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This paper is devoted to solve the problem that the predictive controllers may present when the target
operation point changes. Model predictive controllers (MPC) are capable to steer an uncertain system
to a given target operation point fulfilling the constraints. But if the target changes significantly the con-
troller may not success due to the loss of feasibility of the optimization problem and the inadequacy of
the terminal conditions.

This paper presents a novel formulation of a robust model predictive controller (MPC) for tracking
changing targets based on a single optimization problem. The plant is assumed to be modelled as a linear
system with additive uncertainties confined to a bounded known polyhedral set. Under mild assump-
tions, the proposed MPC is feasible under any change of the target and steers the uncertain system to
(a neighborhood of) the target if this is admissible. If the target is not admissible, and hence unreachable,
the system is steered to the closest admissible operating point.

The controller formulation has some parameters which provide extra degrees of freedom. These new
parameters allow control objectives such as disturbance rejection, output offset prioritization or enlarge-
ment of the domain of attraction to be dealt with. The paper shows how these parameters can be calcu-
lated off-line.

In order to demonstrate the benefits of the proposed controller, it has been tested on a real plant: the
four tanks plant which is a multivariable nonlinear system configured to exhibit non-minimum phase
transmission zeros. Experimental results show the robust stability and offset-free tracking of the con-
trolled plant.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Process control techniques have been applied with a hierarchi-
cal approach for years. The main layers of the hierarchy are the
lower layers of feedback (regulatory) control and the upper layers
of optimization. Fig. 1 shows a typical functional multilayer struc-
ture [23].

The direct control layer (known also as basic control layer) is
responsible for basic safety of dynamic processes in the plant.
Algorithms of direct control should be robust and relatively easy
to tune and supervise, that is why classic PID algorithms are still
dominant. However, capabilities of modern Distributed Control
Systems (DCS) enable more computationally advanced solutions
and more advanced control algorithms can be employed, in
particular modifications of the PID algorithm and, recently, imple-
mentations of MPC algorithms.
ll rights reserved.
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The constraint control layer is linked to advanced control algo-
rithms, in fact almost exclusively the MPC algorithms, devoted to
the satisfaction of the constraints. This control layer provides the
references to the local controllers.

Optimization of set-points for feedback controllers is performed
by the local optimization layer also called Steady State Target Opti-
mizers [16]. The goal is to calculate the process optimal operating
point or optimal operating trajectory to be used by feedback con-
trollers of directly subordinate layers. These values result generally
from the plant-wide optimization problem which normally uses
economic criteria [20].

The aim of this paper is design a controller able to cope with the
local optimization, the constraint control and the direct control for
a given (possibly changing) target, verifying the constraints while
guaranteeing the robust stability of the system.

For a given target, the local optimization layer provides the set-
point compatible with the constraints to the MPC, suitably synthe-
sized for the provided set-point. Model predictive controllers are
capable to regulate the controlled variable ensuring constraint sat-
isfaction. However, when the target is changed by the plant-wide
optimization layer, and hence the set-points, the stabilizing design
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of the predictive controller may be not valid anymore and/or a the
feasibility of the controller may be lost [21].

In order to overcome this problem several solutions have been
proposed: in [22,7] an auxiliary controller that is able to recover
the feasibility in finite time is used leading to a switching strategy.
The controllers proposed in [18,17] consider the change of the set
point as a disturbance to be rejected; thus, this technique is able to
steer the system to the desired set point for small enough varia-
tions of the set point leading to a conservative solution.

A different approach has been proposed in the context of refer-
ence governors [9,3]. This control technique assumes that the sys-
tem is robustly stabilized by a local controller, and a nonlinear
filtering of the reference is designed to ensure robust satisfaction
of the constraints. These controllers ensure robust tracking with-
out considering the performance of the obtained controller nor
the domain of attraction.

In this paper, a novel formulation of robust MPC for tracking is
proposed. This is capable of leading the system to any robustly
admissible target in an admissible way. The proposed controller
follows the novel MPC formulation presented in [12] aimed at con-
trolling constrained linear systems to track piece-wise constant
references in absence of uncertainties.

This controller has been extended to control uncertain linear
systems by incorporating the notion of tube-based robust control
presented in [15]. The obtained robust controller is based on the
solution of a single Quadratic Programming problem. Under mild
conditions, the proposed controller ensures robust and admissible
convergence to (a neighborhood of) the desired steady state, and
maintains these properties under any change of reference. More-
over, offset-free control can be achieved by means of a simple pro-
cedure. The paper also presents a method for the synthesis of the
controller which allows us to fulfil specifications for tracking as
well as for disturbance rejection.

In order to demonstrate the applicability of the proposed
controller it has been applied to an experimental tank system
developed at the University of Seville. This plant is based on the
well-known quadruple-tank process [10] and it is a multivariable
laboratory plant of interconnected tanks that can be easily config-
ured to exhibit the effect of multivariable zeros (minimum and
non-minimum phase) on the system behavior, as well as the effect
of non linear dynamics, saturation, constraints, etc.

The paper is organized as follows: firstly, the problem to be
solved is described and then some preliminary and existing results
are recalled. In Section 4 the proposed controller is presented, and
stability conditions together with some interesting properties are
shown in Section 5. Section 6 presents a simple method to cancel
the possible offset on the outputs. The synthesis of the controller
is shown in Section 7. In Section 8, the experimental results of
the application of the proposed controller to the four tanks plant
are given and finally, some conclusions are provided.

Notation: A positive definite symmetric matrix T is denoted as
T > 0 and T > P denotes that T � P > 0. For a given symmetric
matrix P > 0, kxk2

P , x>Px. Consider a 2 Rna and b 2 Rnb , then
ða; bÞ , ½a>; b>�> 2 Rnaþnb for a set C � Rnaþnb , the projection of C
onto a is defined as ProjaðCÞ ¼ fa 2 Rna : 9b 2 Rnb ; ða; bÞ 2 Cg. A
vector t denotes a finite sequence of vectors, that is, a vector
defined as ðtð0Þ; tð1Þ; . . . ; tðNÞÞ, where N is deduced from the con-
text. A matrix 0n;m 2 Rn�m denotes a matrix of zeros and In 2 Rn�n

denotes the identity matrix. Given two sets U and V, such that
U � Rn and V � Rn, the Minkowski sum is defined by U�V ,

fuþ v : u 2 U; v 2Vg, the Pontryagin set difference is: U�V ,

fu : u�V#Ug; given a matrix M 2 Rp�n, the set MU � Rp is
defined as MU , fMu : u 2 Ug; for a given k; kU , ðkInÞU. The set
of integer numbers f0;1; . . . ;N � 1g is denoted as Z½0;N�1�.

2. Problem statement

Consider that the plant to be controlled can be described by the
following uncertain discrete-time LTI system

xþ ¼ Axþ Buþw ð1Þ
y ¼ Cxþ Du

where x 2 Rn is the state of the system at the current time instant,
xþ denotes the successor state, that is, the state of the system at
next sampling time, u 2 Rm is the manipulated control input,
y 2 Rp is the controlled variables and w 2 Rn is an unknown but
bounded state disturbance. In what follows, xðkÞ;uðkÞ; yðkÞ and
wðkÞ denote the state, the manipulable variable, controlled variable
and the disturbance respectively, at sampling time k.

