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Constrained Predictive Control of an Irrigation Canal1

A.Álvarez1, M.A.Ridao2, D.R.Ramirez3

L.Sánchez4

2

ABSTRACT3

This paper presents the application of a Distributed Model Predictive Controller (DMPC)4

to the control of an accurate model of an actual irrigation canal in Spain. The canal is5

modelled using the Saint-Venant equations and implemented using the well known modelling6

software for irrigation canals SIC. The DMPC algorithm has been implemented in Matlab7

and interfaced to SIC. In the distributed control algorithms, the local controllers exchange8

information so that their control policies are optimal in the sense of getting the best values9

of a performance index. The results show that the proposed distributed control algorithm10

obtains better control performance than a more conventional decentralized control scheme11

without information exchange. This better performance translates directly into money and12

resource savings.13

Keywords: Model Predictive Control, irrigation canal, distributed control, control14

algorithms15

1 INTRODUCTION16

Water is a limited resource. In addition, nowadays there are some regions in Europe17

and all over the world with long seasons of drought. As a consequence, the development of18

innovative control techniques that optimize water management is a relevant issue.19
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The main objective of irrigation canals is to supply water to farmers according to a20

specific schedule. An irrigation canal is composed by several reaches, connected by gates,21

and usually following a tree structure. In a typical irrigation canal the length can be hundred22

of kilometers, there are tens of gates and hundreds of off-take points, used by farmers to take23

water from the canal.24

Irrigation canals management involves operating gates, pumps and valves in order to25

satisfy user demands and minimize costs and water loses. In addition, a set of constraints26

imposed by the physical system and management policies has to be considered, for example,27

maximum and minimum water level and flow.28

Automatic control techniques are widely used in irrigation canals, most of them based on29

a local control of gates using classic approaches as PI (Proportional-Integral) controllers (See30

(Malaterre et al. 1998) for a detailed classification of these algorithms). These decentralized31

approaches provide reasonable behavior in many cases, but as the coupling effect among32

the different local controllers (agents) is not taken into account, sometimes they produce33

important loss in the control performance.34

Another approach based on PI is discussed in (Ooi and Weyer 2008), where the controller35

is a PI controller augmented with a first order low pass filter in order not to amplify waves36

present in the channel. The developed routine for controller design is based on frequency37

response design, and configurations with and without feedforward from downstream gate are38

considered.39

The use of a single global controller for the control of the whole system (centralized40

control) is an alternative to deal with this problem. Model Predictive Control (MPC) (See41

(Camacho and Bordons 2004)) approaches have been widely and successfully applied in water42

systems. However, MPC is a technique with strong computational requirements that hinder43

its application to large-scale systems such as water networks in a centralized way. Moreover,44

the communication difficulties in a system extended in a geographical area of hundreds of45

kilometers make not sensible the use of a centralized real-time control system based on long46
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distance communications. Another problem to use centralized approaches is the fact that47

sometimes different sections of the canal can be managed by different control centers and48

even by different organizations.49

Distributed Model Predictive Control techniques to optimize the management of water50

in irrigation canals provide a reasonable trade-off between complexity and performance.51

Basically, the idea is to provide communication among local controllers, in such a way that52

agents can exchange information or even negotiate and reach agreements. In this paper, a53

Distributed MPC algorithm is presented where the communication requirements are adapted54

to the complexity of the control of the different subsystems, from a simple information55

exchange to a negotiation in problematic reaches.56

There are several works that address the canal control with Predictive control techniques57

with decentralized and centralized approaches.58

In (Rodellar et al. 1993), a model predictive algorithm is presented to control the59

downstream discharge of a canal reach. (Gómez et al. 2002) presents a decentralized60

predictive control for an irrigation canal composed by a series of pools. In order to decouple61

the system, the controller used an estimation of the future discharges and the hypothesis62

of being linearly approaching the reference, to finally reach it, at the end of the prediction63

horizon. Because the control law solution was given in terms of reach’s inflow discharge,64

they used a local controller to adjust the gate opening to the required discharge.65

In (Sawadogo et al. 1998), and later in (Sawadogo et al. 2000), a similar decentralized66

adaptive predictive control is presented , but that used the reach’s head gate opening as67

controllable variable and the reach’s tail gate opening and the irrigation off-take discharge68

as known disturbances.69

Several centralized MPC approaches also have been proposed. (Malaterre and Rodellar70

1997) performed a multivariable predictive control of a two reaches canal using a state space71

model. They observed that the increase of the prediction horizon produced a change in72

the controller behavior, varying the control perspective from a local to a global problem.73
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(Wahlin 2004) tested a Multivariable Constrained Predictive controller using a state space74

model based on Schuurmans first-order Integrator Delay model (Schuurmans et al. 1999).75

They performed tests where the controller either knew or did not know the canal parameters76

and with and without the minimum gate movement restriction.77

In (Silva et al. 2007), a predictive controller, based on a linearization of the Saint-Venant78

equations, has been also implemented on an experimental water canal. (Begovich et al.79

2004; Begovich 2007) proposed a multivariable predictive controller with constraints which80

was implemented in real-time to regulate the downstream levels of a four-pool irrigation81

canal prototype. In (Lemos et al. 2009), several control structures are applied to a pilot82

canal, ranging from decentralized MPC, multivariate control using only neighbour reaches,83

to centralized multivariable control. Also, an adaptive MPC based on multiple models is84

evaluated. A complete state-of the art of MPC applications can be found in (van Overloop85

