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Abstract

In this paper we consider discrete-time nonlinear systems that are affected, possibly simultaneously, by parametric uncertainties and other
disturbance inputs. The min–max model predictive control (MPC) methodology is employed to obtain a controller that robustly steers the state
of the system towards a desired equilibrium. The aim is to provide a priori sufficient conditions for robust stability of the resulting closed-loop
system using the input-to-state stability (ISS) framework. First, we show that only input-to-state practical stability can be ensured in general
for closed-loop min–max MPC systems; and we provide explicit bounds on the evolution of the closed-loop system state. Then, we derive new
conditions for guaranteeing ISS of min–max MPC closed-loop systems, using a dual-mode approach. An example illustrates the presented theory.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the practically relevant problems in control theory is
the robust regulation towards a desired equilibrium of discrete-
time systems affected, possibly simultaneously, by time-varying
parametric uncertainties and other disturbance inputs. In the
case when hard constraints are imposed on state and input vari-
ables, the robust model predictive control (MPC) methodology
provides a reliable solution for tackling this control problem,
see, for example, [17] for an overview. The research related
to robust MPC is focused on solving efficiently the corre-
sponding optimization problems on one hand and guaranteeing
(robust) stability of the controlled system, on the other hand.
In this paper we are interested in stability issues and, therefore,
we position our results only with respect to articles on (robust)
stability of nonlinear MPC.

There are several ways for designing robust MPC controllers
for perturbed nonlinear systems. One way is to rely on the
inherent robustness properties of nominally stabilizing nonlin-
ear MPC algorithms, e.g. as it was done in [21,14,11,2]. Another
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approach is to incorporate knowledge about the disturbances in
the MPC problem formulation via open-loop worst case sce-
narios. This includes MPC algorithms based on tightened con-
straints, e.g. as the one of [12], and MPC algorithms, based on
open-loop min–max optimization problems, see, for example,
the survey [17]. To incorporate feedback to disturbances, the
closed-loop or feedback min–max MPC problem set-up was
introduced in [10] and further developed in [18,15,13,16]. The
open-loop approach is computationally somewhat easier than
the feedback approach, but the set of feasible states correspond-
ing to the feedback min–max MPC optimization problem is
usually much larger. Sufficient conditions for robust asymp-
totic stability of closed-loop (feedback) min–max MPC systems
were presented in [18] under the assumption that the (additive)
disturbance input converges to zero as the state converges to
the origin.

Recently, input-to-state stability (ISS) [22,23,6] results for
min–max nonlinear MPC were presented in [13,16]. In [13] it
was shown that, in general, only input-to-state practical stabil-
ity (ISpS) [3–5] can be a priori ensured for min–max nonlinear
MPC. ISpS is a weaker property than ISS, as ISpS does not im-
ply asymptotic stability for zero disturbance inputs. The reason
for the absence of ISS in general is that the effect of a non-
zero disturbance input is taken into account by the min–max
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MPC controller, even if the disturbance input vanishes in real-
ity. Still, in the case when the disturbance input converges to
zero, it is desirable that asymptotic stability is recovered for
the controlled system. In [16], an H∞ [1] strategy was used to
modify the classical min–max MPC cost function [17] such that
ISS is guaranteed for the closed-loop min–max MPC system.
Furthermore, in [16] it was proven that a local upper bound on
the min–max MPC value function, rather than a global one, is
sufficient for ISS.

In this article we propose a new approach for designing
min–max MPC schemes for nonlinear systems with guaran-
teed ISS. In contrast with [16], our results apply to the classi-
cal min–max MPC problem set-up, which is also employed in
[18,13]. First, we develop novel ISpS conditions for min–max
nonlinear MPC that allow us to derive explicit bounds on the
evolution of the MPC closed-loop system state. Furthermore,
we prove that these conditions actually imply that the state tra-
jectory of the closed-loop system is ultimately bounded (UB)
in a robustly positively invariant (RPI) set. Then, we use a dual-
mode approach in combination with a new technique based on
KL-estimates of stability, e.g. see [8], to derive a priori suf-
ficient conditions for ISS of min–max nonlinear MPC. This
result is important because it unifies the properties of [13,18].
More specifically, it can be used to design robustly asymptoti-
cally stable min–max MPC closed-loop systems without a pri-
ori assuming that the disturbance input converges to zero as the
state of the closed-loop system converges to the origin.

The paper is organized as follows. After introducing the
notation in Section 1.1, the ISS framework is presented in
Section 2. The min–max MPC problem set-up is briefly de-
scribed in Section 3. The ISpS results for min–max nonlinear
MPC are presented in Section 4 and the sufficient conditions
for ISS of dual-mode min–max nonlinear MPC are given in
Section 5. An illustrative example is worked out in Section 6.
Conclusions are summarized in Section 7.

1.1. Notation and basic notions

Let R, R+, Z and Z+ denote the field of real numbers, the set
of non-negative reals, the set of integer numbers and the set of
non-negative integers, respectively. We use the notation Z�c1

and Z(c1,c2] to denote the sets {k ∈ Z+ | k�c1} and {k ∈ Z+ |
c1 < k�c2}, respectively, for some c1 ∈ Z+, c2 ∈ Z>c1 , and
ZN to denote the N-times Cartesian product Z × Z × · · · × Z,
for some N ∈ Z�1. We use ‖ · ‖ to denote an arbitrary
p-norm. With some abuse of notation we will use both
(z0, z1, . . .) and {zl}l∈Z+ with zl ∈ Rn, l ∈ R+, to denote a
sequence. For a sequence z := {zl}l∈Z+ let ‖z‖ := sup{‖zl‖ |
l ∈ Z+} and let z[k] denote the truncation of z at time k ∈ Z+,
i.e. z[k] = {zl}l∈Z[0,k] . For a set S ⊆ Rn, we denote by int(S)

its interior. For any r > 0 define a ball of radius r as Br :=
{x ∈ Rn | ‖x‖�r}.
2. Input-to-state stability

In this section we present the ISS framework [22,23,6] for
discrete-time autonomous nonlinear systems, which will be

employed in this paper to study the behavior of perturbed non-
linear systems in closed-loop with min–max MPC controllers.

