used for
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Fig. 6. 2-D representation of D. Pairs {CAk , Trk}, for k = 1, . . . , 30000.

TABLE II
PARAMETERS OF THE CHIRP SIGNALS

Signal τf (min) f0 (µHz) ff (mHz) T0 (K) A (K)
1 1000 16.6 3.7 341.17 6.1667
2 1000 16.6 3.7 347.33 6.1667
3 1000 16.6 3.7 353.5 6.1667
4 1000 16.6 3.7 359.67 6.1667
5 1000 16.6 3.7 365.83 6.1667
6 5000 1.66 1.7 353.5 18.5
7 5000 1.66 3.7 353.5 18.5

prediction increase linearly with the number of regression
terms (na, nb).

Finally, the data from the other tests is used to calculate
the prediction error, as the difference between the real output
and the concentration estimated by the predictor, for the same
input signal. As it is represented in Figure 8, for na = 2 and
nb = 1, the maximum prediction error is minimized. With
these values the Hölder constant results in LD = 1.5015,
and the exponent α = 0.86. Figure 9 shows the histogram
of the validation error for this configuration, whose absolute
maximum is µ = 0.061 mol/l.

In order to reduce the computational effort, the regres-
sor space W is divided into a set of overlapping regions
following the procedure presented in Section III-C. Given
the recursive characteristic of the NARX model, data points
defined by a sequence of temporal signals (e.g. {yk, yk−1})
are very concentrated, due to the small variance of the signals
between sequential time steps. For this reason, the regions
Wi are not defined in the whole W space, but instead, only
the current values of the output and the input (i.e. yk, uk)
are taken into account. The vector space (uk, yk) is divided
into a grid of squares of 0.01 side length (this corresponds to
dividing each component into 100 partitions, provided that
they are both scaled between 0 and 1). Instead of using a
ball for the overlapping, to each region, its corresponding
data is obtained using also data of neighboring regions (see
Figure 10).

The prediction for 100 random query points in an Intel®
Core™ i7-6700HQ CPU @ 2.60GHz 12GB RAM without
the partitions division takes 41.826 s, while using partition-
based approach takes only 0.0717 s, for na = 2 and
nb = 1, with prediction difference between them less than
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0.001 mol/l.

B. Control of the reactor

The optimisation problem (14a) is solved in MatLab using
the optimisation function fmincon. The equations that
govern this MPC are those expressed in (14a)-(14e). The
reference is set in the equilibrium point of the system given
by {C ref

A , T
ref
r },.

The stage cost is defined as the sum of a quadratic cost
`t and the barrier cost `b:

`t(xk, uk) = ‖yk − yr‖2Q + ‖uk − ur‖2R + ‖uk − uk−1‖2S

`b(yk) = Υ(1− e − d(yk,Y)/ε)

The parameters are set to:
Q = 10, R = 5, S = 10 (Remark 6), Υ = 9999 and ε =

3× 10−3. As terminal ingredients, κf (x) = K(x−xr)+ur
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Fig. 10. Partition of the input space W .

and Vf (x) = ‖x − xr‖2P are considered, with λ = 1. K
and P are calculated from the solution of the LQR for a
linear model around the reference. This linearized model,
calculated numerically from the input-output data, is the
following:

xk+1 =


0.448 0.299 −0.002 −0.011

1 0 0 0
0 1 0 0
0 0 0 0

xk+

+


−0.0983

0
0
1

uk
This results in:

P =


183.48 30.828 −0.2224 −1.1638
30.828 14.994 −0.1079 −0.5647
−0.2224 −0.1079 0.0008 0.0041
−1.1638 −0.5647 0.0041 11.021


K =

[
0.4856 0.2278 −0.0016 −0.0086

]
Regarding Theorem 1, the parameters γ and β have been

computed. Setting the control horizon to Nc = 4 and the
prediction horizon to Np = 14 results in γ = 1.2046 and
β = 0.0294. If x(0) = [0.6 300 300]T , J∗Nc,Np(x(0)) =
13.721, so x(0) ∈ XNc,Np(λ). Regarding Theorem 2, as far
as we analysed the outcomes of the predictor, Assumption 1
holds for every query point observed, making `(·, ·), κf (·)
and Vf (·) uniformly continuous.

Once the controller is designed, a hundred simulations are
carried out, with the same initial state but a hundred different
realizations of the 2.5% random noise. The following figures
represent the output and the control input. Within each
subplot, the constraints appear in black, the reference in red,
and the 100 trajectories are represented by the gray band,
whose mean value is plotted in blue.

A first experiment is carried out in which the model
used by the MPC is the real plant (defined by its set
of ODEs). The simulations provide a measure of the best
closed-loop behavior achievable assuming perfect knowledge
of the model. This result is shown in Figure 11.
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Fig. 11. Ideal ODEs-MPC.
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Model: SPKI. Plant: Noisy ODEs.
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Fig. 13. Data-based SPKI predictive control applied to a CSTR.

Secondly, a MPC controller based on the KI prediction
of Section III-A is applied, using the data set D. Notice
that neither the data set was divided into partitions, nor the
filtered KI was implemented. The result of this simulation
is shown in Figure 12. These results are not satisfactory,
since the solver is failing to converge due to the fact that the
KI prediction may be non-differentiable or due to the large
number of iterations.

Finally, the SPKI MPC presented in this paper is applied,
to address the issues mentioned above. The result is shown
in Figure 13. The behavior is smoother, with a smaller
band than the previous experiment, which indicates greater
robustness and a performance closer to the ideal one (ODEs,
Figure 11) rather than the simpler KI set.

Apart from that, in order to compare the performance
of the presented results, a hundred different simulations
of the MPC (with random initial state) are carried out,
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Fig. 14. Boxplot comparison of the different prediction models for 100
simulations of the MPC. (a) represents the performance costs and (b) the
computational times.

which results are compared in Figure 14. The boxplots
represent maximum, minimum, mean and standard deviation
of the performance costs and computational times of the
experiments. The performance index of each simulation is
defined as:

Φ =

tsim∑
i=1

`t(x(i), u(i)) + `b(y(i))

VI. CONCLUSIONS

This paper presented a model predictive controller for
nonlinear systems based entirely on data. The inference
method behind the predictor was based on modified version
of the parameter optimised kinky inference, with lower
computational effort and smoother predictions. Under the
assumption that the model of the system was Hölder con-
tinuous, it we have proven that the closed-loop system is
input-to-state stable with respect to the prediction errors,
considering soft constraints in the output, hard constraints in
the input and using different control and prediction horizons
and a weighted terminal cost.

The results are demonstrated in a case study of a
continuously-stirred tank reactor, for which the whole pro-
cedure of obtaining the data and designing the controller
is exposed. As it can be observed, with the techniques
presented in this paper the performance is improved while
the computing times are significantly reduced with respect
to simpler configurations of data-based predictive control.

As future work, we suggest to work on extensions to the
robust case with hard constraints in the outputs/states. So far,
our analysis has been restricted to the offline learning case,
where the predictor was inferred from a fixed data set pro-
vided before runtime of the controller. In future work, we will
investigate extensions to the online learning case where data
arrives incrementally during runtime and the control design
would have to address exploration-exploitation tradeoffs.
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[20] Åström, K.J., Hägglund, T.: ‘Advanced PID control’. (ISA, 2006)