2006) and (Sepulveda 2007).86

Distributed control has been also a focus of research during the last few years. (Tricaud87

and Chen 2007; Li and Cantoni 2008; Li and De Schutter 2010) presented different distributed88

approaches based on control techniques different to MPC. (Negenborn et al. 2009) presented89

a distributed MPC based on Lagrange multipliers. At every sample interval the controllers90

perform several iterations of local optimization problem and communication with their91

neighbour based on a serial communication scheme. Finally, in (Zafra-Cabeza et al. 2011) a92

distributed MPC method based on game theory for multiple agents is applied to irrigation93

canals. The controller were tested by a simulation in which the canals were modelled using94

the integrator delay model. Also, the controlled variables were water flows at each gate,95

assuming an underlying low level control structure that managed to get the flows set by the96

distributed MPC controller. The distributed MPC algorithm used, presented in (Maestre97

et al. 2011), provides a reasonable trade-off between performance and low communication98

requirements needed to reach a cooperative solution.99

In this paper we present the modelling of a section of a real canal in the South-East of100
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Spain and its control using predictive controllers based on the distributed MPC algorithm101

presented in (Maestre et al. 2011) and also on feedforward techniques. The controller uses an102

iterative game theory algorithm for the two most coupled subsystems and for the remaining103

a non iterative distributed scheme in which the information exchanged for each controller is104

used to compensate the interactions in a feedforward manner.105

The model of the canal used to test the control structure is a very realistic one developed106

using the well known SIC software (Simulation of Irrigation Canals), which is based on a107

mathematical model that can simulate the hydraulic behaviour of most of the irrigation108

canals or rivers, under steady and unsteady flow conditions. The SIC hydraulic model solves109

the complete Saint Venant equations using the classical implicit Preissmann scheme.110

Moreover, different control scenarios are illustrated in the paper, and in each of them111

different control structures are tested. The performance of each control structure is112

illustrated by means of a performance index and an estimation of the economical costs113

incurred by each controller. These merit figures shows that distributed decentralized114

predictive controllers obtain the best results compared with decentralized local controllers.115

The rest of the paper is organized as follows: Sections 2 and 3 present the irrigation canal116

benchmark and some issues regarding the control of canals. The proposed control strategy is117

presented in section 4 and experimental results for several simulations are shown in section118

5. Finally the conclusions are presented in section 6.119

2 CONTROL OF IRRIGATION CANALS120

The control of irrigation canals presents some specific details that should be considered121

before choosing any control strategy. First, it is important to start with the variables involved122

in the control scheme. In the case of irrigation canals, there are two types of variables that123

one could wish to control (i.e., controlled variables or system outputs): water levels and flows124

(measured at each or some of the gates). On the other hand, to achieve the control goals,125

two variables can be manipulated (i.e., control inputs or manipulated variables): the degree126

of gate aperture and also flows (usually only at the head of the canal). Note that in the case127
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that the manipulated variable is chosen to be the flow at some specific gate (instead of the128

head of the canal), then a lower level controller has to be used to attain that flow using the129

gate aperture.130

An important issue in the control of the canal system is the location of controlled variable131

relative to the control structure (i.e, gates). Mainly, two alternatives are considered. In132

downstream control strategy, control structure adjustments are based upon information133

measured by a sensor located downstream. Downstream control transfers the downstream134

canal-side off-takes demands to the upstream water supply source (or canal head works).135

On the other hand, in upstream control, control structure adjustments are based upon136

information from upstream. Upstream control transfers the upstream water supply (or137

inflow) downstream to points of diversion or to the end of the canal. Upstream control138

has to be used when the flow at the head of the canal is fixed, normally by an external139

organization. In any other circumstances, downstream control has demonstrated to be more140

efficient.141

Measurable disturbances play an important role in the control of irrigation canals.142

This is because the coupled nature of irrigation channels, which extend for hundreds of143

kilometers and have multiple controllers that disturb their neighbours with each change in144

their manipulated variables. Specifically, downstream control actions mean disturbances145

that could be considered when computing a control action somewhere in the canal. When146

calculating the opening/closing of any gate at any sample period, the opening/closing of the147

following downstream gate could be considered as a measurable disturbance and its effect148

could be taken into account in the optimal control sequence calculation.149

Off-takes and in-takes comprise another kind of disturbance. An off-take is a point150

where water is taken for a particular purpose (for example, irrigation).The flows are151

usually scheduled, so their value and moment of apparition can be predicted in advance.152

Nevertheless, the off-take gates are manipulated directly by farmers, so an uncertainty must153

be considered in this prediction. Sometimes there is only partial information about off-take154
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flows, for example, an aggregate value of the flows of the off-take in a determined area. Also155

in-takes can be considered, for example, rainfall. The operation of off-takes and in-takes is156

considered as a measurable disturbance in the same manner as the gate movements, with157

exactly the same treatment.158

Finally, the aforementioned coupled nature of irrigation canals together with the usual159

geographical dispersion found in the actual control hardware used leads to the consideration160

of distributed control schemes as a practical control solution. Thus, the overall performance161

of the canal control system will be greatly improved if distributed control strategies are used162

at least in those segments of the canal in which the coupling is so strong that a measurable163

disturbance management only is not enough.164

2.1 The irrigation canal of La Pedrera (Murcia, Spain)165

This work is focused on the control of a section of the ”postrasvase Tajo-Segura” in the166