Consider the discrete-time autonomous perturbed nonlinear
system described by

xk+1 = G(xk, wk, vk), k ∈ Z+, (1)

where xk ∈ Rn, wk ∈ W ⊂ Rdw and vk ∈ V ⊂ Rdv are
the state, unknown time-varying parametric uncertainties and
other disturbance inputs (possibly additive), respectively, and,
G : Rn × Rdw × Rdv → Rn is an arbitrary nonlinear, possibly
discontinuous, function. In what follows we assume that W and
V are bounded sets. Throughout the article let w := {wl | l ∈
Z+, wl ∈ W} and v := {vl | l ∈ Z+, vl ∈ V} denote some
arbitrary sequences of disturbances.

Definition 2.1 (RPI). A set P ⊆ Rn that contains the origin in
its interior is called a RPI set for system (1) (with respect to
W and V) if for all x ∈ P it holds that G(x, w, v) ∈ P for all
w ∈ W and all v ∈ V.

Definition 2.2 (UB). System (1) is said to be UB in a set P ⊂
Rn for initial conditions in X ⊆ Rn (with respect to W and
V), if for all x0 ∈ X there exists an i(x0) ∈ Z+ such that for
all w and all v the corresponding state trajectory of (1) satisfies
xk ∈ P for all k ∈ Z� i(x0).

Definition 2.3. A real-valued scalar function � : R+ → R+
belongs to class K if it is continuous, strictly increasing and
�(0) = 0. It belongs to class K∞ if � ∈ K and it is radially
unbounded (i.e. �(s) → ∞ as s → ∞). A function � : R+ ×
R+ → R+ belongs to class KL if for each fixed k ∈ R+,
�(·, k) ∈ K and for each fixed s ∈ R+, �(s, ·) is non-increasing
and limk→∞ �(s, k) = 0.

Next, we introduce a regional version of global ISpS [3–5]
and global ISS [22,23,6], respectively, for the discrete-time non-
linear system (1). This is useful when dealing with constrained
nonlinear systems, such as NMPC closed-loop systems, as it
was observed in [16].

Definition 2.4 (Regional ISpS (ISS)). System (1) is said to be
ISpS in X ⊆ Rn if there exists a KL-function �, a K-function
� and a number d ∈ R+ such that, for each x0 ∈ X, all w and all
v, it holds that the corresponding state trajectory of (1) satisfies

‖xk‖��(‖x0‖, k) + �(‖v[k−1]‖) + d, ∀k ∈ Z�1. (2)

If 0 ∈ int(X) and (2) holds for d = 0, system (1) is said to be
ISS in X.

In what follows we state a discrete-time version of the
continuous-time ISpS sufficient conditions of Proposition 2.1
of [4]. This result will be used throughout the paper to prove
ISpS and ISS for the particular case of min–max nonlinear
MPC.
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Theorem 2.5. Let d1, d2 ∈ R+, let a, b, c, � ∈ R>0 with c�b

and let1 �1(s) := as�, �2(s) := bs�, �3(s) := cs�and � ∈ K.
Furthermore, let X be a RPI set for system (1) and let V :
X → R+ be a function such that

�1(‖x‖)�V (x)��2(‖x‖) + d1, (3a)

V (G(x, w, v)) − V (x)� − �3(‖x‖) + �(‖v‖) + d2, (3b)

for all x ∈ X, w ∈ W and all v ∈ V. Then it holds that:

(i) System (1) is ISpS in X and the ISpS property of Definition
2.4 holds for

�(s, k) := �−1
1 (3�k�2(s)), �(s) := �−1

1

(
3�(s)

1 − �

)
,

d := �−1
1 (3	), (4)

where 	 := d1 + d2/(1 − �) and � := 1 − c/b ∈ [0, 1).
(ii) If 0 ∈ int(X) and the inequalities (3) hold for d1 = d2 = 0,

system (1) is ISS in X and the ISS property of Definition
2.4 (i.e. for d = 0) holds for

�(s, k) := �−1
1 (2�k�2(s)), �(s) := �−1

1

(
2�(s)

1 − �

)
, (5)

where � := 1 − c/b ∈ [0, 1).

Proof. (i) From V (x)��2(‖x‖) + d1 for all x ∈ X, we have
that for any x ∈ X\{0} it holds:

V (x) − �3(‖x‖)�V (x) − �3(‖x‖)
�2(‖x‖) (V (x) − d1)

= �V (x) + (1 − �)d1,

where � := 1−c/b ∈ [0, 1). In fact, the above inequality holds
for all x ∈ X, since V (0) − �3(0) = V (0) = �V (0) + (1 −
�)V (0)��V (0) + (1 − �)d1. Then, inequality (3b) becomes

V (G(x, w, v))��V (x) + �(‖v‖) + (1 − �)d1 + d2, (6)

for all x ∈ X, w ∈ W and all v ∈ V. Due to robust positive
invariance of X, inequality (6) yields repetitively

V (xk+1)��k+1V (x0) +
k∑

i=0

�i[�(‖vk−i‖) + (1 − �)d1 + d2],

for all x0 ∈ X, w[k] = (w0, w1, . . . , wk) ∈ Wk+1, v[k] = (v0,

v1, . . . , vk) ∈ Vk+1, k ∈ Z+. Then, taking (3a) into ac-
count, using the property �(‖vi‖)��(‖v[k]‖) for all i�k and

1 Note that �1, �2, �3 ∈ K∞.

the identity
∑k

i=0 �i = (1 − �k+1)/(1 − �), it holds that:

