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a b s t r a c t

In this paper, a novelmodel predictive control (MPC) for constrained (non-square) linear systems to track
piecewise constant references is presented. This controller ensures constraint satisfaction and asymptotic
evolution of the system to any target which is an admissible steady-state. Therefore, any sequence of
piecewise admissible setpoints can be tracked without error. If the target steady state is not admissible,
the controller steers the system to the closest admissible steady state.

These objectives are achieved by: (i) adding an artificial steady state and input as decision variables,
(ii) using a modified cost function to penalize the distance from the artificial to the target steady state
(iii) considering an extended terminal constraint based on the notion of invariant set for tracking. The
control law is derived from the solution of a single quadratic programming problem which is feasible
for any target. Furthermore, the proposed controller provides a larger domain of attraction (for a given
control horizon) than the standard MPC and can be explicitly computed by means of multiparametric
programming tools. On the other hand, the extra degrees of freedom added to the MPC may cause a loss
of optimality that can be arbitrarily reduced by an appropriate weighting of the offset cost term.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is one of the few control
techniques able to consider constraints, on both state and inputs
of the system, in the design of the control law for linear,
nonlinear or uncertain systems (Mayne, Rawlings, Rao, & Scokaert,
2000; Mhaskar, El-Farra, & Christofides, 2005). This is achieved
by predicting the evolution of the system and computing the
admissible sequence of control inputs which makes the system
evolves satisfying the constraints. This calculation can be posed as
an optimization problem which is solved at each sampling time,
deriving the control law by means of a receding horizon policy.
The theoretical foundations of MPC are well-known and under
some assumptions, asymptotic stability of the origin is guaranteed.
This is usually achieved by means of a suitable penalization of the
terminal state and an additional terminal constraint (Mayne et al.,
2000).

For practical application of model predictive controllers, these
must be able to handle non-zero target steady states which are
typically provided by a steady state target optimizer (Muske,
1997). The standard technique to deal with this problem is shifting
the system state to the desired steady state (Muske & Rawlings,
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1993). The finite control horizon and the constraint imposed on
the terminal state may cause that the target steady state is not
reachable and the feasibility of the optimization problem is not
always ensured. This can be solved by re-calculating the control
horizon and the terminal set for the new target steady state.
Given the complexity of the necessary algorithms, the on-line re-
calculation can be unaffordable. An off-line design of the controller
for a finite set of target steady states might be a solution, but the
set of targets to be tracked is limited. This tracking problem (the
loss of feasibility) has motivated several solutions proposed in the
literature.

Among the existing results dealing with the tracking problem
in presence of constraints, a remarkable approach is the so-called
command governors (Gilbert, Kolmanovsky, & Tan, 1994); this
technique is based on the addition of a nonlinear low-pass filter of
the reference to guarantee the admissible evolution of the system
to the reference. This can be seen as adding an artificial reference
(the output of the filter) which is computed at each sampling time
to ensure the admissible evolution of the system, converging on
the desired reference. In Bemporad, Casavola, and Mosca (1997) a
command governor is designed to minimize a performance index
of the predicted evolution of the system. In Blanchini and Miani
(2000) it is proved that any control invariant set for the constrained
system is a tracking domain of attraction and an interpolation-
based control law is proposed.

In Rossiter, Kouvaritakis, and Gossner (1996), a Constrained
Stable Generalized Predictive Controllers (CSGPC) for SISO plants is
presented; this ensures feasibility by adding an artificial reference
as decision variable and convergence is ensured by means of a

0005-1098/$ – see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2008.01.023

Please cite this article in press as: Limon, D., et al. MPC for tracking piecewise constant references for constrained linear systems. Automatica (2008),
doi:10.1016/j.automatica.2008.01.023

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:limon@cartuja.us.es
http://dx.doi.org/10.1016/j.automatica.2008.01.023


ARTICLE  IN  PRESS
2 D. Limon et al. / Automatica ( ) –

contractive constraint based on the closest reachable reference.
In Chisci and Zappa (2003) a dual-mode strategy for tracking
based on MPC is presented: if the MPC is not feasible, the
controller switches to a feasibility recovery mode which steers
the system to the feasibility region of the MPC. In Pannocchia and
Kerrigan (2005), the offset-free tracking problem is analyzed for
uncertain systems with unmeasured disturbances; the proposed
MPC considers the time-varying set point as a disturbance to be
rejected. This means that the set of set points to be tracked is
potentially small and the domain of attraction reduced.