South-East of Spain. The ”postrasvase Tajo-Segura” is a set of canals which distribute water167

coming from the Tajo River in the basin of the Segura River. This water is mainly used for168

irrigation (78%), although 22% of it is drinking water. The selected section is a Y-shape169

canal (see Figure 1), a main canal that splits into two canals with a gate placed at the input170

of each one of them:171

• ”Canal de la Pedrera”, 6.680 kilometres long.172

• ”Canal de Cartagena”, 17.444 kilometres long.173

It is a gravity-fed canal without pumps in the considered section. The total length of the174

canals is approximately of 24 kilometers with a trapezoidal section. There are five main175

sluice-type overshot gates (in red in Figure 1) and 5 gravity off-take gates in the section176

selected (green arrows in Figure 1).177

The objective of this paper is to control the distance downstream level at each one of178

the reaches in Canal de Cartagena (ref1, ref2, ref4 and ref5 in 1) and the flow at the head of179

Canal de la Pedrera (ref3). To reach this objective, the control system will manipulate the180
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flow at the head of the main canal (f1) and the position of the main gates (g2 to g5).181

Notice that typically the source of water at the head of the canal (a reservoir or a main182

river, as in this benchmark) is managed by a different organization than the canal operator.183

That includes also the control or supervision of the gate at the head of the canal (typically184

a set of undershot sluice gates), fixing at any time the head flow of the canal or, at least,185

the constraints on the flow. In this benchmark, the proposed control system provide flow186

set-points to the head gate but considering flow limits imposed by the external organization187

The following constraints are also considered:188

• Minimum level to guarantee that off-take points are submerged.189

• Maximum level to prevent the canal from bursting its banks and causing floods.190

• The flow at the head of the canal is limited.191

• Maximum and minimum gates opening. Maximum gate opening is fixed by the water192

level, when the whole gate becomes above the water line and increasing its opening is193

pointless. Besides, gate opening has a physical limit which depends on the gate itself.194

A combination of local and distributed MPC approaches is proposed for the control of this195

section of the canal.196

3 CONSTRAINED PREDICTIVE CONTROL OF IRRIGATION CANALS197

This section presents control algorithms and techniques used to control the irrigation198

canal described in the previous section. These techniques are briefly reviewed, and only the199

main ideas are presented. Thus, the reader interested in more technical details is encouraged200

to consult the Model Predictive Control works cited in this section. Section 3.1 presents201

the main constrained predictive control used to compute the control signal applied to each202

gate. How to take into account the effect of measurable disturbances in the control signal203

computation is shown in section 3.2. Finally, the coordination of a pair of local controllers204

using a Distributed Model Predictive Control scheme is presented in section 3.3.205
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3.1 Constrained Model Predictive Control206

Model Predictive Control (MPC) is one of the most popular techniques in the field of207

automatic control. It is in fact one of the few advanced control techniques that are nowadays208

available in commercial industrial control solutions. The reasons of that success are mainly209

the ability to consider constraints in the computation of the control signal, the possibility210

of taking into account measurable disturbances and process dead-time and, also, that the211

extension to the multivariable case is relatively straightforward. All these features yield a212

control performance that can be much better than that obtained with conventional control213

methods (i.e., PID controllers). Furthermore, MPC can be applied to a wide range of214

problems and the tuning of MPC controllers involve the choice of a reasonable number of215

design parameters.216

All MPC strategies are based on a process model that is used to predict the evolution217

of the system state or output1 along an interval of time called the prediction horizon (see218

figure 2). The prediction of the system output are computed iteratively using the prediction219

model using present and past values of the system input and output as initial conditions.220

Predicted values for system output or input at time k+ j using the information available at221

time k are denoted by yk+j|k or uk+j|k. On the other hand, the prediction horizon comprises222

all sampling times between k +N1 and k +N2. There is also a control horizon, comprising223

sampling times between k and k +Nu − 1, after which the system input is considered to be224

constant (see figure 2).225

Usually, the process model (or prediction model) considered is a discrete time model that226

can be nonlinear or linear. The theory of MPC using linear models is much more developed227

than that of nonlinear models, thus almost all commercial implementations are based on a228

linear prediction model. From a practitioner point of view, the most natural and easy choice229

is an input-output model based on the transfer function of the process to be controlled.230

Thus, we propose the use of a CARIMA (Controlled Auto-Regressive Integrated Moving231

1In this work we use input-output models, thus we consider here predictions of the system output.
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Average) model, which in time domain can be written as:232

yk = a1yk−1 + · · ·+ anayk−na + b0∆uk−d−1 + · · ·+ bnb∆uk−d−nb−1 + ek (1)233

where d is the model dead time measured in sampling times and yk and ∆uk denote the234

value of the process output and process input increment at sampling time k. Furthermore,235

this model considers a noisy disturbance denoted as ek which can be modelled as a white236

noise. Note also that, in practice, the ai, bi parameters would be usually obtained through237

identification from the real process to be controlled.238

Model (1) can be used to obtain at time k predictions of the future values of the process239

output along a prediction horizon defined by the sampling times k + j, j ∈ [N1, N2]. Those240

predicted values of the process output computed at time k will be denoted as yk+j|k. Note241

that these predictions will depend on some information that is readily available at time242

k (namely the present and past values of the process output and the past values of the243

input increments) and also they will depend on the present and future values of the input244

increments, which have to be computed by the predictive controller. These present and245

future values of the input increments will be considered along a control horizon defined by246

the sampling times k + j with j ∈ [0, Nu − 1]2.247

As mentioned at the beginning of this section, one of the most remarkable features of248