V (xk+1)��k+1�2(‖x0‖) + �k+1d1

+
k∑

i=0

�i[�(‖vk−i‖) + (1 − �)d1 + d2]

��k+1�2(‖x0‖) + �k+1d1

+ [�(‖v[k]‖) + (1 − �)d1 + d2]
k∑

i=0

�i

= �k+1�2(‖x0‖) + 1 − �k+1

1 − �
�(‖v[k]‖)

+ d1 + 1 − �k+1

1 − �
d2

��k+1�2(‖x0‖) + 1

1 − �
�(‖v[k]‖)

+ d1 + 1

1 − �
d2,

for all x0 ∈ X, w[k] ∈ Wk+1, v[k] ∈ Vk+1, k ∈ Z+. Let 	 :=
d1+d2/(1−�). Taking (3a) into account and letting �−1

1 denote
the inverse of �1, we obtain:

‖xk+1‖��−1
1 (V (xk+1))

��−1
1

(
�k+1�2(‖x0‖)+	+�(‖v[k]‖)

1−�

)
. (7)

Applying the inequality

�−1
1 (z + y + s)��−1

1 (3 max(z, y, s))

��−1
1 (3z)+�−1

1 (3y)+�−1
1 (3s), (8)

we obtain from (7)

‖xk+1‖��−1
1 (3�k+1�2(‖x0‖)) + �−1

1

(
3
�(‖v[k]‖)

1 − �

)
+ �−1

1 (3	),

for all x0 ∈ X, w[k] ∈ Wk+1, v[k] ∈ Vk+1, k ∈ Z+.
We distinguish between two cases: � 
= 0 and � = 0. First,

suppose � ∈ (0, 1) and let �(s, k) := �−1
1 (3�k�2(s)). For a

fixed k ∈ Z+, we have that �(·, k) ∈ K due to �2 ∈ K∞,
�−1

1 ∈ K∞ and � ∈ (0, 1). For a fixed s, it follows that �(s, ·)
is non-increasing and limk→∞ �(s, k) = 0, due to � ∈ (0, 1)

and �−1
1 ∈ K∞. Thus, it follows that � ∈ KL.

Now let �(s) := �−1
1 (3�(s)/(1 − �)). Since 1/(1 − �) > 0, it

follows that � ∈ K due to �−1
1 ∈ K∞ and � ∈ K.

Finally, let d := �−1
1 (3	). Since � ∈ (0, 1) and d1, d2 �0,

we have that 	�0 and thus, d �0.
Otherwise, if � = 0 we have from (7) that

‖xk‖��−1
1 (3�(‖v[k−1]‖)) + �−1

1 (3	)

��(‖x0‖, k) + �−1
1 (3�(‖v[k−1]‖)) + �−1

1 (3	)

for any � ∈ KL and k ∈ Z�1.
Hence, the perturbed system (1) is ISpS in X in the sense of

Definition 2.4 and property (2) is satisfied with the functions
given in (4).
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(ii) Following the proof of statement (i) it is straight-
forward to observe that when the sufficient conditions
(3) are satisfied for d1 = d2 = 0, then ISS is achieved,
since d = �−1

1 (3	) = �−1
1 (0) = 0. From (7) and �−1

1 (z +
y)��−1

1 (2 max(z, y))��−1
1 (2z) + �−1

1 (2y), it can be easily
shown that the ISS property of Definition 2.4 actually holds
with the functions given in (5). �

Definition 2.6. A function V (·) that satisfies the hypothesis of
Theorem 2.5 is called an ISpS (ISS) Lyapunov function.

Remark 2.7. The hypothesis of Theorem 2.5 part (i) does not
require continuity of G(·, ·, ·) or V (·), nor that G(0, 0, 0) = 0
or V (0) = 0. The latter makes the ISpS framework suitable
for analyzing stability of nonlinear systems in closed-loop with
min–max MPC controllers, since, in general, the min–max
MPC value function is not zero at zero (see Section 4 for
details). The hypothesis of Theorem 2.5 part (ii), which deals
with ISS, also does not require continuity of G(·, ·, ·) or V (·).
However, it implies G(0, w, 0)=0 for all w ∈ W and V (0)=0,
and continuity of G(·, w, ·) and V (·) at the point x = 0 only,
for all w ∈ W.

Note that, due to the use of K∞-functions �1, �2, �3 of a
special type (which is not restrictive for the commonly used
cost functions in min–max MPC, as shown in Section 4),
Theorem 2.5 provides explicit bounds on the evolution of the
state.

3. Min–max nonlinear MPC: problem set-up

The results presented in this paper can be applied to both
open-loop and feedback min–max MPC strategies. How-
ever, there seems to be a common agreement that open-loop
min–max formulations are conservative and underestimate the
set of feasible input trajectories. For this reason, although we
present both problem formulations, the stability results are
proven only for feedback min–max MPC set-ups. However,
it is possible to prove, via a similar reasoning and using the
same hypotheses, that all the results developed in this paper
also hold for open-loop min–max MPC schemes.

Consider the discrete-time non-autonomous perturbed non-
linear system

xk+1 = g(xk, uk, wk, vk), k ∈ Z+, (9)

where xk ∈ Rn, uk ∈ Rm, wk ∈ W ⊂ Rdw and vk ∈ V ⊂ Rdv

are the state, the control action, unknown time-varying para-
metric uncertainties and other disturbance inputs, respectively.
The mapping g : Rn × Rm × Rdw × Rdv → Rn is an arbitrary
nonlinear, possibly discontinuous, function. Let X ⊆ Rn and
U ⊆ Rm denote sets that contain the origin in their interior and
represent state and input constraints for system (9). Further-
more, let XT ⊆ X with 0 ∈ int(XT ) denote a desired terminal
set and let F : Rn → R+ with F(0) = 0 and L : Rn × Rm →
R+ with L(0, 0) = 0 be arbitrary functions. The objective is
to regulate the system towards the origin while minimizing a

performance index defined by the functions F(·), L(·, ·) and
with the set XT as terminal constraint.