The state and input trajectories must satisfy the following cons-
traints for any possible uncertain trajectory:

ðxðkÞ;uðkÞÞ 2Z ð2Þ

where Z is a polyhedral set given by

Z , fz 2 Rnþm : Azz 6 bzg:

The plant is assumed to fulfil the following hypotheses:

Assumption 1.

(i) The pair ðA; BÞ is controllable.
(ii) The uncertainty vector w is bounded and lies in the follow-

ing compact convex polyhedron.
W ¼ fw 2 Rn : Aww 6 bwg ð3Þ

that is, wðkÞ ¼ ðxðkþ 1Þ � AxðkÞ � BuðkÞÞ 2W for all
ðxðkÞ; uðkÞÞ 2Z.
(iii) The state of the system is measured, and hence xðkÞ is known
at each sample time.

It is remarkable that no assumption is considered in the number
of inputs m and outputs p, allowing thin plants ðp > mÞ, square
plants ðp ¼ mÞ and flat plants ðp < mÞ. Moreover, it is not assumed
that ðA;B; C;DÞ is a minimal realization of the state–space model.
This allows us to use state-space models derived from input–out-
put models, that is, using as state a collection of past inputs and
outputs of the plant [6]. The necessity of an observer is also
avoided while the global uncertainty and the noise can be posed
as additive uncertainties in the state-space model (1).

Control Objective: The main aim of this paper is to obtain a
control law uðkÞ ¼ jNðxðkÞ; ytÞ such that, for a given target con-
trolled variable yt , the controlled plant
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xþ ¼ Axþ BjNðx; ytÞ þw

fulfils the plant constraints ðxðkÞ;uðkÞÞ 2Z despite the uncertain-
ties. Furthermore, if the target yt is reachable, then controlled vari-
able yðkÞ should be steered to (a neighborhood of) the target yt; if yt

is not reachable, then the controlled system should be steered to (a
neighborhood of) the closest possible steady controlled variable.

In the following section, some known relevantly important re-
sults of the proposed predictive control law are summarized in or-
der to make the paper clearer and more self-contained.

3. Preliminary results

3.1. Tube of trajectories and robust MPC for regulation

The proposed controller for tracking is based on the robust MPC
for regulation proposed in [15]. This calculates the control input
using nominal predictions and the notion of tube of trajectories.
In this section these concepts are briefly introduced.

For a plant modelled by (1), its nominal model is the one ob-
tained by ignoring the disturbances. This is given by

�xþ ¼ A�xþ B�u ð4Þ
�y ¼ C�xþ D�u

where �x; �u and �y denote the nominal state, input and controlled vari-
able, respectively.

Assume that a given sequence of control actions �u has been cal-
culated for the nominal plant of the model, then the predicted
nominal trajectory starting from x is given by the recursion
�xðiþ 1Þ ¼ A�xðiÞ þ B�uðiÞ with �xð0Þ ¼ x. Since the real system may
be disturbed, the future trajectory of the disturbed plant will prob-
ably differ from the nominal prediction. To counteract the effect of
the disturbances, it is desirable to force the trajectory to lie as close
to the nominal trajectory as possible; this can be done by choosing
the control action uðiÞ as in [15]:

uðiÞ ¼ �uðiÞ þ KðxðiÞ � �xðiÞÞ ð5Þ

From (1), (4) and (5) we infer that the dynamics of the error sig-
nal between the nominal and the disturbed plant e , ðx� �xÞ is gi-
ven by

eþ ¼ AK eþw; with AK ¼ ðAþ BKÞ ð6Þ

If the feedback control gain K is such that AK is Hurwitz, then the
evolution of eðiÞ is bounded and hence the real trajectory xðiÞ lies
in a neighborhood of the predicted one �xðiÞ, which can be seen as
a tube of trajectories [13]. In order to limit the difference eðiÞ, the
notion of robust positively invariant (RPI) set [11,19] is used.

Definition 1. A set /K is called a robust positively invariant (RPI)
set for the uncertain system (6) if AK/K �W# /K .

Based on this, the following result can be stated [15]: consider
that /K is an RPI for the system (6) and that xð0Þ and �xð0Þ are such
that eð0Þ ¼ xð0Þ � �xð0Þ 2 /K ; then, the trajectory of the uncertain
system controlled by (5) is such that xðiÞ 2 �xðiÞ � /K , for any possi-
ble realization of the disturbances. This is the so called tube of
trajectories.

Moreover, if xð0Þ 2 �xð0Þ � /K and the nominal control sequence
�u is such that

ð�xðiÞ; �uðiÞÞ 2Z ð7Þ

where Z , Z� ð/K �K/KÞ. Then, the trajectory and control
actions derived from the disturbed plant model (1) and (5) satisfy
ðxðiÞ;KðxðiÞ � �xðiÞÞ þ �uðiÞÞ 2Z for any possible realization of the dis-
turbances. This implies that forcing a suitable tighter set of con-
straints for the nominal system, the evolution of the uncertain
system controlled by (6) is robustly admissible [13].
Note that a primary condition to be satisfied is that the tighter
set of constraints Z is a non empty set. This implicitly defines a
constraint on the selection of the control gain K which is not easy
to fulfil. In Section 7.2 an LMI based method for calculating K is
proposed.

The property of the tubes is exploited in [15] to derive a robust
MPC for regulation. Thus, for a given target yt the Steady State Tar-
get Optimizer must solve an optimization problem providing a set-
point ð�xt ; �utÞ for the nominal prediction model. Based on this, the
following optimization problem must be solved for the current
state of the plant:

min
�u;�xð0Þ

XN�1

i¼0

k�xðiÞ � �xtk2
Q þ k�uðiÞ � �utk2

R þ k�xðNÞ � �xtk2
P

s:t: �xð0Þ 2 x� ð�UKÞ
�xðiþ 1Þ ¼ A�xðiÞ þ B�uðiÞ; i 2 Z½0;N�1�

ð�xðiÞ; �uðiÞÞ 2Z; i 2 Z½0;N�1�

ð�xðNÞ � �xtÞ 2 X

Then the control law for regulation is given by Kðx� �x�Þ þ �u�ð0Þ. The
domain of attraction of this controller is the feasibility region of the
optimization problem and it is denoted as XNðytÞ.

The terminal weighting matrix P and the terminal region X are
chosen to ensure robust stability to a neighborhood of �xt . If the tar-
get yt changes to a different value, then the stabilizing design may
be not suitable for the new target and then the optimization prob-
lem can become not feasible or the feasibility (as well as the
admissibility) can be lost along the evolution of the system. This
can be a consequence of one or both of the two following causes:
(i) the terminal set shifted to the new operating point may not
be an admissible invariant set, which means that the recursive fea-
sibility property may be lost, and (ii) the terminal region at the
new set-point could be unreachable in N steps, which means that
the optimization problem is unfeasible, making a re-calculation
of an appropriate value of the prediction horizon necessary to en-
sure feasibility. Therefore, this would require an on-line re-design
of the controller for each set point, which can be computationally
unaffordable. In this paper, a novel robust MPC for tracking based
on the notion of tubes is proposed. This controller is capable to
maintain the feasibility for any changing target.