MPC is that constraints can be taking into account in the computation of the control signal.249

Thus, here constraints on the values of the input signal, input increments and predicted250

outputs are considered:251

u ≤ uk+i|k ≤ u, i = 0, . . . , Nu − 1

∆u ≤ ∆uk+i|k ≤ ∆u, i = 0, . . . , Nu − 1

y ≤ yk+i|k ≤ y, i = N1, . . . , N2

(2)252

2Note that if the control horizon is smaller than the prediction horizon, i.e., Nu < N2, then, the input
increments after the control horizon are assumed to be zero, i.e, ∆uk = 0, k ∈ [Nu, N2].
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Note that, being model (1) linear, all these constraints are linear on the input increments,253

so they can be rewritten as:254

Ru ≤ c (3)255

where R and c are a matrix and a vector of appropiate dimensions and u is the sequence256

of present and future input increments defined as u =
[

∆uk|k,∆uk+1|k, . . . ,∆uk+Nu−1|k

]

(see257

(Camacho and Bordons 2004) for details on how to find R and c). Only those sequences u258

that satisfy (3) will be considered as admissible by the controller.259

Once the admissible sequences u are characterized, the next step to the formulation of a260

MPC is to provide some means of getting a measure of how good is a sequence u in terms261

of control performance. This can be achieved by means of a quadratic cost function of the262

future set point tracking errors plus a term weighting the input increments is added:263

J(u) =

N2
∑

j=N1

(y(k + j|k)− r(k + j))2 + λ
Nu−1
∑

j=0

∆u(k + j|k)2 (4)264

where λ > 0 is the weighting factor for present and future input increments3. Note that265

this term is added to penalize the use of unnecessary arbitrarily large values of the input266

increments as these increments are usually related to economical costs. With this definition267

of J(u) the best control sequence will be that which obtains the smallest tracking errors with268

the smallest control input increments. This sequence will be the one that minimizes the cost269

function J(u).270

With all the previous elements, the optimal control sequence u∗ produced by the MPC271

controller is defined as the solution of the following optimization problem:272

u∗ = arg min
u

J(u)

s.t. Ru ≤ c

(5)273

3Note that more complex weighting schemes exist (like using time variable weight factors or weighting
both terms in (4)). We use here the scheme proposed in (Clarke et al. 1987) as practice shows that a similar
performance can be achieved with the added benefit of a simpler tuning procedure (as only one weighting
factor has to be tuned).
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The solution to this optimization problem is applied using a receding horizon scheme, that274

means that every sampling time problem (5) is solved, and at each sampling time, only the275

first component of u∗ is in fact applied to the system, whereas the remaining components276

are discarded. The reason to use such receding horizon scheme is to close the control loop,277

that otherwise would result in an open-loop control scheme. Note that, being the model278

and constraints linear and the cost function quadratic, the optimization problem (5) is a279

Quadratic Program that can be efficiently solved using the current computer hardware.280

There are some different ways to implement MPC algorithms. All of them are discussed281

in depth in (Camacho and Bordons 2004). We have chosen Generalized Predictive Control282

(GPC), which can easily be extended for the distributed case.283

3.2 Consideration of measurable disturbances in the computation of the control284

signal285

Measurable disturbances can be easily included in an MPC scheme like the one presented286

so far in this section. The only modification that has to be done is in the prediction model,287

that now has two deterministic inputs: the manipulated input u (which it is used to control288

the system) and the disturbance v (which has to be measurable). Thus, model (1) will be289

rewritten as:290

yk = a1yk−1 + · · ·+ anayk−na + b0∆uk−du−1 + · · ·+ bnb∆uk−du−nb−1 + (6)291

+d0∆vk−dv−1 + · · ·+ dnd∆vk−dv−nd−1 + ek292

Note that the delay from each input to the output is not necessarily equal, and that the293

measurable disturbance behaves just like an extra input that it is not under our control.294

Besides this modification, the MPC controller formulation remains the same. This way of295

taken into account measurable disturbance is essentially the same as in the classic feedforward296

disturbance compensation techniques (Camacho and Bordons 2004).297
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3.3 Cooperative Distributed MPC298

The MPC strategy discussed so far involves a number of controllers that operate299

independently without exchanging any information about the optimal sequences computed300

by each one. Thus, each controller operates independtly, having its own data, which are just301

a part of the whole information. However, it is possible to establish a communication link302

between two or more controllers in order to share information and to work in a collaborative303

manner. In this way, the controllers would have more information available, which would304

improve the overall control performance. This observation leads to the development of305

cooperative Distributed MPC (DMPC) strategies (see (Zafra-Cabeza et al. 2011)). The306

algorithm used here, which is discussed in detail in (Maestre et al. 2011), involves only a307

pair of controllers (although it can be extended to consider any number of controllers), and308

it is based on cooperative game theory. The goal is to control a pair of constrained coupled309

linear systems where a communication link is established between controllers. Each controller310

has only a part of the information related to the model and the state of the overall system,311

although they can exchange information about their optimal control sequences. Game theory312

is used to implement a coordination scheme in which both controllers have to cooperate to313

achieve their control goals, even in the case of conflicting goals. The coordination problem314

is reduced to a cooperative game where each agent have to make a choice among three315

possibilities. Only two communication cycles will be required for each choice.316