For a fixed prediction horizon N ∈ Z�1, open-loop
min–max MPC evaluates a single sequence of controls, i.e.
uk := (u0|k, . . . , uN−1|k) ∈ UN . Let xk(xk, uk, wk, vk) :=
(x1|k, . . . , xN |k) denote the state sequence generated by sys-
tem (9) from initial state x0|k := xk and by applying the input
sequence uk , where wk := (w0|k, . . . , wN−1|k) ∈ WN and
vk := (v0|k, . . . , vN−1|k) ∈ VN are the corresponding distur-
bance sequences and xi|k := g(xi−1|k, ui−1|k, wi−1|k, vi−1|k)
for all i = 1, . . . , N . The open-loop min–max MPC class of
admissible input sequences defined for XT and state xk ∈ X is

UN(xk) := {uk ∈ UN | xk(xk, uk, wk, vk) ∈ XN ,

xN |k ∈ XT , ∀wk ∈ WN, ∀vk ∈ VN }.
Let the terminal set XT ⊆ X and N ∈ Z�1 be given.
At time k ∈ Z+ let xk ∈ X be given. The open-loop
min–max MPC approach minimizes the cost J (xk, uk) :=
maxwk∈WN ,vk∈VN [F(xN |k) + ∑N−1

i=0 L(xi|k, ui|k)], with pre-
diction model (9), over all sequences uk in UN(xk).

Feedback min–max MPC obtains a sequence of feedback
control laws that minimizes a worst case cost function, while
assuring robust constraint handling. In this paper we employ the
dynamic programming approach to feedback min–max nonlin-
ear MPC proposed in [10] for linear systems and in [18] for
nonlinear systems.

In this approach, the feedback min–max optimal control input
is obtained as follows:

Vi(x) := min
u∈U

{
max

w∈W,v∈V
[L(x, u) + Vi−1(g(x, u, w, v))]

such that g(x, u, w, v) ∈ Xf (i − 1),

∀w ∈ W, ∀v ∈ V

}
, (10)

where the set Xf (i) contains all the states xi ∈ X which are
such that (10) is feasible, i =1, . . . , N . The optimization prob-
lem is defined for i = 1, . . . , N with the boundary conditions

V0(x0) := F(x0),

Xf (0) := XT . (11)

Taking into account the definition of the min–max problem
(10), Xf (i) is now the set of all states that can be robustly
controlled into the set XT in i ∈ Z�1 steps.

The control law is applied to system (9) in a receding horizon
manner. At each sampling time the problem is solved for the
current state x and the value function VN(x) is obtained. The
feedback min–max MPC control law is defined as

ū(x) := u∗
N , (12)

where u∗
N is the optimizer of problem (10) for i = N . For

simplicity of exposition, in what follows we assume existence
and uniqueness of u∗

N , and that the minimum and the maximum
are well-defined in (10), for all i = 1, . . . , N . Notice that it is
possible to show that the results developed in this article also
apply when the global optimum is not unique. Furthermore,
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following the reasoning employed in [19], ISpS results can also
be obtained for the suboptimal case.

In the following sections the min–max MPC value function
VN(x) will be used as a candidate ISpS Lyapunov function in
order to establish ISpS of the nonlinear system (9) in closed-
loop with the feedback min–max MPC control (12). To simplify
the notation, for the reminder of the article we will use V (x)

to denote VN(x).

4. ISpS results for min–max nonlinear MPC

In this section we present sufficient conditions for ISpS of
system (9) in closed-loop with the feedback min–max MPC
control (12) and we derive explicit bounds on the evolution
of the closed-loop system state. Let h : Rn → Rm denote an
arbitrary nonlinear function with h(0) = 0 and let XU := {x ∈
X | h(x) ∈ U}.

Assumption 4.1. There exist aL, aF , bF , � ∈ R>0 with
aL �bF , e1, e2 ∈ R+, a function h : Rn → Rm with h(0) = 0
and a K-function �̄ such that:

(i) XT ⊆ XU and 0 ∈ int(XT );
(ii) XT is a RPI set for system (9) in closed-loop with uk =

h(xk), k ∈ Z+;
(iii) L(x, u)�aL‖x‖� for all x ∈ X and all u ∈ U;
(iv) aF ‖x‖� �F(x)�bF ‖x‖� + e1 for all x ∈ XT ;
(v) F(g(x, h(x), w, v))−F(x)� −L(x, h(x))+ �̄(‖v‖)+e2

for all x ∈ XT , w ∈ W, and v ∈ V.

Note that Assumption 4.1 implies that F(·) is a local2 ISpS
Lyapunov function. Then, from Theorem 2.5 it follows that
system (9) in closed-loop with uk = h(xk), k ∈ Z+ is ISpS in
XT , as formally stated below.

Proposition 4.2. Suppose that Assumption 4.1 holds. Then, sys-
tem (9) in closed-loop with uk =h(xk), k ∈ Z+, is ISpS in XT .
Moreover, if Assumption 4.1 holds with e1 = e2 = 0, system (9)
in closed-loop with uk = h(xk), k ∈ Z+, is ISS in XT .

Assumption 4.1 can be regarded as a generalization of the
usual sufficient conditions for nominal stability of MPC, which
imply that F(·) is a local Lyapunov function, see, for example,
the survey [17]. Techniques for computing a terminal cost and
a function h(·) such that Assumption 4.1 is satisfied have been
recently developed in [9] for relevant subclasses of system (9)
(i.e. perturbed linear and piecewise affine systems). See also
the illustrative nonlinear example in Section 6.