In this paper, a novel formulation of the MPC is proposed for
general non-square linear systems to track any admissible target
steady state in an admissible evolution. The main ingredients are:
(i) artificial steady state and input are considered as decision
variables, (ii) the cost function penalizes the deviation between
the artificial steady state and the desired one, and (iii) extended
stabilizing terminal conditions are considered consisting of adding
a tracking error penalty term in the cost function and adding a
terminal constraint in both the terminal state and the artificial
steady state and input.

This controller drives the system to any admissible target
steady state, and if this is not admissible, the system is steered
to the closest admissible steady state. Since the control law is
derived from the solution of a single QP (for a given target steady
state), the control law can be explicitly calculated by means
of multiparametric programming tools (Bemporad, Morari, Dua,
& Pistikopoulos, 2002), and therefore, could be applied on fast
systems. Compared to the standard MPC, the proposed controller
provides a larger domain of attraction (for the same control
horizon), but the local optimality property cannot be ensured due
to the extra degree of freedom added. Fortunately, the loss of
optimality can be arbitrarily reduced by weighting the tracking
error penalty term. Further results related to this controller can be
found in Alvarado (2007).

This paper is organized as follows. In the next section, the
constrained tracking problem is stated, and then the set of
admissible steady states is analyzed and characterized and the
notion of an invariant set for tracking is presented. The proposed
novel MPC strategy is presented in Section 3. In Section 4, an
illustrative example and some conclusions are shown in Section 5.
The paper finishes with an appendix containing the proof of the
stability theorem.

Notation. vector (a, b) denotes [aT, bT]T; for a given λ, λX = {λx :

x ∈ X}; int(X) denotes the interior of set X; a definite positivematrix
T is denoted as T > 0 and T > P denotes that T − P > 0. For a given
symmetric matrix P > 0, ‖x‖P denotes the weighted euclidean
normof x, i.e. ‖x‖P =

√
xTPx. Matrix 0n,m ∈ Rn×m denotes amatrix of

zeros. Consider a ∈ Rna , b ∈ Rnb , and setΓ ⊂ Rna+nb , then projection
operation is defined as Proja(Γ) = {a ∈ Rna : ∃b ∈ Rnb , (a, b) ∈ Γ }.

1.1. Problem description

Let a discrete-time linear system be described by:

x+
= Ax + Bu

y = Cx + Du,
(1)

where x ∈ Rn is the current state of the system, u ∈ Rm is the
current input, y ∈ Rp is the current output and x+ is the successor
state. The state of the system and the control input applied at
sampling time k are denoted as xk and uk respectively.

The system (not necessarily square) is assumed to fulfill the
following condition:

Assumption 1. The pair (A, B) is stabilizable.

The system is subject to hard constraints on state and input:

(xk, uz) ∈ Z = {z ∈ Rn+m
: Azz ≤ bz}, ∀k ≥ 0, (2)

where the set Z is assumed to be a non-empty compact convex
polyhedron containing the origin in its interior.

The objective of the paper is the calculation of a control law
uk = KN(xk, x̂s) such that for a given target steady state x̂s, the
state of the system is steered as close as possible to the targetwhile
fulfilling the constraints.

2. Preliminary results

2.1. Characterization of the steady states and inputs

For a given target output variable yt , any steady state of the
system zs = (xs,us) associated to this target output must satisfy
the following equation

[
A − In B 0n,1

C D −Ip

] xs

us

yt

 =

[
0n,1
0p,1

]
. (3)

Assumption 1 is necessary and sufficient to ensure that Eq. (3)
has a non-trivial solution (Muske & Rawlings, 1993). This solution
can be parametrized as

zs = Mθθ,

yt = Nθθ,
(4)

where θ ∈ Rnθ is a parameter vector which characterizes any
solution, andMθ and Nθ are suitable matrices. This parametrization
allows us to characterize the subspace of steady states and
inputs by a minimal number of variables (θ), which simplifies
further calculations necessary for the derivation of the proposed
controller.

The existence of constraints limits the set of admissible steady
states and inputs

Zs = {(xs,us) = Mθθ : Mθθ ∈ Z}.

Thus, the sets of admissible steady states and inputs are Xs =

Projx(Zs) and Us = Proju(Zs) respectively.