The proposed distributed MPC algorithm,for a pair of controllers, is the following:317

1. At sample time k Each controller i ∈ [1, 2] reads its controlled variables. Denote the318

optimal sequence computed in the previous sample time as US
i (k).319

2. Each controller i ∈ [1, 2] solves its local MPC problem minimizing its own cost320

function Ji and considering the effect of the control actions of the other controller as321

a measurable disturbance. It is assumed that the other controller will keep applying322

the optimal control sequence computed in the previous sample time (that is, US
j (k))

4.323

4Given i ∈ [1, 2] and j ∈ [1, 2], when i=1 then j=2 and vice versa. So, in general terms, we use the
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Denote the optimal control sequence as U∗
i (k).324

3. Each controller i ∈ [1, 2], assuming that it applies the optimal sequence previously325

obtained in step 2, computes the control sequence for neighbour j that gets the326

smallest value of its own cost function Ji. That is, each controller computes the327

neighbour input that it is more beneficial for its own performance. Denote this328

sequence as Uw
j (k)

5. Note that each controller assumes that its neighbour behaves in329

an altruist way, thus it will ”agree” to use Uw
j (k) instead of U∗

j (k).330

4. Both controllers communicate the sequences computed in the previous steps.331

Controller 1 sends to controller 2 the sequences U∗
1 (k) and Uw

2 (k), whereas controller332

2 sends to controller 1 U∗
2 (k) and Uw

1 (k). Thus, at the end of this step both controllers333

know all the sequences that have been computed so far.334

5. Each controller i evaluates its own cost function for all the sequences it could choose.

That is, controller 1 computes the set:

J1 =
{

J1(U
S
1 (k)), J1(U

∗
1 (k)), J1(U

w
1 (k))

}

and controller 2 computes the set:335

J2 =
{

J2(U
S
2 (k)), J2(U

∗
2 (k)), J2(U

w
2 (k))

}

.

6. Both controllers communicate the values obtained in the previous step. That is,336

controller 1 sends the set J1 to controller 2, whereas controller 2 sends the set J2 to337

controller 1.338

7. Both controllers consider the 9 possible pairs (J1, J2) of optimal costs in J = J1 × J2339

and pick the one that gives the minimum sum J = J1 + J2. Note that this pair has340

a pair of associated optimal sequences, which will be denoted as Ud
1 (k) and Ud

2 (k)341

respectively.342

subindex i when referring to the controller we are dealing with and j when referring to the other one
5Note that controller 1 computes Uw

2
(k) and controller 2 computes Uw

1
(k).
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8. Each controller i apply to the controlled system the first component of Ud
i (k) and the343

whole procedure is repeated again at the next sampling time.344

To summarize the procedure, the goal is to construct a 3x3 matrix. Each row contains a345

possible optimal sequence which can be chosen by controller 1, and each column contains a346

possible optimal sequence which can be chosen by controller 2. Cells contain the sum of cost347

functions for each of the possible optimal sequence combinations. Thus, there are 9 options,348

and the combination that minimize the cost function sum will be chosen.349

4 MODELING AND CONTROL STRUCTURE350

Models that involve water movement are generally obtained making use of simplifications351

of the Navier-Stokes equations, because of the complexity in dealing directly with them. For352

irrigation canals, one of the most accepted and used model in simulations is the system353

given by the Saint-Venant Equations, because of its capacity to represent the dynamic354

characteristics of real interest. However, this system is a nonlinear partial differential355

equation system, which has analytical solution only in very special cases, forcing the356

employment of numerical methods to solve it properly. Since the early 60s researchers357

have devoted important efforts to developing efficient solutions methods for those equations.358

Most numerical methods can be included in the finite difference or finite element categories.359

As a model for computational simulation it is very accurate, but as model for control, it360

is clearly not appropriate because of its complexity. Linearizations or simplifications of the361

Saint-Venant equations are used for control purposes.362

Making use of Saint Venant equations, a reach can be modelled by two partial differential363

equations representing a mass balance (continuity equation) and a momentum balance.364











∂q(t,z)
∂z

+ ∂s(t,z)
∂t

= 0

1
g

∂
∂t

(

q(t,z)
s(t,z)

)

+ 1
2g

∂
∂z

(

q2(t,z)
s2(t,z)

)

+ ∂h(t,z)
∂z

+ If(t, z)− I0(z) = 0
(7)365

The variables represent the following quantities:366
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• z is the spatial variable which increases along the flow main direction;367

• q(t, z) is the river flow (or discharge) at time t and space coordinate z;368

• s(t, z) is the wetted surface;369

• h(t, z) is the water level w.r.t. the river bed;370

• g is the gravitational acceleration;371

• If(t, z) is the friction slope;372

• I0(z) is the river bed slope.373

Different approaches have been used to model the friction slope such as the Gauckler-374

Manning-Strickler equation:375

Sf(t, z) =
q(t, z)2 (p(t, z))4/3

k2
str (s(t, z))

10/3
(8)376

where p(z) is the wet section perimeter and kstr is the Gauckler-Manning-Strickler coefficient.377

The Gauckler-Manning-Strickler coefficient changes accordingly to the kind of river bed378

surface.379

In order to have a realistic simulation of the irrigation canal of La Pedrera, Saint-Venant380

equations, the well known SIC (Simulation of Irrigation Canals) software has been used.381