Theorem 4.3. Suppose that F(·), L(·, ·), XT and h(·) are such
that Assumption 4.1 holds for system (9). Furthermore, suppose
that there exists a number 
 ∈ R�bF

such that V (x)�
‖x‖�

for all x ∈ Xf (N)\XT . Then, the perturbed nonlinear system
(9) in closed-loop with the feedback min–max MPC control
(12) is ISpS in Xf (N). Moreover, the property (2) holds with

2 ISS Lyapunov function when e1 = e2 = 0.

the following functions:

�(s, k) :=
(

3


aL

)1/�

�̌k
s, �(s) :=

(
3�

aL(1 − �)

)1/�

s,

d :=
(

3	

aL

)1/�

, (13)

where �̌ := �1/� ∈ (0, 1), � := 1 − aL/
 ∈ (0, 1), � > 0
can be taken arbitrarily small, 	 := d1 + d2/(1 − �), d1 :=
e1 + N [maxv∈V �̄(‖v‖) + e2] and d2 := maxv∈V �̄(‖v‖) + e2.

Proof. The proof consists in showing that the min–max MPC
value function V (·) is an ISpS Lyapunov function, i.e. it satisfies
the hypothesis of Theorem 2.5. First, it is known (see [18,7])
that under Assumption 4.1(i), (ii) the set Xf (N) is a RPI set
for system (9) in closed-loop with the feedback min–max MPC
control (12).

Second, we will obtain lower and upper bounding func-
tions on the min–max MPC value function that satisfy
(3a). From Assumption 4.1(iii) it follows that V (x) =
VN(x)�L(x, ū(x))�aL‖x‖�, for all x ∈ Xf (N), where ū(x)

is the feedback min–max MPC control law defined in (12).
Next, letting x0 := x ∈ XT , by Assumption 4.1(ii) (i.e. due

to robust positive invariance of XT ) one can apply Assump-
tion 4.1(v) repetitively for the sequence of predicted states.
Summing up the resulting inequalities it follows that for any
w[N−1] ∈ WN and any v[N−1] ∈ VN

F(xN) +
N−1∑
i=0

L(xi, h(xi))�F(x0) +
N−1∑
i=0

�̄(‖vi‖) + Ne2,

where xi := g(xi−1, h(xi−1), wi−1, vi−1) for i = 1, . . . , N .
Then, by optimality and Assumption 4.1(iv) we have that for
all x ∈ XT ,

V (x) = VN(x)� max
w∈W,v∈V

[
F(xN) +

N−1∑
i=0

L(xi, h(xi))

]

�F(x) + N

[
max
v∈V

�̄(‖v‖) + e2

]
�bF ‖x‖� + d1,

where d1 := e1 + N [maxv∈V �̄(‖v‖) + e2] > 0. As from the
hypothesis of Theorem 4.3 we also have that V (x)�
‖x‖�

for all x ∈ Xf (N)\XT (with bF �
) it follows that
V (x)�
‖x‖� + d1 for all x ∈ Xf (N). Hence, V (·) satis-
fies condition (3a) for all x ∈ Xf (N) with �1(s) := aLs�,
�2(s) := 
s� and d1 = e1 + N [maxv∈V �̄(‖v‖) + e2] > 0.

Next, we show that V (·) satisfies condition (3b). By
Assumption 4.1(v) and optimality, for all x ∈ XT = Xf (0) we
have that:

V1(x) − V0(x)� max
w∈W,v∈V

[L(x, h(x)) + F(g(x, h(x), w, v))]
− F(x)

� max
v∈V

�̄(‖v‖) + e2.
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Then, it can be shown via induction that (see also [13]):

Vi+1(x) − Vi(x)� max
v∈V

�̄(‖v‖) + e2,

∀x ∈ Xf (i), ∀i ∈ 0, . . . , N − 1. (14)

At time k ∈ Z+, for a given state xk ∈ X and a fixed prediction
horizon N the min–max MPC control law ū(xk) is calculated
and then applied to system (9). The state evolves to xk+1 =
g(xk, ū(xk), wk, vk) ∈ Xf (N). Then, by Assumption 4.1(v)
and applying recursively (14) it follows that

VN(xk+1) − VN(xk) = VN(xk+1) − max
w∈W,v∈V

[L(xk, ū(xk))

+ VN−1(g(xk, ū(xk), w, v))]
�VN(xk+1) − L(xk, ū(xk))

− VN−1(g(xk, ū(xk), wk, vk))

= VN(xk+1) − L(xk, ū(xk))

− VN−1(xk+1)

� − L(xk, ū(xk)) + max
v∈V

�̄(‖v‖) + e2

� − aL‖xk‖� + max
v∈V

�̄(‖v‖) + e2

= − aL‖xk‖� + d2, (15)

for all xk ∈ Xf (N), wk ∈ W, vk ∈ V and all k ∈ Z+, where
d2 := maxv∈V �̄(‖v‖) + e2 > 0. Hence, the feedback min–max
nonlinear MPC value function V (·) satisfies (3b) with �3(s) :=
aLs�, any � ∈ K and d2 = maxv∈V �̄(‖v‖) + e2 > 0. The
statements then follow from Theorem 2.5.

The functions �(·, ·), �(·) and the constant d defined in (13)
are obtained by letting �(s) := �s� for some (any) � > 0 and
substituting the functions �1(·), �2(·), �3(·), �(·) and the con-
stants d1, d2 obtained above in relation (4). �

5. Main result: ISS dual-mode min–max MPC

As shown in the previous section, the hypothesis of Theorem
4.3 is sufficient for ISpS, but not necessarily for ISS of system
(9) in closed-loop with ū(·), even when e1 =e2 =0. This is due
to the min–max MPC value function V (·), which is only an
ISpS Lyapunov function in general, and not an ISS Lyapunov
function. Therefore, it is unclear whether the min–max MPC
control law (12) results in an ISS closed-loop system.

In the case of persistent disturbances this is not necessarily
a drawback, since ultimate boundedness in a RPI subset of
Xf (N) is the most one can aim at, anyhow. It will be shown next
that UB is indeed guaranteed under the hypothesis of Theorem
4.3. However, in the case when the disturbance input vanishes
after a certain time it is desirable to have an ISS closed-loop
system.