2.2. Calculation of an invariant set for tracking

Consider that system (1) is controlled by the following control
law

u = K(x − xs) + us = Kx + Lθ, (5)

where L = [−K Im]Mθ. Ifmatrix A+BK is Hurwitz, then the closed
loop systemevolves to the steady state and input (xs,us) = Mθθ. An
admissible invariant set for tracking is the set of initial states and
steady states and inputs (characterized by θ) that can be admissibly
stabilized by this control law.

Considering the extended state w = (x, θ), the closed loop
system can be expressed as w+

= Aww, where

Aw =

[
A + BK BL

0 Inθ

]
.

Let Wλ be a convex polyhedron defined as

Wλ = {w = (x, θ) : (x, Kx + Lθ) ∈ Z, Mθθ ∈ λZ}.

Then,we say that a setΩw is an admissible invariant set for tracking
if for all w ∈ Ωw, then Aww ∈ Ωw and Ωw

⊆ W1.
The maximal admissible invariant set for tracking is given by

Ow
∞

= {w : Ai
ww ∈ W1,∀i ≥ 0}. Due to the unitary eigenvalues

of Aw, this set might not be finitely determined, i.e. described by a
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finite set of constraints (Gilbert & Tan, 1991). Fortunately, we can
state that the following set

Ow
∞,λ = {w : Ai

ww ∈ Wλ,∀i ≥ 0}

is finitely determined for any λ ∈ (0, 1) and hence is a convex
polyhedron (Gilbert & Tan, 1991). Given that λOw

∞
⊂ Ow

∞,λ ⊂

Ow
∞

and since λ can be chosen arbitrarily close to 1, the obtained
invariant set can be used as a reliable polyhedral approximation
to the maximal invariant set Ow

∞
. Moreover, it is easy to see that

λXs ⊂ O∞,λ, where O∞,λ = Projx(Ow
∞,λ).

3. MPC for tracking

In this section the MPC proposed for tracking is presented. As
has been previously stated, this predictive controller is based on
the addition of the steady state and input as decision variables,
the usage of a modified cost function and an extended terminal
constraint. To this end, the following assumption is considered.

Assumption 2. (1) Let Q ∈ Rn×n, R ∈ Rm×m and T ∈ Rn×n be
positive definite matrices.

(2) Let K ∈ Rm×n be a stabilizing control gain such that (A + BK) is
Hurwitz.

(3) Let P ∈ Rn×n be a positive definite matrix such that

(A + BK)TP(A + BK) − P = −(Q + KTRK)

(4) Let Xw
f ⊆ Rn+nθ be an admissible polyhedral invariant set for

tracking for system (1) subject to (2) and a gain controller K.

For a given state x and a given target steady state x̂s, the
following cost function is proposed

VN(x, x̂s,u, θ) =

N−1∑
i=0

‖x(i) − xs‖
2
Q + ‖u(i) − us‖

2
R

+ ‖x(N) − xs‖
2
P + ‖xs − x̂s‖

2
T ,

where u is a sequence of N future control inputs, i.e. u =

{u(0), . . . , u(N−1)}, (xs,us) = Mθθ, x(i) is the predicted state of the
system at time i given by x(i+1) = Ax(i)+Bu(i), with x(0) = x. Note
that, in contrast to the standard MPC, this cost function penalizes
the deviation from the artificial steady state and input; moreover,
a term penalizing the deviation between the artificial steady state
and the target steady state (tracking error cost) has been added.

Based on this cost function, the proposed MPC optimization
problem PN(x, x̂s) is given by

V∗

N(x, x̂s) = min
u,θ

VN(x, x̂s,u, θ)

s.t. x(0) = x,

x(j + 1) = Ax(j) + Bu(j),

(x(j), u(j)) ∈ Z, j = 0, . . . ,N − 1
(xs,us) = Mθθ,

(x(N), θ) ∈ Xw
f .

Note that u and θ are the decision variables and x and x̂s

are parameters of the proposed optimization problem PN(x, x̂s).
Moreover, this optimization problem is a standard (parametric)
Quadratic Programming problem that can be efficiently solved by
specialized algorithms. Applying the receding horizon strategy, the
control law is given by KN(x, x̂s) = u∗(0), where u∗(0) is a function
of x and x̂s.