SIC provides a mathematical model which can simulate the hydraulic behaviour of most of382

the irrigation canals or rivers, under steady and unsteady flow conditions. Steady flow and383

unsteady flow computations can be performed on any type of hydraulic networks (linear,384

looped or branched). Any reach can be composed of a minor, a medium and a major385

bed. Storage pools can also be modelled. The SIC model is an efficient tool allowing386

canal managers, engineers and researchers to quickly simulate a large number of hydraulic387

conditions at the design or management level. Moreover, it can be interfaced (by means388

of its regulation module) to different mathematical software like Matlab and Scilab, a very389

convenient feature for research purposes.390

The SIC model of the irrigation canal of La Pedrera comprises a set of data which are391
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obtained from a topographic source or planes. From the software processing point of view,392

hydraulic canals are usually described on the basis of a set of cross-sections. Each section393

has some associated information such as the section shape (circular, square, trapezoidal), the394

coordinates of the significant points of the section (usually vertices), the position measured395

from the origin of the canal, the Manning coefficient or water leakage losses. In addition,396

points where either water injection or extraction exists are indicated by using nodes. As397

indicated above, these points are called off-takes. A reach is a canal portion situated between398

a pair of nodes. SIC has a editing tool (see figure 3)which allows to characterize the canal399

by introducing the data related to each cross-section(see figure 4).400

The Saint-Venant model of the irrigation canal is a very realistic one and it will be used401

as a test bed for the control structure proposed in this paper. But for control purposes a402

less complex model is usually needed. Moreover, the control structure proposed here relies403

on model predictive controllers, which use a linear prediction model to compute the gate404

openings that are necessary to attain the target flows at each gate. Thus a Multi Input405

Multi Output (MIMO) model of five inputs and five outputs has been identified using the406

well known Least Squares method (this method and others used in identification processes407

are discussed in depth in (Cellier and Greifeneder 1991; Johansson 1993; Landau and Landau408

1990)) around the operating point shown in table 1. In the model, the five inputs are the409

flow at the head of the main canal (u1), and the position of the main gates g2 to g5 (u2 to u5410

in table 1). On the other hand, the five outputs that are to be controlled are water level at411

each one of the reaches in Canal de Cartagena (y1, y2, y4 and y5) and the flow at the head412

of Canal de la Pedrera (y3). The linear models for each input-output pair are first or second413

order models plus a transport delay (system modelling and concretely first and second order414

approaches are deeply discussed in (Ogata 2010)) caused by the distance between reaches.415

Note that being the model a MIMO one, there can be couplings between different pairs of416

input-outputs, thus a given output can be affected not only by its paired input but also by417

any other input in the model. These couplings or interactions can be weaker or more intense,418
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and in this latter case they cannot be neglected when designing the control structure.419

Once the hydraulic canal has been modelled as a MIMO plant, the following step is420

to design an optimal control structure. Firstly an appropriate input-output pairing must421

be chosen. During this research several pairings were tested. The chosen input-output422

pairing is detailed in table 2. In this table, an input-output pair is detailed in every row and423

information about the involved magnitudes and the measurement points is shown. Two data424

are necessary to locate these points: the branch where they are situated and the kilometric425

distance to the end of the branch. Figure 5 gives an idea of the location of both inputs and426

outputs and distances between them. Some control structures will be explained below.427

Figure 6 shows a totally decentralized control structure based on predictive control.428

Five GPC controllers govern each input-output pairing aforementioned. GPC1 tracks a429

downstream water level reference by regulating the incoming water flow at the canal head430

gate. GPC3 monitors the downstream flow through its corresponding gate by manipulating431

its degree of aperture. Finally, GPC2, GPC4 and GPC5 track a water level reference using432

the degree of gate aperture as a manipulated variable.433

An hydraulic canal is such a coupled system that every control command sent to the434

plant in order to obtain a desirable behaviour at one of the outputs significantly affects435

the rest of them. This may be taken into account at every sample time when computing436

the following control action. Every single controller can consider control actions computed437

by its neighbours as a measurable disturbance. This disturbance is easily included in the438

control action calculation using a feedforward compensation as explained in section 3.2.439

Figure 7 shows how this theory is applied to this research. Each GPC will have two kinds of440

inputs: on the one hand the measurement of its output and the corresponding reference (red441

arrows), and on the other hand the measured disturbances (green arrows). Disturbances442

could be considered both upstream and downstream, but in this case only downstream443

disturbances were taken into account, in order to simplify the problem. Moreover, the444

implementation of this feedforward compensation will be done in a sequential manner. That445
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is, the control actions to be applied at each gate are computed sequentially, starting from446

the most downstream gate and proceeding upwards to the first (upstream) gate. Then, when447

computing the optimal aperture of a given gate, the aperture of the nearest downstream gate448

(which was computed in the previous step of this sequence) is considered as a measurable449

disturbance. This feedforward scheme is later referred in the text as a sequential feedforward.450

In section 5 results will show a significant improvement of the canal control performance by451

considering downstream couplings as disturbances when computing control actions.452