In this section we present sufficient conditions for ISS of
system (9) in closed-loop with a dual-mode min–max MPC
strategy. The following technical result will be employed to
prove the main result for dual-mode min–max nonlinear MPC.

For any � ∈ R(0,aL) define

M� :=
{
x ∈ Xf (N)

∣∣∣∣‖x‖� � d2

aL − �

}

and

M� := Xf (N)\M�, (16)

where aL ∈ R>0 is from Assumption 4.1(iii) and d2 = maxv∈V

�̄(‖v‖)+e2 > 0. Note that 0 ∈ int(M�), as d2/(aL −�) > 0 and
0 ∈ int(XT ) ⊆ int(Xf (N)).

Lemma 5.1. Suppose that F(·), L(·, ·), XT and h(·) are such
that Assumption 4.1 holds for system (9). Let � ∈ R(0,aL)

be such that M� 
= ∅ and consider the closed-loop system
(9)–(12). Then, for each x0 ∈ M� there exists an i(x0) ∈ Z�1
such that for all disturbance realizations w and v, it holds that
xi(x0) ∈ M�.

Moreover, there exists a KL-function �̄ such that for all
x0 ∈ M� and all disturbance realizations w and v, the cor-
responding trajectory of the closed-loop system (9)–(12) satis-
fies ‖xk‖� �̄(‖x0‖, k) as long as xk ∈ M� for all k ∈ Z[0,i),
i ∈ Z�1.

Proof. We prove the second statement of the lemma first. As
shown in the proof of Theorem 4.3, the hypothesis implies that

aL‖x‖� �V (x)�
‖x‖� + d1, ∀x ∈ Xf (N).

Let r > 0 be such that Br ⊆ M�. For all state trajectories
{xk}k∈Z[0,i)

∈ Mi
� (and thus, xk /∈ M� for all k ∈ Z[0,i)) we have

that ‖xk‖�r for all k ∈ Z[0,i).
This yields:

V (xk)�
‖xk‖� + d1

(‖xk‖
r

)�

�
(


 + d1

r�

)
‖xk‖�, ∀xk ∈ M�, ∀k ∈ Z[0,i).

The hypothesis also implies (see (15)) that

V (xk+1) − V (xk)� − aL‖xk‖� + d2,

∀xk ∈ Xf (N), wk ∈ W, vk ∈ V, k ∈ Z+.

By the definitions in (16), for x ∈ M� it holds that −aL‖x‖� +
d2 � − �‖x‖�, which yields:

V (xk+1) − V (xk)� − �‖xk‖�,

∀xk ∈ M�, wk ∈ W, vk ∈ V, k ∈ Z[0,i). (17)

Then, following the steps of the proof of Theorem 2.5, it is
straightforward to show that the state trajectory satisfies for all
k ∈ Z[0,i),

‖xk‖� �̄(‖x0‖, k),

�̄(s, k) := �̄−1
1 (�̄k �̄2(s)) =

(
b̄

aL

)1/�

s(�̄1/�)k , (18)

where �̄2(s) := b̄s�, b̄ := 
 + d1/r�, �̄1(s) := aLs� and
�̄ := 1−�/b̄. Note that �̄ ∈ (0, 1) as 0 < � < aL �bF �
 < 
+
d1/r� = b̄.
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Next, we prove that there exists an i ∈ Z�1 such that xi ∈
M�. Assume that there does not exist an i ∈ Z�1 such that
xi ∈ M�. Then, for all i ∈ Z+ we have that

‖xi‖� �̄(‖x0‖, i) =
(

b̄

aL

)1/�

‖x0‖(�̄1/�)i .

Since �̄1/� ∈ (0, 1), we have that limi→∞(�̄1/�)i = 0. Hence,
there exists an i ∈ Z�1 such that xi ∈ Br ⊆ M� and we
reached a contradiction. Note that (18) is independent of w or
v and thus, i can be taken to depend on x0 only. �

Before stating the main result, we make use of Lemma 5.1
to prove that the ISpS sufficient conditions of Assumption 4.1
ensure ultimate boundedness of the min–max MPC closed-loop
system. This property is achieved with respect to a RPI sublevel
set of the min–max MPC value function induced by the set M�.

Theorem 5.2. Suppose that the hypothesis of Lemma 5.1 holds
and let

Υ := max
x∈M�

V (x) + d2

and

VΥ := {x ∈ Xf (N) | V (x)�Υ }.
Then, the closed-loop system (9)–(12) is UB in the set VΥ for
initial conditions in Xf (N).

Proof. By definition of Υ , x ∈ M� ⊆ Xf (N) implies that

V (x)� max
x∈M�

V (x)� max
x∈M�

V (x) + d2 = Υ .

Therefore, M� ⊆ VΥ . Suppose that x0 ∈ Xf (N)\VΥ and
thus, x0 ∈ M�. Then, by Lemma 5.1 it follows that there exists
an i(x0) ∈ Z�1 such that xi(x0) ∈ M� ⊆ VΥ .

Next, we prove that VΥ is a RPI set for the closed-
loop system (9)–(12). As shown in the proof of Lemma 5.1
(see (17)), for any x ∈ VΥ \M� it holds that

V (g(x, ū(x), w, v))�V (x) − �‖x‖� �V (x)�Υ ,

for all w ∈ W and all v ∈ V. Now let x ∈ M�. By inequality
(15) it holds that

V (g(x, ū(x), w, v))�V (x) − aL‖x‖� + d2 �V (x) + d2 �Υ .

Therefore, for any x ∈ VΥ , it holds that g(x, ū(x), w, v) ∈
VΥ for all w ∈ W and all v ∈ V, which implies that VΥ

is a RPI set for the closed-loop system (9)–(12). Hence, the
closed-loop system (9)–(12) is UB in VΥ . �

In a worst case situation, i.e. when the disturbance input v ∈
V is too large and VΥ = Xf (N) the result of Theorem 5.2
diminishes to ultimate boundedness of Xf (N) itself.