The feasibility loss when the target changes is demonstrated in
the following illustrative example.

3.2. Illustrative example: double integrator

Consider a constrained sampled double integrator

xþ ¼ 1 1
0 1

� �
xþ 0 0:5

1 0:5

� �
uþw

y ¼ 1 0½ �x ð8Þ

where the disturbances are such that kwðkÞk1 6 0:1 and the system
must fulfil the following constraints: kxðkÞk1 6 5; kuðkÞk1 6 0:3.

Matrix K has been chosen as the LQR for Q ¼ I2 and R ¼ 10� I2

and it is the following:

K ¼
�0:1183 �0:5234
�0:1739 �0:4356

� �
The minimal robust invariant set /K and the set K/K have been cal-
culated using the methods proposed in [19,1] and are admissible.
The loss of feasibility under a setpoint change is illustrated in
Fig. 2. Consider that the current state is x0 and the MPC has been de-
signed to steer the system to the target yt ¼ r1. The terminal region
is chosen as the set O1ðr1Þ which is the maximal invariant set for
the system controlled by u ¼ Kðx� x1Þ þ u1 (the pair ðx1; u1Þ is the
steady state and input for the steady output r1). The prediction
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horizon has been chosen as N ¼ 2. The region of attraction of the
MPC is X2ðr1Þ. Consider that the target is changed to yt ¼ r2 at the
current sampling instant. The first consequence is that set O1ðr1Þ
translated to the steady state corresponding to r2 is not an admissi-
ble invariant set and then this should be recalculated to avoid a pos-
sible loss of feasibility. Another issue is that, due to the fact that x0 is
out of X2ðr2Þ, the MPC with N ¼ 2 would not be feasible; in order to
keep the feasibility, the prediction horizon should be enlarged to
N ¼ 6 (or even higher, because r1 is out of X6ðr2Þ).

3.3. Characterization of the nominal steady states and inputs

Consider the nominal model of the plant (4) subject to the con-
straints on the nominal state and input given by (7). Every nominal
steady state and input �zs ¼ ð�xs; �usÞ is a solution of the equation

A� In B½ �
�xs

�us

� �
¼ 0n;1 ð9Þ

and hence it is an element of the null space of the linear transforma-
tion given by matrix ½A� InB�. Since it is assumed that ðA;BÞ is con-
trollable, the dimension of this null space is equal to m. Therefore,
there exists a matrix Mh 2 RðnþmÞ�m such that every nominal steady
state and input can be posed as

�zs ¼ Mh
�h ð10Þ

for certain �h 2 Rm. The subspace of nominal steady outputs is then
given by

�ys ¼ Nh
�h ð11Þ

where Nh,½C D�Mh. This parametrization is adopted to simplify the
derivation of the proposed controller.

The existence of constraints (7) limits the set of admissible
nominal steady states and inputs and the set of admissible nominal
controlled variables, which are given by

Zs , fð�xs; �usÞ 2Z : ðA� InÞ�xs þ B�us ¼ 0n;1g

Ys , fC�xs þ D�us : ð�xs; �usÞ 2Zsg
1 In what follows, superscript a denotes that set Xa
t;K is defined in the augmented

state, while no superscript denotes that set Xt;K is defined in the state vector space x
i.e. Xt;K ¼ ProjxðXa

t;K Þ.
3.4. Calculation of an invariant set for tracking

Consider that the nominal system (4) is controlled by the fol-
lowing control law:

�u ¼ Kð�x� �xsÞ þ �us ¼ K�xþ L�h ð12Þ

where L ¼ ½�K Im�Mh. If K is such that matrix Aþ BK is Hurwitz then
this control law steers the system to the steady state and input
ð�xs; �usÞ ¼ Mh
�h. The existence of constraints limits the set of initial

states and steady states and inputs that can admissibly be stabi-
lized. This leads to the following definition.

Definition 2 (Invariant set for tracking). An invariant set for
tracking is the set of initial states and steady states and inputs
(characterized by �h) that can be stabilized by the control law (12)
fulfilling the constraints (7) throughout its evolution.

This set can be computed as an admissible invariant set for the
augmented system xa

, ð�x; �hÞ 2 Rnþm. Then the closed-loop system
can be posed as:

�x
�h

� �þ
|fflffl{zfflffl}

xþa

¼ Aþ BK BL

0 Im

" #
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Aa

�x
�h

� �
|ffl{zffl}

xa

ð13Þ

subject to the set of constraints (7), that can be posed as

Xa ¼ fxa ¼ ð�x; �hÞ : ð�x;K�xþ L�hÞ 2Z;Mh
�h 2Zg

Set Xa
t;K � Xa is an admissible invariant set for tracking, for system

(13) constrained to Xa, if AaX
a
t;K # Xa

t;K and Xa
t;K #Xa. See that for any

ðxð0Þ; �hÞ 2 Xa
t;K , the trajectory of the system �xðiþ 1Þ ¼ A�xðiÞ þ B�uðiÞ

controlled by �uðiÞ ¼ K�xðiÞ þ L�h is confined in Xt;K ¼ ProjxðX
a
t;KÞ

1 and
tends to ð�xs; �usÞ ¼ Mh

�h.
Although the maximal invariant set is not needed, it is conve-

nient in order to provide the largest possible region of attraction
of the proposed robust MPC controller. The maximal admissible
invariant set for system (13) may not be finitely determined due
to the unitary eigenvalues of the plant. Fortunately, in this case,
taking as constraints Xa

k ¼ fxa ¼ ð�x; �hÞ : ð�x;K�xþ L�hÞ 2Z; Mh
�h 2

kZg, the associated maximal admissible invariant set is finitely
determined for any k 2 ð0;1Þ, resulting in a polyhedral region
[8,1]. Thus taking a k arbitrarily close to 1, the resulting invariant
set is arbitrarily close (in the Hausdorff sense) to the maximal one.

It is interesting to characterize what will be the set of the
nominal steady states, inputs and controlled variables that could
be reached from an initial state contained Xt;K . This can be done
by defining the following set of parameters H

H,f�h : ð�xs; �usÞ ¼ Mh
�h 2Z; �xs 2 Xt;Kg ð14Þ

This set is equal to the projection of Xa
t;K onto �h. Then the set of

reachable nominal steady controlled variables is given by

Yt ¼ NhH ð15Þ

Notice that if the calculation method proposed in [1] is used to com-
pute Xa

t;K , then this set Yt is potentially equal to the maximal one Ys

since Yt # kYs and k can be chosen arbitrarily close to 1.

4. Proposed robust MPC for tracking

This section is devoted to presenting the main contribution of
the paper: a robust predictive controller jNðx; ytÞwhich copes with
the proposed control problem and it is derived from the solution of
a single quadratic programming (QP) problem at each sampling
time.

In order to ensure the feasibility of the problem for any target yt ,
an artificial steady state �xs, input �us and controlled variable �ys are
introduced as decision variables in the minimization of the perfor-
mance index. In order to reduce the number of decision variables of
,
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the resulting optimization problem, these artificial steady variables
are characterized by �h since ð�xs; �usÞ ¼ Mh

�h, and �ys ¼ Nh
�h.