Finally, two controllers can cooperate, as explained in section 3.3, to obtain an optimal453

control sequence, by using an algorithm based on game theory. To implement this algorithm,454

a communication channel between the controllers (or agents) is necessary. This is a455

distributed control schema. Starting with the structure presented in figure 7, the distributed456

control algorithm is implemented in controllers GPC1 and GPC2. A communication link457

is established between them and each controller takes into account the control actions458

performed by the other one for calculating its own control actions. The neighbour control459

actions will be considered as measurable disturbances.460

5 RESULTS461

Different scenarios and control approaches have been tested in simulation. The canal462

benchmark has been modeled in SIC. The operation point has been established with 12m3/s463

at the head of the canal and gates positions of 1m for the first gate and 0.5m for all the other464

gates. Table 1 shows lavels and flows at significant positions of the canal for the operation465

point. Three predictive approaches have been tested in the different scenarios:466

• Control Schema 1: Downstream local MPC in each one of the gates.467

• Control Schema 2: Local MPC with sequential feedforward.468

• Control Schema 3: Distributed MPC in the two first gates and local MPC in the469

others with sequential feedforward.470

Sampling time has been fixed to 6 minutes. The duration of the simulation tests is four471
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days. A comparison among the three approaches had been performed using the following472

control performance and economic indexes:473

• Performance Index (
∑

J). The sum of the cost functions J in equation 4 of each one474

of the controller has been used as control performance index.475

• Economic Index (EI) considers lost water and unsatisfied water demand. In all the476

test cases, the demand of lateral off-takes has been satisfied properly, but also a477

flow demand at the end of each one of the canal branches has been considered. The478

flow demand has been considered constant along the simulation time, and different479

economic penalization for flows over the demand (lost water) and under demand480

(unsatisfied demand) are applied. Figure 8 shows the penalization that has been used481

in the following test cases.482

qLWi
(t) =











qoi(t)− qdoi if qoi(t) > qdoi i = 1, 2

0 ifqoi(t) ≤ qdoi

qUDi
(t) =











qdoi − qoi(t) if qoi(t) < qdoi i = 1, 2

0 ifqoi(t) ≥ qdoi

LWi = CLW (
∫ tf
0

qLWi
dt)

UDi = CUD(
∫ tf
0

qUDi
dt)

EI = LW1 + LW2 + UD1 + UD2

(9)483

Where:484

• EI: Economic index485

• qoi: Flow at the tail of branch i (i = 1, La Pedrera branch and i = 2, Campo de486
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Cartagena branch as shown in Figure 1).487

• qodi : Flow demand at the tail of branch i.488

• LWi: Lost water (m
3) in branch i.489

• UDi: Unsatisfied demand (m3) in branch i.490

• CLW : Cost of lost water (0.2 Euros/m3).491

• CLW : Cost of water unsatisfied demand (0.5 Euros/m3).492

These two indexes J and EI are presented for each one of the control schemas and493

different tests in the following subsections.494

5.1 Test 1: Set point changes495

To compare the controllers under similar operation conditions a experiment is defined496

where a set of reference changes in the levels of reaches (ref1 and ref2) and in the flow (ref3).497

Reference 1 is increased 0.2m at the beginning of the second day, reference 2 is increased also498

0.2m at the beginning of the third day and finally the flow reference 3 is increased 0.5m3/s499

at the beginning of the third day. Figure 9 shows the controlled variables (level in ref1, ref2,500

ref4 and ref5 and flow in ref3) using the three test controllers (green dashed line for control501

schema 1, blue dashed-dotted for schema 2 and red for schema 3). The best performance is502

obtained using distributed control in reaches 1 and 2. Level zero in the figures corresponds503

to the operating point value (See Table 1). It can be seen that in set-point change in reach 1504

(Figure 9a), damping appearing in control schemes 1 and 2 is considerably reduced. Notice505

that the disturbance of the setpoint change of ref1 in the behavior of the level of reach 2 is506

dramatically diminished (Figure 9b).507

Table 3 shows the global control performance index considered as the sum of the local508

cost function for each of one of the controllers as defined in equation (4). The last column509

shows that the economic index using the control schema 3 is a third of the economic index510

of control schema 1.511
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5.2 Test 2: Off-take flow changes512

This second test is devoted to analyze the behavior of the tested controllers when changes513

in off-take flow are produced. Off-takes are considered as perturbations since the farmers514

decided at any time the flow they need for their local irrigation (nevertheless, they usually515

follow a previous established irrigation plan). For this reason the off-take prediction is516

considered in the MPC control.517

In the presented test, a flow of 1m3/s is extracted from the canal in points off1 and off4518

(See Figure 1) from the beginning of the second day to the end of the simulation period.519

Figures 10 shows the controlled variables of the controllers and 11 the manipulated520

variables (gate position in g2, g3, ga4 and g5 and flow at the head of the canal). Notice that521

in gate 2 only the distributed controller is able to maintain the set point level, and with local522

controllers (schema 1), this gate reaches the maximum opening limit. The reason is the lack523

of communication between controllers 1 and 2. Controller 1 takes the decision independently524

of the needs of controller 2 in schema 1 (and even in schema 2) but in distributed controller525

both controller act in a coordinated way reaching a satisfactory performance.526

Table 4 presents the performance index for test 2. Again, best results are obtained with527

the distributed controller in reaches 1 and 2.528

5.3 Test 3: Off-take flow and references changes529

This last test is a more complex situation with several simultaneous level and flow530

references and off-take flow changes. This test will show the coupling of the different531

subsystems and the effect of upstream perturbations at the downstream part of the canal.532

The following reference changes and off-take flow modification have been considered:533

• Change of 0.4m. in the level reference of gate 1 (Reference 1) at the beginning of the534

second day535

• Increase 0.4m. in reference 2 at the beginning of the third day536

• Change of 5m3/s in reference 3 at the beginning of day 3537
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• Change of 0.1m. in the level reference of gate 4 at the beginning of the forth day538