Given that the constraints of PN(x, x̂s) do not depend on the
target x̂s, there exists a (polyhedral) region XN ⊂ Rn such that
for all x ∈ XN , PN(x, x̂s) is feasible (for all x̂s ∈ Rn) and moreover,
Xf = Projx(Xw

f ) ⊆ XN .
The main result of the paper is presented in the following

theorem:

Theorem 1 (Stability). Consider that Assumptions 1 and 2 hold.
Suppose that Xw

f = Ow
∞,λ for a given λ ∈ (0, 1). Consider that the

target steady state x̂s is admissible. Then, for any feasible initial state
x0 ∈ XN , the proposed MPC controller uk = KN(xk, x̂s) asymptotically
steers the system to x̂s in an admissible way.

The proof can be found in the Appendix. The following remarks
point out some properties of the proposed controller.

Remark 1. The set of admissible steady states that can be tracked
without steady error is λXs. Since λXs ⊆ Xf ⊆ XN and since
the evolution of the system state remains in XN , any sequence of
piecewise admissible targets can be tracked without steady error.

If the desired steady state x̂s is not admissible, then the
controller steers the system to the closest admissible steady state
(Alvarado, 2007).

Remark 2. Consider a given admissible target steady state x̂s ∈ λXs

and design a standard MPC with the maximal admissible invariant
set O∞(x̂s) as terminal set. Consider the proposed MPC with the
same ingredients (Q, R, P, K, and N) and the set Ow

∞,λ is used as
terminal constraint. Then:

(1) Since O∞(x̂s) ⊆ Projx(Ow
∞,λ), the domain of attraction of the

proposed MPC is larger than the one of the standard MPC.
(2) Contrary to the standard MPC, the proposed MPC controller

may not guarantee the local optimality property. Fortunately,
this optimality loss can be arbitrarily reduced by more heavily
penalizing the tracking error term by means of matrix T
(Alvarado, 2007).

Thus, taking an arbitrarily large matrix T, the MPC for tracking
provides a larger domain of attraction and a control law which is
locally nearly optimal.

Remark 3. The optimization problem to be solved belongs to the
class of parametric quadratic programming problems that can be
analyzed by the multiparametric quadratic programming tools.
This allows the explicit calculation of the control law, making
possible its application to fast systems (Fiacchini, Alvarado, Limon,
Alamo, & Camacho, 2006).

4. Example

Consider a non-square LTI system given by:

A =

[
1 1
0 1

]
, B =

[
0.0 0.5
1.0 0.5

]
, and C =

[
1 0

]
which is constrained to ‖x‖∞ ≤ 5 and ‖u‖∞ ≤ 0.3. The steady state
and input are characterized by θ ∈ R2 through the matrices

Mθ =

[
1 0 0 0
0 1 1 −2

]T

, Nθ =
[
1 0

]
.

The weighting matrices have been chosen as Q = I2 and
R = I2. The considered local controller gain K and the Lyapunov
matrix P are the LQR and the associated Riccati equation solution
respectively. Matrix T has been chosen as T = 100P.

The invariant set for tracking Xw
f has been computed taking

λ = 0.99 and the interval of admissible references which can
be tracked without steady error is [−4.95, 4.95]. The system is
controlled by the proposed MPC with a control horizon N = 3. The
domain of attraction of this controller X3 and set Xf are depicted
in Fig. 1.

Fig. 2 shows the evolution of the output signal for three changes
on the target: first yt = 4.95 (admissible), then yt = −5.5 (not
admissible) and finally yt = 2 (admissible). The target steady
state has been chosen as x̂s = (yt, 0). The states evolution of this
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Fig. 1. Domain of attraction and state portrait of the closed loop system.

Fig. 2. Evolution of the output (solid line), artificial reference (dashed line) and the
output target (dash-dotted line).

simulation is also depicted in Fig. 1. As can be seen, the evolution is
admissible and the system evolves to the target steady state when
this is admissible. In the case of non-admissible target, the system
evolves to the closest admissible steady state.

In order to compare the MPC proposed for tracking with the
standard MPC to regulate the system to the origin, the maximal
admissible invariant set O∞(0) for the local control law u = Kx
and the domain of attraction of theMPC for regulation usingO∞(0)
as terminal set have been computed. This set is shown in Fig. 3,
together with those sets computed for theMPC for tracking. As can
be seen, theMPC for tracking provides a significant enlargement of
the domain of attraction.