To state the main result, let the dual-mode feedback min–max
MPC control law be defined as

ūDM(x) :=
{

ū(x) if x ∈ Xf (N)\XT ,

h(x) if x ∈ XT .
(19)

Theorem 5.3. Suppose Assumption 4.1 holds with e1 = e2 = 0
for system (9) and there exists � ∈ R(0,aL) such that M� ⊆ XT .
Then, the perturbed nonlinear system (9) in closed-loop with
the dual-mode feedback min–max MPC control ūDM(·) is ISS
in Xf (N).

Proof. In order to prove ISS, we consider two situations: in
Case 1 we assume that x0 ∈ XT and in Case 2 we assume that
x0 ∈ Xf (N)\XT . In Case 1, F(·) satisfies the hypothesis of
Proposition 4.2 with e1 = e2 = 0 and hence, the closed-loop
system (9)–(19) is ISS. Then, using the reasoning employed in
the proof of Lemma 5.1, it can be shown that there exists a
KL-function �̃(s, k) := �̃−1

1 (2�̃k �̃2(s)), with �̃1(s) := aF s�,
�̃2(s) := bF s�, �̃ := 1 − aL/bF , and a K-function � such that
for all x0 ∈ XT the state trajectory satisfies

‖xk‖� �̃(‖x0‖, k) + �(‖v[k−1]‖), ∀k ∈ Z�1. (20)

In Case 2, since M� ⊆ XT , by Lemma 5.1, for any x0 ∈
Xf (N), w and any v, there exists a p ∈ Z�1 such that xk /∈ XT

for k ∈ Z[0,p) and xp ∈ XT . From Lemma 5.1 we also have
that there exists a KL-function �̄(s, k) = �̄−1

1 (�̄k �̄2(s)),with
�̄1(s) = aLs�, �̄2(s) = b̄s�, �̄ = 1 − �/b̄ such that the state
trajectory satisfies

‖xk‖� �̄(‖x0‖, k), ∀k ∈ Z�p and xp ∈ XT .

Then, for all p ∈ Z�1 and all k ∈ Z�p+1 it holds that

‖xk‖� �̃(‖xp‖, k − p) + �(‖v[k−p,k−1]‖)
� �̃(�̄(‖x0‖, p), k − p) + �(‖v[k−p,k−1]‖)
� �̂(‖x0‖, k) + �(‖v[k−1]‖),

where v[k−p,k−1] denotes the restriction of v to the interval
[k − p, k − 1]. In the above inequalities we used

�̃(�̄(s, p), k − p)

= �̃−1
1

(
2�̃k−p�̃2

((
b̄

aL

)1/�

s(�̄1/�)p

))

�
(

2bF b̄

aLaF

)1/�

s(�̂1/�
)k := �̂(s, k),

and �̂ := max(�̃, �̄) ∈ (0, 1). Hence, �̂ ∈ KL.
Then, we have that

‖xk‖��(‖x0‖, k) + �(‖v[k−1]‖), ∀k ∈ Z�1,

for all x0 ∈ Xf (N), w and all v, where �(s, k) :=
max(�̃(s, k), �̄(s, k), �̂(s, k)).

Since �̃, �̄, �̂ ∈ KL implies that � ∈ KL, and we have
� ∈ K, the statement then follows from Definition 2.4. �

The interpretation of the condition M� ⊆ XT is that the
min–max MPC controller steers the state of the system inside
the terminal set XT for all w and all v. Then, ISS can be
achieved by switching to the local feedback control law when
the state enters the terminal set.
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6. Illustrative example: a nonlinear double integrator

The following example will illustrate how one can verify
the conditions for ISS of min–max nonlinear MPC presented
in this article. For examples that illustrate the benefits of
using a min–max MPC scenario compared to using a nominally
stabilizing or inherently robust MPC approach we refer the
interested reader to [10,20,15,24] and the references therein.

Consider a perturbed discrete-time nonlinear double integra-
tor obtained from a continuous-time double integrator via a
sample-and-hold device with a sampling period equal to one,
as follows:

xk+1 = Axk + Buk + f (xk) + vk, k ∈ Z+, (21)

where A =
[

1
0

1
1

]
, B =

[
0.5
1

]
, f : R2 → R2, f (x) :=

0.025
[

1
1

]
x�x is a nonlinear additive term and vk ∈ V := {v ∈

R2 | ‖v‖∞ �0.03} for all k ∈ Z+ is an additive disturbance
input (we use ‖ · ‖∞ to denote the infinity norm). The state and
the input are constrained at all times in the sets

X := {x ∈ R2 | ‖x‖∞ �10}
and

U := {u ∈ R | |u|�2}.
The MPC cost function is defined using ∞-norms, i.e.

F(x) := ‖Px‖∞, L(x, u) := ‖Qx‖∞ + ‖Rx‖∞,

where P is a full-column rank matrix (to be determined), Q =
0.8I2 and R = 0.1. The stage cost satisfies Assumption 4.1(iii)
for � = 1 and any aL ∈ (0, 0.8).

We take the function h(·) as h(x) := Kx, where K ∈ R1×2

is the gain matrix. To compute the terminal cost matrix P and
the gain matrix K such that Assumption 4.1(v) holds, we first
calculate P and K for the linearization of system (21), i.e.:

xk+1 = Axk + Buk + vk, k ∈ Z+. (22)

To accommodate for the nonlinear term f (·), we employ a
“larger” stage cost weight matrix for the state, i.e. Q̃ = 2.4I2,
instead of Q=0.8I2, for which it holds that ‖Q̃x‖∞ �‖Qx‖∞
for all x ∈ R2. The terminal cost F(x) = ‖Px‖∞ and local
control law h(x) = Kx with the matrices

P=
[

12.1274 7.0267
0.4769 11.6072

]
, K=[−0.5885 −1.4169] (23)

were computed (using a technique recently developed in [9])
such that the following inequality holds for the linear system
(22), i.e.