The proposed performance index penalizes the deviation be-
tween the predicted nominal evolution of the plant and the artifi-
cial steady conditions throughout the prediction horizon N.
Moreover, robust convergence to (a neighborhood of) the target
yt is ensured by adding to the cost function a term called (offset
cost) of the form k�ys � ytk

2
T which penalizes the deviation between

the target and the artificial target. Then, the proposed cost function
for a given state x and the target yt is as follows

VNðx; yt ; �u; �xð0Þ; �hÞ ,
XN�1

i¼0

k�xðiÞ � �xsk2
Q þ k�uðiÞ � �usk2

R

þ k�xðNÞ � �xsk2
P þ k�ys � ytk

2
T

where �xðiþ 1Þ ¼ A�xðiÞ þ B�uðiÞ; ð�xs; �usÞ ¼ Mh
�h, and �ys ¼ Nh

�h. The cur-
rent state x and the controlled variable target yt are parameters of
the optimization problem, while the decision variables are: (i) the
sequence of the future actions of the nominal system �u, (ii) the
initial state of the nominal trajectory �xð0Þ and (iii) the parameter
vector �h that determines the artificial target steady state, input
and output ð�xs; �us; �ysÞ.

The optimization problem PNðx; ytÞ to be solved is:

min
�u;�xð0Þ;�h

VNðx; yt; �u; �xð0Þ; �hÞ

s:t: �xð0Þ 2 x� ð�UKÞ ð16Þ
�xðiþ 1Þ ¼ A�xðiÞ þ B�uðiÞ; i 2 Z½0;N�1�

ð�xs; �usÞ ¼ Mh
�h

�ys ¼ Nh
�h

ð�xðiÞ; �uðiÞÞ 2Z; i 2 Z½0;N�1� ð17Þ

ð�xðNÞ; �hÞ 2 Xa
t;K ð18Þ

where UK is a robust positive invariant set for the system (1) con-
trolled by (5) and Z is given by (7). The constraint (16) forces the
initial error ð�x� xÞ to be inside the tube and (17) ensures the robust
satisfaction of the constraints [15]. The terminal constraint (18) is
added for stability reasons.

Notice that this controller has two auxiliary control gains: con-
trol gain K used for the computation of the terminal ingredients
and control gain K used for the tube (i.e., the calculation of UK ).
This adds extra degrees of freedom to be exploited in the synthesis
of the controller as it will be shown in Section 7.

Notice also that PNðx; ytÞ is a Quadratic Programming (QP) prob-
lem, that can be efficiently solved using specialized algorithms.
Moreover, since the set of constraints of PNðx; ytÞ does not depend
on the target output yt , the optimization problem PNðx; ytÞ has a
feasible solution for all x contained in a polyhedral set denoted
as XN � Rn, regardless of the choice of the target yt . Defining XN

as the set of states of the nominal model that can be steered to
Xt;K in N steps fulfilling the constraint (17), the feasibility set XN

is given by

XN ¼ XN �UK

In the following, V�Nðx; ytÞ will denote the optimal cost, �u�ðx; ytÞ,
�x�ðx; ytÞ and �h�ðx; ytÞ the optimal value of the decision variables,
�x�ðx; ytÞ the nominal optimal state trajectory and ð�x�s ðx; ytÞ; �u�s ðx; ytÞ;
�y�s ðx; ytÞÞ will denote the optimal artificial reference. The MPC con-
trol law is derived from the optimal solution as follows

jNðx; ytÞ ¼ Kðx� �x�ðx; ytÞÞ þ �u�ð0; x; ytÞ ð19Þ

In the following section it will be shown that, under mild and
standard assumptions, the proposed controller guarantees robust
stability of the closed-loop system.
5. Stability and convergence of the Robust MPC for tracking

The proposed controller (19) is based on the solution of the
optimization problem PNðx; ytÞ. This problem has a number of
ingredients such as: the definition of the stage cost Q ;R matrices,
the terminal state weighting matrix P, the offset weighting matrix
T, the auxiliary robust control gain K, the terminal control gain K ,
the section of the tube UK , and the set of extended terminal con-
straint Xa

t;K . These ingredients will be chosen to satisfy the follow-
ing assumption in order to give suitable properties the controller.

Assumption 2

(i) Q and R are symmetric matrices such that Q P 0, R > 0 and
the pair ðQ

1
2;AÞ is observable.

(ii) T is a symmetric matrix such that T > 0.
(iii) The eigenvalues Aþ BK are in the interior of the unitary cir-

cle and UK is an admissible robust positively invariant (RPI)
set of (1) subject to constraints (2) controlled by u ¼ Kx.

(iv) The eigenvalues Aþ BK are in the interior of the unit circle
and P is the definite positive matrix solution of
P � ðAþ BKÞ>PðAþ BKÞ ¼ Q þ K>RK ð20Þ
(v) The set Xa
t;K is an invariant set for tracking for the system (4)
subject to the constraints (7) for the gain matrix K .

This conditions are an extension of the standard stabilizing con-
ditions in MPC for linear systems [15] for the proposed robust MPC
for tracking. Notice that the terminal region is assumed to be an
invariant set for tracking and two auxiliary control gains K and K
are considered. The determination of these ingredients will be
studied in Section 7. Under these conditions, the following theorem
can be formulated.

Theorem 1. Consider that Assumptions 1 and 2 hold. Let Yt be the set
of reachable nominal steady controlled variables defined in (15) .
Consider the control law (19) resulting from the optimal solution of
problem PNð	; 	Þ. Then system (1) controlled by this law guarantees
that:

(i) For all initial condition xð0Þ 2 XN and for every yt, the evolution
of the system is robustly feasible and admissible, that is,
xðiÞ 2 XN and ðxðiÞ;jNðxðiÞ; ytÞÞ 2Z;8wðkÞ 2W; k ¼ 0;1; . . . ;

i� 1.
(ii) If yt 2 Yt then the controlled variable yðiÞ converges asymptot-

ically at set yt � ðC þ DKÞ/K .
(iii) If yt R Yt then the controlled variable yðiÞ converges asymptot-

ically at set ~ys � ðC þ DKÞ/K , where ~ys is the reachable nominal
steady controlled output which minimizes the offset cost func-
tion, that is
~ys ¼ arg min
�ys2Yt

k�ys � ytk
2
T

The proof can be found in the appendix section

From this result, further properties can be derived that result
very interesting for the real application of the controller:

Property 1 (Stability under target changes). Since PNðx; ytÞ is
feasible 8x 2 XN, for an initial state such that xð0Þ 2 XN, the evolution
of the controlled uncertain system will be feasible, that is xðkÞ 2 XN.
This property holds for any value of yt, even if this one is time varying.
Therefore, if ytðkÞ is a piece-wise constant sequence or if this converges
to a constant value, the controller steers the system to (a neighborhood
of) the steady target. Because of this, the proposed controller is suitable
to control systems with changing points of operation.
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Fig. 3. Comparison of the domain of attraction of MPC for regulation and for
tracking.