5. Conclusions

In this paper, a novel model predictive controller to track
changing steady states for constrained linear systems is proposed.
This controller ensures feasibility by means of adding an artificial
steady state and input as decision variable of the optimization
problem. Convergence to an admissible target steady state is
ensured by using a modified cost function and a stabilizing
extended terminal constraint based on the notion of invariance
for tracking. The optimization problem to be solved is a QP which
allows the multi-parametric programming tools to be used. This
controller ensures feasibility for any change of steady state and for
any prediction horizon. The properties of the controller have been
illustrated in an example.
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Appendix. Proof of Theorem 1

In what follows, we denote the optimal solution to the
optimization problem by the superscript ∗.

Lemma 1. Let x̂s be an admissible steady state and let (xs,us) ∈

int(Zs) be a steady state and input for system (1). Let K be a controller
gain and let P be a Lyapunov matrix such that Assumption 2 holds.
Then there exists λ ∈ [0, 1) such that the steady state x̄s = λxs + (1−

λ)x̂s fulfils the following properties:

(1) xs ∈ O∞(x̄s).
(2) ‖xs − x̄s‖

2
P + ‖x̄s − x̂s‖

2
T < ‖xs − x̂s‖

2
T , for all matrix T > 0 and

xs 6= x̂s.

Proof. The first statement is proved as follows. Let P be a Lyapunov
matrix of the closed loop system x+

= (A + BK) · x. Let denote the
ellipsoid E(x0, τ) = {x ∈ Rn

: ‖x − x0‖2
P ≤ τ}.

Let θ, θ̂ and θ̄ be such that zs = (xs,us) = Mθθ, ẑs = (x̂s, ûs) =

Mθθ̂ and z̄s = (x̄s, ūs) = Mθθ̄, where θ̄ = λθ + (1 − λ)θ̂. Given that
zs ∈ int(Z) there exists constants ε > 0 and γ ∈ (0, 1) such that
for all x ∈ E(xs, ε), (x, Kx + Lθ) ∈ γZ. Take a value of λ ∈ (0, 1)
sufficiently large such that (0, L(θ̄ − θ)) = (0, (1 − λ)L(θ̂ − θ)) ∈

(1 − γ)Z. Find a β > 0 such that xs ∈ E(x̄s,β) ⊂ E(P, ε).
Then, for all x ∈ E(x̄s,β) we have that (x, Kx + Lθ̄) = (x, Kx +

Lθ) + (0, L(θ̄ − θ)). Given that for all x ∈ E(x̄s,β), (x, Kx + Lθ) ∈ γZ
and (0, L(θ̄−θ)) ∈ (1−γ)Z, we have that (x, Kx+Lθ̄) ∈ Z. Therefore
xs ∈ E(x̄s,β) ⊂ O∞(x̄s).

The second fact is proved in virtue of the previous statement.
Considering the expression of x̄s, it is easy to see that xs − x̄s =

(1 − λ)(xs − x̂s) and x̄s − x̂s = λ(xs − x̂s). Then we have that
‖xs − x̄s‖P = (1 − λ)‖xs − x̂s‖P and ‖x̄s − x̂s‖T = λ‖xs − x̂s‖T . Thus,
we can state that

‖xs − x̄s‖
2
P + ‖x̄s − x̂s‖

2
T = (1 − λ)2‖xs − x̂s‖

2
P + λ2

‖xs − x̂s‖
2
T

= ‖xs − x̂s‖
2
H,

where H = λ2T + (1 − λ)2P. Thus, it suffices to prove that a
sufficiently large λ exists such that H < T, which implies that
‖xs − x̂s‖

2
H < ‖xs − x̂s‖

2
T for all xs 6= x̂s.
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Given that P, T > 0, there exists a constant γ > 0 such that
P < γT. Considering this, it follows that

T − H = (1 − λ2)T − (1 − λ)2P

>
(
(1 − λ2) − (1 − λ)2γ

)
T

= (1 − λ) ((1 + λ) − (1 − λ)γ) T.

Therefore, for every λ > γ−1
γ+1 , we have that T − H > 0. �

Lemma 2. Consider system (1) subject to constraint (2). Let K be a
controller gain and let P be a Lyapunovmatrix such that Assumption 2
holds for some given definite positive matrices Q ∈ Rn×n and R ∈

Rm×m. Consider any x ∈ Xf = Projx(Xw
f ). Consider a given target

steady state xs such that x ∈ O∞(xs). Then we have that

V∗

N(x, x̂s) ≤ ‖x − xs‖
2
P + ‖xs − x̂s‖

2
T .

Proof. Firstly, note that the sequence of control inputs obtained
from the control law u = K(x − xs) + us, denoted as us, is a feasible
solution for the MPC optimization problem since x ∈ O∞(xs).