‖P((A + BK)x + v)‖∞ − ‖Px‖∞
� − ‖Q̃x‖∞ − ‖RKx‖∞ + �̄(‖v‖), (24)

for all x ∈ R2 and all v ∈ R2, where �̄(s) := ‖P ‖∞s.
The terminal cost satisfies Assumption 4.1(iv) for � = 1,

bF =‖P ‖∞=19.1541, aF =0.1 and e1 =0. To obtain a suitable

Fig. 1. State trajectory for the nonlinear system (21) in closed-loop with a
dual-mode min–max MPC controller and an estimate of the set of feasible
states Xf (4).

bound on ‖f (x)‖∞ we employ the following tightened set of
constraints for h(·) (see Fig. 1 for a plot of XU):

XU := {x ∈ X | ‖x‖∞ �1.72, |Kx|�2}.
The terminal set XT , also plotted in Fig. 1, is taken as the max-
imal RPI set contained in the set XU (and which is non-empty)
for the linear system (22), in closed-loop with uk = h(xk), k ∈
Z+, and disturbances in the set {v ∈ R2 | ‖v‖∞ �0.18}. One
can easily check that maxx∈XU

‖f (x)‖∞ < 0.15 and thus, it fol-
lows that the terminal set XT chosen as specified above is a RPI
set for the nonlinear system (21) in closed-loop with uk=h(xk),
k ∈ Z+, and all disturbances v in V={v ∈ R2 | ‖v‖∞ �0.03}.

Using the fact that (notice that below, in some cases, ‖ · ‖∞
denotes the induced infinity matrix norm)

‖Q̃x‖∞ �2.3515‖x‖∞, ∀x ∈ R2,

max
x∈XT

∥∥∥∥P 0.025

[
1
1

]
x�
∥∥∥∥∞

= 1.5515,

inequality (24) and the triangle inequality, for all x ∈ XT and
all v ∈ R2 we obtain

‖P((A + BK)x + v) + Pf (x)‖∞ − ‖Px‖∞
�‖P((A + BK)x + v)‖∞ − ‖Px‖∞ + ‖Pf (x)‖∞
� − ‖Q̃x‖∞ − ‖RKx‖∞ + �̄(‖v‖∞) + ‖Pf (x)‖∞
� − 2.3515‖x‖∞ − ‖RKx‖∞ + �̄(‖v‖∞)

+ max
x∈XT

(∥∥∥∥P 0.025

[
1
1

]
x�
∥∥∥∥∞

)
‖x‖∞

� − 2.3515‖x‖∞ − ‖RKx‖∞ + �̄(‖v‖∞) + 1.5515‖x‖∞
= −0.8‖x‖∞ − ‖RKx‖∞ + �̄(‖v‖∞)

= −‖Q‖∞‖x‖∞ − ‖RKx‖∞ + �̄(‖v‖∞)

� − ‖Qx‖∞ − ‖RKx‖∞ + �̄(‖v‖∞)

= −L(x, Kx) + �̄(‖v‖∞).
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Fig. 2. Dual-mode min–max nonlinear MPC control input and disturbance
input histories.

Hence, the terminal cost F(x) = ‖Px‖∞ and the control law
h(x) = Kx, with the matrices P and K given in (23), satisfy
Assumption 4.1(v) for the nonlinear system (21) with e2 = 0
and with �̄(s) = ‖P ‖∞s.

Consider now the set M�, which needs to be determined to
establish ISS of the nonlinear system (21) in closed-loop with
the dual-mode min–max MPC control law (19). We can choose
aL = 0.79 < 0.8, which ensures that ‖Qx‖∞ �aL‖x‖∞ for all
x ∈ R2. Since d2 = maxv∈V �̄(‖v‖∞) = 0.5746, it follows that
a necessary condition to be satisfied is � ∈ (0, 0.79) (with the
smallest set M� obtained for lim�→0 d2/(aL − �) = 0.7273).
For � = 0.0718, which yields d2/(aL − �) = 0.8001, it holds
that M� ⊂ XT , see Fig. 1 for an illustrative plot. Therefore, the
closed-loop system (21)–(19) is ISS in Xf (N), as guaranteed
by Theorem 5.3.

As the feedback min–max MPC optimization problem was
computationally untractable for the nonlinear model (21), we
have used an open-loop min–max MPC problem set-up, as the
one described in Section 3, to calculate the control input. The
developed theory applies also for the open-loop min–max MPC
scheme, as pointed out in Section 3. Although the resulting
open-loop min–max optimization problem still has a very high
computational burden, we could obtain a solution using the
fmincon Matlab solver. The closed-loop state trajectories for
initial state x0 = [−7 − 4]� and prediction horizon N = 4 are
plotted in Fig. 1. The dual-mode min–max MPC control input
and (randomly generated) disturbance input histories are plotted
in Fig. 2. The min–max MPC controller manages to drive the
state of the perturbed nonlinear system inside the terminal set,
while satisfying constraints at all times.

7. Conclusions

In this article we have revisited the robust stability problem
in min–max nonlinear MPC. The ISpS framework has been
employed to study robust stability of perturbed nonlinear sys-

tems in closed-loop with min–max MPC controllers. New a
priori conditions for ISpS were presented together with explicit
bounds on the evolution of the closed-loop system state. More-
over, it was proven that these conditions also ensure ultimate
boundedness. Novel conditions that guarantee ISS of min–max
nonlinear MPC closed-loop systems were derived using a dual-
mode approach. This result is useful as it provides a method-
ology for designing robustly asymptotically stable min–max
MPC schemes without a priori assuming that the (additive) dis-
turbance input converges to zero as the closed-loop system state
converges to the origin.
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