D. Limon et al. / Journal of Process Control 20 (2010) 248–260 253
Property 2 (Enlarged domain of attraction). The invariant set for
tracking is (potentially) larger than the invariant set for a given steady
state typically used for the regulation problem [15]. Therefore, the
domain of attraction of the proposed robust MPC for tracking is
(potentially) larger than the one of the regulation problem, and hence
the presented controller can be of interest even when the set point is
not changing.

In order to demonstrate this property, the domains of attraction for
the regulation robust MPC and the proposed robust MPC for tracking
have been calculated for the double integrator of Section 3.2 for a
certain target. As it can be seen in Fig. 3 , the domain of attraction of the
proposed controller is substantially larger than the one for regulation.

Property 3 (Controller implementation). The proposed optimiza-
tion problem PNðx; ytÞ is a Quadratic Programming problem affine
on its parameters ðx; ytÞ. Then the control law is a piece-wise affine
function of ðx; ytÞ defined in a state partition of fXN � Rpg that can
be calculated off-line by means of well-known algorithms [4] . This
property allows to implement the controller algorithm using simpler
and faster software suitable for low order models.
6. Output offset cancellation

As it was proven in the previous section, if the target yt is reach-
able, i.e. yt 2 Yt , the proposed controller steers the output of the
uncertain system to a neighborhood of the target given by
yt � ðC þ DKÞUK . If the uncertainty signal wðkÞ tends to a steady
value wð1Þ, then, the closed-loop system state tends to a steady
output yð1Þ such that

yð1Þ ¼ yt þ Hwð1Þ

where H , ðC þ DKÞðIn � ðAþ BKÞÞ�1. Then the system may exhibit
a steady output offset yð1Þ � yt .

From these calculations, it is easy to see that if, for a given
desired set point yt , the system is controlled by u ¼ jNðx; ŷtÞ with
ŷt ¼ yt � Hwð1Þ and this is reachable, then the output of the
controlled system tends to yð1Þ ¼ ŷt þ Hwð1Þ ¼ yt , and hence
the offset is removed.

In order to use this idea to remove the offset on-line, an
estimation of the disturbance must be calculated by means of an
appropriate observer [18]. Thus, for a given estimation of the dis-
turbance ŵðkÞ, the controller with offset cancellation is given by

uðkÞ ¼ jNðxðkÞ; ŷtðkÞÞ
ŷtðkÞ ¼ yt � HŵðkÞ

ð21Þ
The only assumption on the disturbance estimator is asymptotic
stability and convergence of ŵðkÞ to the real steady disturbance
wð1Þ.

The modified target together with the estimator dynamics (21)
adds an outer feedback loop to the controller. Given that the
proposed controller is feasible for all target, the variation of ŷtðkÞ
does not affect to the feasibility of the MPC. Furthermore, since
the estimator dynamics does not depend on the MPC controller,
the estimator converges at the steady value of the disturbance
and then the whole system is stable.

Furthermore, the steady offset will be removed if the modified
target ŷtð1Þ is reachable, that is, ŷtð1Þ 2 Yt . If the target yt and
the steady disturbance wð1Þ are such that yt � Hwð1Þ is contained
in Yt , then ŷtðkÞ converges to ŷtð1Þ 2 Yt and hence the real output
converges to the desired reference yð1Þ ¼ yt .

6.1. Offset minimization

In the case that the steady modified target ŷtð1Þ is not con-
tained in Yt , then the steady controlled variable yð1Þ will present
offset despite de proposed cancellation loop. As it will shown next,
in this case the whole controller ensures that the offset is
minimized.

It can be proved that, in this case, the real offset is given by

yð1Þ � yt ¼ ½�y�s ðxð1Þ; ŷtð1ÞÞ þ Hwð1Þ� � yt

¼ �y�s ðxð1Þ; ŷtð1ÞÞ � ŷtð1Þ

i.e. the deviation between the artificial steady output and the target
of the control law. In virtue of Theorem 1, this offset is minimized
by the controller according to the offset cost function. Conse-
quently, the proposed controller with the offset cancellation loop
steers the system to an steady output such that

kyð1Þ � ytk
2
T ¼min

�ys2Yt

kð�ys þ Hwð1Þ � ytk
2
T

Notice that matrix T can not make the offset null, but determines
the actual offset of the system.

6.2. Illustrative example: the double integrator

This example shows how the offset can be removed by means of
the proposed method, i.e. providing a target corrected by the esti-
mated disturbance. Fig. 4 shows the response of the controlled
uncertain system under extreme changes of the target. The evolution
of the disturbances is depicted in plot (a) while plot (b) shows the
trajectories of the controlled output and auxiliary variables for the
robust MPC for tracking without offset cancellation loop. It can be
seen how when there are non zero disturbances there exist offset.

Plot (c) shows the response of the controlled system with the
offset cancellation loop. This is based on the estimation of the dis-
turbance using a first order filter

ŵðkÞ ¼ bðxðkÞ � ðAxðk� 1Þ þ Buðk� 1ÞÞÞ þ ð1� bÞŵðk� 1Þ

with a constant of b ¼ 0:95. Notice that, due to the disturbances, the
corrected reference ŷtðkÞ becomes unfeasible in a period of time.
Then, in this period, the offset can not be removed but minimized,
keeping the feasibility.

7. Synthesis of the proposed controller

The proposed controller has some tuning parameters that, sat-
isfying the sufficient conditions for stability, exhibit some degrees
of freedom. These allow us to achieve an enhanced design by
means of an optimized synthesis procedure.
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Matrices Q and R and the prediction horizon N are chosen as
usual in MPC. The terminal ingredients K and P are typically chosen
from the solution of the Riccati equation for optimality reasons.
Once K is fixed, the invariant set for tracking Xa

t;K can be calculated
as proposed in [12,1]. Efficient methods to calculate the minimal
robust invariant set /K and the invariant set for tracking Xa

t;K are
omitted due to lack of space and they can be found in [1] and ref-
erences there in. Matrices T and K can be chosen as indicated in the
following sections.

7.1. The offset cost weighting matrix T

This matrix defines the nominal offset cost term in the cost
function k�ys � ytk

2
T . According to the properties of the proposed

controller, the effects of this parameter on the closed-loop system
are the following :

(i) Set-point filtering: if matrix T is chosen to penalize more
heavily the offset cost, then the convergence of optimal
artificial nominal controlled variable �y�s ðkÞ to the target yt

(assuming that yt 2 Yt) is faster. Moreover, the optimality
loss (due to the addition of the artificial steady state and
input) can be arbitrarily reduced by scaling matrix T [1] pro-
ducing an enhanced closed-loop performance.