Defining AK = A + BK and Q∗
= Q + KTRK, from Lyapunov

equation P − AT
KPAK = Q∗ we derive that ‖x(i) − xs‖

2
P − ‖x(i + 1) −

xs‖
2
P = ‖x(i)−xs‖

2
Q∗ for all x(i). Therefore, summing up these terms,

we obtain that

V∗

N(x, x̂s) ≤

N−1∑
i=0

‖x(i) − xs‖
2
Q + ‖K(x(i) − xs)‖

2
R

+ ‖x(N) − xs‖
2
P + ‖xs − x̂s‖

2
T

= ‖x − xs‖
2
P + ‖xs − x̂s‖

2
T . �

Based on the previous lemmas, the following one can be proved:

Lemma 3. Consider system (1) subject to contraint (2). Let K be a
controller gain and let P be a Lyapunovmatrix such that Assumption 2
holds for some given definite positive matrices Q ∈ Rn×n and R ∈

Rm×m. Consider a target steady state x̂s ∈ λXs, where λ ∈ (0, 1] is a
given parameter. If, for a given state x, the optimal solution of PN(x, x̂s)
is such that ‖x − x∗

s ‖Q = 0 (i.e. x = x∗

s ), then ‖x − x̂s‖T = 0.

Proof. It is proved by contradiction. Assume that x = x∗

s and x 6= x̂s.
Since x = x∗

s is a steady state of the system, the control sequence
given by the steady input is the optimal solution of PN(x∗

s , x̂s) and
hence V∗

N(x∗

s , x̂s) = ‖x∗

s − x̂s‖
2
T .

Since x∗

s 6= x̂s, in virtue of Lemma 1 it is inferred that there
exists a steady state x̄s (and an input ūs), described by θ̄, such that
x∗

s ∈ O∞(x̄s). Then, the sequence ū derived from the control law
u = K(x− x̄s)+ ūs is admissible and hence, from Lemma 2, we have
that

VN(x∗

s , x̂s, ū, θ̄) ≤ ‖x∗

s − x̄s‖
2
P + ‖x̄s − x̂s‖

2
T .

In virtue of Lemma 1 we have that

VN(x∗

s , x̂s, ū, θ̄) < ‖x∗

s − x̂s‖
2
T = V∗

N(x
∗

s , x̂s)

which contradicts the optimality of V∗

N(x∗

s , x̂s), and then x = x∗

s =

x̂s. �

Proof of Theorem 1. In what follows (u∗(k), θ∗(k)) denotes the
optimal solution obtained in the optimization problem solved
at sampling time k. Furthermore, x∗

s (k) and u∗

s (k) denote the
optimal steady state and input associated to θ∗(k) respectively.
x∗(i; k) denotes the optimal predicted evolution of the system,
i.e. x∗(i; k) = Ax∗(i − 1; k) + Bu∗(i − 1; k) where x∗(0; k) = xk.
Feasibility: Assume that the state at the current sample time k,
xk, is such that xk ∈ XN . Also assume that the optimal solution is
(u∗(k), θ∗(k)) with an optimal cost V∗

N(xk, x̂s). Let xk+1 be the state

at the next sampling time. Consider θ(k + 1) = θ∗(k) and a control
sequence

u(k + 1) = {u∗(1; k), . . . , u∗(N − 1; k),

K(x∗(N; k) − x∗

s (k)) + u∗

s (k)}.

Then, it is easy to see that(u(k + 1), θ(k + 1)) is feasible due to the
feasibility of the optimal solution at k and the positive invariance
of Xw

f . Consequently, xk+1 ∈ XN .

Convergence: Consider the feasible solution at time k+1 previously
presented. Following standard steps in the stability proofs of
MPC (Mayne et al., 2000), we get that

V∗

N(xk+1, x̂s) ≤ VN(xk+1, x̂s,u(k + 1), θ(k + 1))
≤ V∗

N(xk, x̂s) − ‖xk − x∗

s (k)‖
2
Q .

Due to the definite positiveness of the optimal cost and its non-
increasing evolution, we infer that limk→∞ ‖xk − x∗

s (k)‖Q = 0 and
from Lemma 3 we have that limk→∞ ‖xk − x̂s‖Q = 0. Consequently,
the system is steered to x̂s. �
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