• A flow of 1m3/s is extracted from the canal in points off1 and off4 since the beginning539

of the second day540

Figures 12 show the controlled variables of the controllers. Again, the best behavior is541

obtained using schema 3 and the worst performance with schema 1.542

Figure 12d shows the evolution of the level at the end of reach 4. Notice the effect of543

perturbations during the second and third day. Most of them are due to changes produced544

upstream. The behavior is quite oscillatory, but the amplitude of the oscillations is quite545

small (around 2cm.).546

Table 5 presents economic and performance indicator of the three approaches. Notice547

that an important decrease of both indexes is obtained when control schema 3 is applied.548

6 CONCLUSIONS AND FUTURE WORKS549

In this paper a distributed predictive controller has been proposed to control irrigation550

canals. An accurate model of a real irrigation canal in Spain has been used as a551

test bed for the controller. The model has been developed using the well known SIC552

software. This software uses the Saint-Venant equations to model the dynamics of the553

canal with better accuracy than other methods. The SIC software has been interfaced to554

the predictive controller which has been developed using Matlab. The results show that555

the proposed distributed control algorithm achieves better control performance than a local556

based controller scheme without information exchange (which is by far the most usual control557

scheme in automated irrigation canals). The improvements in control performance will lead558

to a better and more efficient management of irrigation canals that ultimately results in559

money and resource savings.560

Future work will be focused on the development of more complex algorithms and in the561

validation of the controller in the actual irrigation canal. One interesting feature of the562

control of irrigation canals is that the dynamics are relatively slow so that complex control563
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algorithms can be used even when the available control hardware has moderate computing564

capabilities. Thus, the use of nonlinear prediction models and the consideration of uncertain565

or non measurable disturbances are possibilities that can be explored. On the other hand,566

the validation of the control scheme in the actual irrigation canal imply the implementation567

of the control algorithms in preexistent hardware with the least possible addition of new568

control hardware (that for budget and reliability reasons will be based on microcontrollers).569
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u1 Flow (m3 · s−1) 12 y1 Water level (m) 82.951
u2 Gate opening (m) 1 y2 Water level (m) 82.073
u3 Gate opening (m) 0.5 y3 Flow (m3 · s−1) 5.41
u4 Gate opening (m) 0.5 y4 Water level (m) 81.269
u5 Gate opening (m) 0.5 y5 Water level (m) 80.643

TABLE 1: Operating point used for prediction model identification.
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u1 Flow (m3 · s−1) Head Gate y1 Water level (m) Branch 1/ RS 4.275
u2 Gate opening (m) Branch 1/ RS 4.27 y2 Water level (m) Branch 1/ RS 0
u3 Gate opening (m) Branch 1/ RS 6.672 y3 Flow (m3 · s−1) Branch 1/ RS 6.669
u4 Gate opening (m) Branch 2/ RS 12.964 y4 Water level (m) Branch 2/ RS 6.972
u5 Gate opening (m) Branch 2/ RS 6.969 y5 Water level (m) Branch 2/ RS 3.021

TABLE 2: Canal control: input-output pairing
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Performance
∑

J EI (Euros)
Control Schema 1 28.45 905
Control Schema 2 18.79 662
Control Schema 3 5.30 402

TABLE 3: Table of the performance indexes of each schema for Test 1 in a four-day
simulation. Control performance in second column and economic performance in third
column
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Performance
∑

J EI (Euros)
Control Schema 1 125.23 1674
Control Schema 2 52.20 1101
Control Schema 3 16.03 816

TABLE 4: Table of the performance indexes of each schema for Test 2 in a four-day
simulation. Control performance in second column and economic performance in third
column
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Performance
∑

J EI (Euros)
Control Schema 1 157.49 12845
Control Schema 2 116.43 7767
Control Schema 3 68.92 4660

TABLE 5: Table of the performance indexes of each schema for Test 3. Control performance
in second column and economic performance in third column
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FIG. 1: Section of the Postrasvase Tajo-Segura.
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FIG. 2: Prediction in Model Predictive Control
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FIG. 3: View of the SIC tool for editing the canal hydraulic model
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FIG. 4: Introducing data related to a cross-section
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FIG. 5: Canal control: location for inputs and outputs
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FIG. 6: Canal control structure based on decentralized GPC predictive controllers
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FIG. 7: Canal control structure based on decentralized GPC predictive controllers.
Consideration of measurable disturbances
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FIG. 8: Economic index computation
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FIG. 9: Test 1: Level at ref1 to ref5 ((a) to (e) figures) position with control schema 1
(dashed green), schema 2 (dotted-dashed blue) and schema 3 (solid red)
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FIG. 10: Test 2: Controlled variables at ref1 to ref5 ((a) to (e) figures) position with control
schema 1 (dashed green), schema 2 (dotted-dashed blue) and schema 3 (solid red)
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FIG. 11: Test 2: Manipulated variables. Flow at the head a) and gate positions at points ref2
to ref5 ((b) to (e) figures) with control schema 1 (dashed green), schema 2 (dotted-dashed
blue) and schema 3 (solid red)
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FIG. 12: Test 3: Controlled variables at ref1 to ref5 ((a) to (e) figures) position with control
schema 1 (dashed green), schema 2 (dotted-dashed blue) and schema 3 (solid red)
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