(ii) Offset minimization: The controlled output yðkÞ of the closed-
loop system may exhibit steady offset, yð1Þ � yt , due to: (i)
the chosen target yt is not nominally reachable, i.e. it is not
compatible with the model or with the constraints, and (ii)
the effect of disturbances, i.e. wð1Þ – 0.
Assume that the output offset cancellation loop is added,
then the offset ðyð1Þ � ytÞ is such that

kyð1Þ � ytk
2
T ¼min

�ys2Yt

kð�ys þ Hwð1Þ � ytk
2
T

and hence it is minimized according to the chosen matrix T.
Then, if the outer loop does not cancel the offset, this is min-
imized by the controller and this minimum is determined by
matrix T. This allows us for instance to prioritize some of the
outputs (by weighting its corresponding term in matrix T
more heavily) to achieve a minimum nominal offset on these
outputs. This is specially interesting for the case of thin plants
(i.e. p > m), where the dimension of the subspace of reachable
outputs is lower than p. It is also remarkable that since the
closed-loop stability does not rely on the choice of matrix T,
this can be adapted online according to a given criterium, as
for instance, depending on regions in the output targets
subspace.
7.2. The control gain matrix K

This parameter has an important role in the proposed robust
controller. This control gain is used to compensate the deviation
from the nominal predictions in case of disturbances by means of
the control law (5). Therefore, this gain characterizes the dynamics
of the closed-loop system in the presence of disturbances and
should be designed according to a robustness or disturbance rejec-
tion criterium.

The control gain K should be chosen: (i) to ensure the existence
of an admissible robust positively invariant set /K such that the set
Z , Z� ð/K � K/KÞ is not empty, and sufficiently large to provide
to the MPC control law degrees of freedom to optimize the perfor-
mance; and (ii) to reduce the effect of the disturbances on the
closed-loop system by minimizing the size of /K .

In this paper, an LMI based design method is proposed to cope
with both conditions. For this case it is assumed that Z ¼ X�U

and, w.l.o.g., it is considered that X ¼ fx : jh>i xj 6 1; i ¼ 1; . . . ;nrxg
and U ¼ fu : j‘>j uj 6 1; j ¼ 1; . . . ;nrug. Then, the synthesis problem
to solve is to calculate the control law u ¼ Kx such that the size of
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the ellipsoid EðP;1Þ ¼ fx 2 Rn : x>Px 6 1g is minimized while it is
ensured that:

(i) EðP;1Þ is a robust invariant set for system (6).
(ii) For all x 2 EðP;1Þ; j‘>j Kxj 6 qj for all j ¼ 1; . . . ;nru and qj 2
ð0;1�. The role of the parameter qj is to restrict the set of
admissible control inputs to guarantee a given control range
of the MPC controller i.e. the set U ¼ U� K/K is not empty.

(iii) In order to minimize the size of the ellipsoid EðP;1Þ, a
suitable measure of this set must be chosen. In this paper,
we propose a parameter c > 0 as the measure such that
EðP;1Þ# ffiffifficp X. Therefore, minimizing the size of EðP;1Þ is
posed as minimizing the parameter c. Obviously, admissibil-
ity of the solution requires that c 6 1.

Applying standard operations of LMIs (see [5]), the proposed
synthesis procedure can be formulated as the solution of the
following convex optimization problem:

min
Y;W ;c

c

s:t:
kW � �
0 1� k �
AW þ BY w W

2
4

3
5 > 0; 8w 2 vertðWÞ

q2
i �

Y>‘i W

� �
> 0; i ¼ 1; . . . ; nru

c �
Whi W

� �
> 0; i ¼ 1; . . . ; nrx

for a given k P 0. If feasible, the ellipsoid is given by P ¼W�1 and
the control gain is K ¼ YW�1. It is worth remarking that any robust
criterium that can be posed as LMIs can be added to this synthesis
problem.

Once the control gain K is designed, an admissible robust posi-
tively invariant (RPI) set (as small as possible) must be calculated.
A procedure to achieve this can be found in [1].

8. Application of the robust MPC for tracking to the four tanks
plant

In order to demonstrate the benefits of the proposed controller,
this has been applied to a real experimental plant: the four tanks
plant developed at the University of Seville [2].

The four tanks plant is a multivariable laboratory plant of inter-
connected tanks with nonlinear dynamics and subject to state and
input constraints. One important property of this plant is that the
dynamics present multivariable transmission zeros which can be
located in the right hand side of the s plane for some operating con-
ditions. This plant is based on the well-known quadruple-tank pro-
cess [10], and its scheme can be seen in Fig. 5a. In the original
plant, the inputs are the voltages of the two pumps and the outputs
are the water levels in the lower two tanks. Fig. 5b shows the
scheme of the real plant. The main difference is that a control valve
regulates the inlet flow of each tank. The three-way valve ratio is
imposed by a suitable choice of the references of the flows.

A state-space continuous time model of the quadruple-tank
process system [10] can be derived from first principles as follows

dh1

dt
¼ � a1

A1

ffiffiffiffiffiffiffiffiffiffiffi
2gh1

q
þ a3

A1

ffiffiffiffiffiffiffiffiffiffiffi
2gh3

q
þ ca

A1
qa ð22Þ

dh2

dt
¼ � a2

A2

ffiffiffiffiffiffiffiffiffiffiffi
2gh2

q
þ a4

A2

ffiffiffiffiffiffiffiffiffiffiffi
2gh4

q
þ cb

A2
qb

dh3

dt
¼ � a3

A3

ffiffiffiffiffiffiffiffiffiffiffi
2gh3

q
þ ð1� cbÞ

A3
qb

dh4

dt
¼ � a4

A4

ffiffiffiffiffiffiffiffiffiffiffi
2gh4

q
þ ð1� caÞ

A4
qa
The estimated parameters of the real plant and the considered
intervals of admissible variation of the levels and flows are shown
in the following table:
Value
 Unit
 Description
H1max
 1.36
 m
 Maximum level of the tank 1

H2max
 1.36
 m
 Maximum level of the tank 2

H3max
 1.30
 m
 Maximum level of the tank 3

H4max
 1.30
 m
 Maximum level of the tank 4

Hmin
 0.3
 m
 Minimum level in all cases

Q1max
 2.8
 m3=h
 Maximal inflow of tank 1

Q2max
 2.45
 m3=h
 Maximal inflow of tank 2

Q3max
 2.3
 m3=h
 Maximal inflow of tank 3

Q4max
 2.4
 m3=h
 Maximal inflow of tank 4

Qmin
 0
 m3=h
 Minimal inflow in all cases
Q0
a

1.6429
 m3=h
 Equilibrium flow ðQ1 þ Q4Þ
Q0
b

2.0000
 m3=h
 Equilibrium flow ðQ2 þ Q3Þ

a1
 1.341e-4
 m2
 Discharge constant of tank 1

a2
 1.533e-4
 m2
 Discharge constant of tank 2

a3
 9.322e-5
 m2
 Discharge constant of tank 3

a4
 9.061e-5
 m2
 Discharge constant of tank 4

A
 0.06
 m2
 Cross-section of all tanks

ca
 0.3
 Parameter of the 3-ways valve

cb
 0.4
 Parameter of the 3-ways valve
h0
1

0.627
 m
 Equilibrium level of tank 1
h0
2

0.636
 m
 Equilibrium level of tank 2
h0
3

0.652
 m
 Equilibrium level of tank 3
h0
4

0.633
 m
 Equilibrium level of tank 4
The minimum level of the tanks has been taken greater than
zero to prevent eddy effects in the discharge of the tank. The values
of ca and cb have been chosen in order to obtain a system with non-
minimum phase multivariable zeros.

Linearizing the model at an operating point given by h0
i and

defining the deviation variables xi ¼ hi � ho
i and uj ¼ qj � qo

j where
j ¼ a; b and i ¼ 1; 	 	 	 ;4 we have that:

dx
dt
¼

�1
s1

0 A3
A1s3

0

0 �1
s2

0 A4
A2s4

0 0 �1
s3

0

0 0 0 �1
s4

2
6666664

3
7777775xþ

ca
A1

0

0 cb
A2

0 ð1�cbÞ
A3

ð1�caÞ
A4

0

2
6666664

3
7777775u

where si ¼ Ai
ai

ffiffiffiffiffiffi
2h0

i
g

r
P 0, i ¼ 1; . . . ;4, are the time constants of each

tank. This model has been discretized using the zero-order hold
method with a sampling time of 5 s.

The main sources of deviation between the nonlinear model and
the real plant are: (i) the linearization error; (ii) the hypothesis that
parameters ai do not depend on the levels of the tank; and (iii) the
actuator dynamics since the modelled input to the plant is the ref-
erence of the PID that controls the flow of each pipe.

For the identification of W, a worst case scenario input signal
made of a series of step changes was applied to the plant. The level
trajectories of this experiment allowed us to obtain a worst case
bound on the disturbances. The set W identified from the experi-
mental data is defined by the following inequalities:

W , fw 2 R4 : kwk1 6 5� 10�3g ð23Þ

The proposed controller has been designed as described above. The
defining matrices of the stage cost of the performance criterion
have been chosen as



Fig. 5. Schemes of the quadruple-tank process (a) and of the real plant (b).
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Q ¼

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

2
6664

3
7775; R ¼ 10�4I4 ð24Þ

For the calculation of K, the LMI based method proposed in Section
7.2 has been used with a parameter q1 ¼ 1 and q2 ¼ 1. The obtained
value of K is:

K ¼
�5:9997 �18:7429 6:2544 �37:0666
�20:6413 �12:8487 �29:7042 �3:0337

� �
The terminal control gain K has been chosen as the LQR gain for
the matrices (24) and matrix P is the solution of the Ricatti equa-
tion. The offset cost weighting matrix T has been chosen as
T ¼ 100P. Finally the control horizon has been chosen as N ¼ 3.
The resulting regions are shown in Fig. 6.

The derived controller has been tested on the nominal model,
and then applied on the real plant. This has been implemented
and executed in MATLAB connected with the SCADA by means
of OPC (OLE for Process Control) protocol. Fig. 7 shows the real
evolution of levels h1 and h2, the set of the reachable targets
and the targets.
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Fig. 8 shows the level trajectories (solid lines) and the
references (dashed line and semi dashed line, in the case of h1

and h2). The plot in the middle shows the control actions while
the plot in the bottom shows the levels h3 and h4. See that the sys-
tem exhibits the classic non-minimum phase system response. It
can be also seen how the setpoint changes are performed satisfying
the constraints, but there is an offset as consequence of the distur-
bances and/or model discrepancies.

In order to cancel the existing offset, the method proposed in
Section 6 has been tested. To this aim, the following simple estima-
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tor that guarantees that ŵðkÞ converges at the steady value wð1Þ
with a rate of convergence kf has been used:

ŵðkÞ ¼ kf ŵðk� 1Þ þ ð1� kf ÞðxðkÞ � Axðk� 1Þ � Buðk� 1ÞÞ

The value of kf has been chosen as kf ¼ 0:98.
Figs. 9 and 10 show the time evolution of the plant with the dis-

turbance rejection. It can be seen how the offset is removed thanks
to the additional disturbance estimator. However, the system also
exhibits an oscillatory behavior. This is derived from the dynamics
of the level due to the falling water. Thus, the measured level signal
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2 In this proof, the dependence of the optimal solution to ðx; ytÞ will be omitted for
e sake of clarity.
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produces an oscillatory evolution of the modified set-point
through the disturbance estimator feedback loop. The parameter
kf can be adjusted to reduce this effect at expense of a slower evo-
lution of the estimator and hence a slower convergence to the tar-
get. Then, a trade off has been achieved in the presented results. On
the other hand, a more involved estimator could be chosen to ob-
tain a response with less oscillations. However, this choice has not
been considered in this paper because the objective is to show the
proposed controller and the offset removal, and this is clearly dem-
onstrated in the obtained results.

9. Conclusions

In this paper a novel robust MPC to track piece-wise refer-
ences has been presented. The robustness of controller is
achieved by using the notion of tubes. Feasibility of the problem
for any desired admissible steady state is guaranteed by adding
an artificial target and considering an extended terminal con-
straint. Robust convergence is ensured by minimizing a perfor-
mance index which penalizes the error with the desired steady
state and the deviation between the desired steady state and
the artificial one. The control law is derived from the solution
of a QP problem.

The proposed controller has been successfully applied to the
quadruple-tank process, which is a nonlinear uncertain multivari-
able process. The operation point is characterized by non-mini-
mum phase multivariable behaviour. The proposed robust MPC
for tracking successfully solves this control problem.
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Appendix A. Proof of Theorem 1

The proof is based on the following lemma:

Lemma 1. Consider that system (1) subject to constraints (2) fulfils
Assumption 1 . Suppose that the ingredients of PNð	; 	Þ (Q ;R; T; P;K
and K, and sets UK and Xa

t;K ) satisfy Assumption 2 . Consider a given
controlled variables target yt and assume that for a given state x the
optimal solution of PNðx; ytÞ is such that �x�ðx; ytÞ ¼ �x�s ðx; ytÞ. Let ~h be
given by
~h ¼ arg min

�h2H
kNh

�h� ytk
2
T

where H is defined in (14) . Let ~xs; ~us and ~ys be the steady state, input
and controlled output associated to ~h (i.e. ð~xs; ~usÞ ¼ Mh

~h and
~ys ¼ Nh

~h ¼ C~xs þ D~us). Then

�x�s ðx; ytÞ ¼ ~xs; �u�s ð0; x; ytÞ ¼ ~us; �y�s ðx; ytÞ ¼ ~ys

Proof. Consider that the optimal solution of PNðx; ytÞ is
ð�x�s ; �u�s Þ ¼ Mh

�h� 2 and hence the optimal cost function is V�Nðx; ytÞ ¼
k�y�s � ytk

2
T .

In order to prove the lemma by contradiction, it will be
assumed that �h� – ~h.

Let us define a parameter ĥ given by

ĥ ¼ b�h� þ ð1� bÞ~h b 2 ½0;1�
From continuity arguments it can be derived that there exists a
b̂ 2 ½0;1Þ such that for every b 2 ½b̂;1Þ, the state �x�s is contained in
the maximal admissible invariant set for the nominal system con-
trolled by u ¼ �Kðx� �xsÞ þ �us, where ð�xs; �usÞ ¼ Mhĥ. (see [1] for fur-
ther details).
th
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Therefore, defining �u as the sequence of control actions derived
from this control law, it is easily inferred that ð�u; �x�s ; ĥÞ is a feasible
solution for PNðx; ytÞ. The cost function of this feasible solution
satisfies the following

V�Nðx; ytÞ 6 VNðx; yt; �u; �x; ĥÞ ¼ k�h� � ĥk2
M>x PMx

þ kNhĥ� ytk
2
T

¼ ð1� bÞ2k�h� � ~hk2
M>x PMx

þ kNhĥ� ytk
2
T

where Mx is the matrix formed by the first n rows of Mh.
It will be proved that a value of b 2 ½b̂;1Þ exists such that this

feasible solution is lower than the optimal cost, yielding a
contradiction. To this aim, it is observed that the partial derivative
of the cost function with respect to b is:

@VNðx; yt; �u; �x; ĥÞ
@b

¼ �2ð1� bÞkh� hk2
M>x PMx

þ 2ðNhĥ� ytÞ
>TðNhð�h� � ~hÞÞ

For b ¼ 1:

@VNðx; yt; �u; �x; ĥÞ
@b

�����
b¼1

¼ 2ðNh
�h� � ytÞ

>TðNhð�h� � ~hÞÞ

Using the first order condition for convex functions [5] and consid-
ering that ~h – �h�, we have thats

2ðNh
�h� � ytÞ

>TðNhð�h� � ~hÞÞ < kNh
~h� ytk

2
T � kNh

�h� � ytk
2
T

Since ~h is the minimizer of the offset cost, the assumption that
~h – �h� yields to kNh

�h� ytk
2
T � kNh

~h� ytk
2
T > 0 and then

@VN ðx;yt ;�u;�x;ĥÞ
@b

���
b¼1

< 0. This means that a value of b 2 ½b̂;1Þ exists arbi-

trarily close to 1 such that VNðx; yt ; �u; �x; ĥÞ for b is lower than
VNðx; yt; �u; �x; ĥÞ for b ¼ 1, which is equal to V�Nðx; ytÞ. This fact leads
to a contradiction, proving the lemma. h
A.1. Proof of Theorem 1

The first part of the proof is devoted to proving the recursive
feasibility of the controlled system, that is, xðkþ 1Þ 2 XN , for all
xðkÞ 2 XN;wðkÞ 2W and yt . This property implies the robust con-
straint satisfaction of the controlled system.

Consider the optimal solution of PNðxðkÞ; ytÞ, then the successor
state is

xðkþ 1Þ ¼ AxðkÞ þ BjNðxðkÞ; ytÞ þwðkÞ;

where wðkÞ 2W. Define the following sequences:

�uðxðkþ 1Þ; ytÞ , ½�u�ð1; xðkÞ; ytÞ; . . . ; �u�ðN � 1; xðkÞ; ytÞ;

Kð�x�ðN � 1; xðkÞ; ytÞ � �x�s ðxðkÞ; ytÞÞ þ �u�s ðxðkÞ; ytÞ�
�xðxðkþ 1Þ; ytÞ , �x�ð1; xðkÞ; ytÞ �hðxðkþ 1Þ; ytÞ , �h�ðxðkÞ; ytÞ ð25Þ

The proposed solution ð�u; �x; �hÞ is feasible for the optimization prob-
lem PNðxðkþ 1Þ; ytÞ due to the following arguments:


 From the notion of the tube of trajectories it is possible to
deduce that xðkþ 1Þ 2 �xðxðkþ 1Þ; ytÞ �UK .


 Since �xðxðkþ 1Þ; ytÞ ¼ �x�ð1; xðkÞ; ytÞ, it can be derived that
�xði; xðkþ 1Þ; ytÞ ¼ �x�ðiþ 1; xðkÞ; ytÞ; i ¼ 0;1; . . . ;N � 1

and then, the first N � 1 terms of the nominal trajectory are
admissible. Admissibility of �xðN; xðkþ 1Þ; ytÞ stems from the fact
that

ð�xðN � 1; xðkþ 1Þ; ytÞ; �hðxðkþ 1Þ; ytÞÞ 2 Xa
t;K

and hence the control action �uðN � 1; xðkþ 1Þ; ytÞ ensures that
ð�xðN; xðkþ 1Þ; ytÞ; �hðxðkþ 1Þ; ytÞÞ 2 Xa
t;K

 Feasibility of �u�ðxðkÞ; ytÞ and admissibility of set Xa
t;K ensures the

feasibility of �uðxðkþ 1Þ; ytÞ.

 The terminal constraint satisfaction stems from the invariance

for tracking of Xa
t;K .

Convergence is demonstrated by showing that the statement
(iii) holds for any target controlled variable yt . That is, for any yt ,
the controlled system evolves to the set ~ys � ðC þ DKÞ/K , where

~ys ¼ arg min
�ys2Yt

k�ys � ytk
2
T

Notice that if yt 2 Yt , then ~ys ¼ yt and hence statement (ii) is
derived.

As it is standard in MPC, this is proved by showing that the opti-
mal cost is a Lyapunov function. Taking into account the properties
of the feasible nominal trajectories for xðkþ 1Þ, the condition (iv) of
Assumption 2 and using standard procedures in MPC [14], it can be
obtained that the proposed feasible solution (25) can be made to
fulfil the following condition:

VNðxðkþ 1Þ; yt ; �u; �x; �hÞ � V�NðxðkÞ; ytÞ

6 �k�x�ðxðkÞ; ytÞ � �x�s ðxðkÞ; ytÞk
2
Q � k�u�ð0; xðkÞ; ytÞ � �u�s ðxðkÞ; ytÞk

2
R

6 �k�x�ðxðkÞ; ytÞ � �x�s ðxðkÞ; ytÞk
2
Q

By optimality, we have that

V�Nðxðkþ 1Þ; ytÞ 6 VNðxðkþ 1Þ; yt; �u; �x; �hÞ

and then:

V�Nðxðkþ 1Þ; ytÞ � V�NðxðkÞ; ytÞ 6 �k�x�ðxðkÞ; ytÞ � �x�s ðxðkÞ; ytÞk
2
Q

Taking into account that Q
1
2;A

� �
is observable, we have that

lim
k!1
k�x�ðxðkÞ; ytÞ � �x�s ðxðkÞ; ytÞk ¼ 0

which implies that

lim
k!1
k�y�ðxðkÞ; ytÞ � �y�s ðxðkÞ; ytÞk ¼ 0

where �y�ðxðkÞ; ytÞ ¼ C�x�ðxðkÞ; ytÞ þ D�u�ð0; xðkÞ; ytÞ.
In virtue of Lemma 1, we can deduce that if

k�x�ðxðkÞ; ytÞ � �x�s ðxðkÞ; ytÞk ! 0

then k�x�s ðxðkÞ; ytÞ � ~xsk ! 0 and k�u�ð0; xðkÞ; ytÞ � ~usk ! 0.
Thus, from the notion of tubes, it is derived that the real state of

the plant xðkÞ tends to ~xs �UK and the applied control input uðkÞ
tends to ~us � KUK . Therefore, the real controlled variable
yðkÞ ¼ CxðkÞ þ DuðkÞ tends to Cð~xs �UKÞ � Dð~us � KUKÞ ¼ ~ys�
½C þ DK�UK . h
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