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Robust MPC of constrained nonlinear systems based
on interval arithmetic

D. Limon, J.M. Bravo, T. Alamo and E.F. Camacho

Abstract: A robust MPC for constrained discrete-time nonlinear systems with additive
uncertainties is presented. The proposed controller is based on the concept of reachable sets, that
is, the sets that contain the predicted evolution of the uncertain system for all possible uncertainties.
If processes are nonlinear these sets are very difficult to compute. A conservative approximation
based on interval arithmetic is proposed for the online computation of these sets. This technique
provides good results with a computational effort only slightly greater than the one corresponding to
the nominal prediction. These sets are incorporated into the MPC formulation to achieve robust
stability. By choosing a robust positively invariant set as a terminal constraint, a robustly stabilising
controller is obtained. Stability is guaranteed in the case of suboptimality of the computed solution.
The proposed controller is applied to a continuous stirred tank reactor with an exothermic reaction.

1 Introduction

The main reasons for the success of model predictive
control (MPC) is that it is one of the few techniques that is
able to handle explicitly constraints and model uncertain-
ties. The underlying theoretic problems on linear MPC and
on nonlinear MPC are well studied [1]. See [2, 3] for a
survey on the process industry application issues and [4, 5]
for a survey on nonlinear MPC. Particularly interesting is
[1] where a standard formulation of the MPC is established
and sufficient conditions to guarantee asymptotic stability
are given.

Although it has been proved that the controller has some
degree of robustness [6, 7] if the system differs from the
prediction model the stabilising properties may be lost.
To get robust stability when uncertainties are present they
must be taken into account in the computation of the control
law. Two different approaches have been proposed: open-
loop and closed-loop MPC.

In the open-loop MPC formulation the decision variables
are a sequence of control actions as in the nominal case. Any
feasible sequence applied in an open-loop manner must
steer the system to the terminal region in an admissible way
for any possible uncertainty. Then the reaction of the
controller to the uncertainty (due to the feedback structure)
is not considered in the predictions, which makes the
controller quite conservative. Consequently the domain of
attraction may be small (or even empty) compared with
the real robustly stabilisable region. In [8] an open-loop

dual-mode MPC controller is proposed and robustness
under decaying additive uncertainties is achieved.

This conservativeness can be overcome if a sequence of
control laws is used as decision variables, which leads to the
closed-loop formulation. In this case the problem is
mitigated at the expense of a more complex optimisation
problem. The feasibility region is larger than the one of the
open-loop formulation and it tends to the maximal robustly
stabilisable region when the control horizon increases. In the
case of constrained linear systems the closed-loop MPC has
been characterised [9] and explicit solutions of the
controller can be obtained by means of multiparametric
programming [10]. In the case of nonlinear systems the
optimisation problem is prohibitively complex and it must
be considered merely as a theoretical controller.

In this paper an open-loop robust MPC for constrained
discrete-time nonlinear systems with additive bounded
uncertainties is presented based on the reachable sets: the
sets which contain the predicted evolution of the uncertain
system under any possible uncertainty. Since the nonlinear-
ity of the model makes these sets difficult to be accurately
obtained, conditions are established to compute them by
using approximate procedures.

Interval arithmetic is used for the computation of the
approximate reachable sets. This procedure is very useful
for the online implementation of the proposed controller,
since the computational effort is similar to the nominal
prediction. Furthermore, good results are obtained since the
method provides local approximations to the reachable set.

Based on these sets, a robustly stabilising dual-mode
MPC controller is proposed. The controller is based on the
addition of a robust invariant set as a terminal constraint
with an associated robust local control law. Thus the dual-
mode controller applies the MPC solution as control input
when the state is not in the terminal region, and once the
system has reached it the local control law is applied.
For all initial states such that the optimisation problem is
feasible, robust stability is guaranteed. Hence, the
uncertain closed-loop system reaches the terminal region
in a finite number of steps and it remains in it all the time.
Robust stability is ensured in case of suboptimality of
the solution.
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2 Preliminary results

2.1 System description

Consider an uncertain nonlinear discrete-time system
given by

xkþ1 ¼ f ðxk; ukÞ þ wk ð1Þ
where xk 2 R

n is the state of the system and uk 2 R
m is the

control vector at sample time k. The vector wk 2 R
n is

the disturbance or uncertainty which is assumed to be
additive and bounded in a compact set W that contains the
origin

wk 2 W ð2Þ
The system is subject to constraints on the state xk 2 X and on
the control action uk 2 U: Note that the additive uncertainty
can model perturbed systems and a wide class of model
mismatches taking into account that these ones might depend
on the state of the system, since

xkþ1 ¼ ~ff ðxk; ukÞ
¼ f ðxk; ukÞ þ Df ðxk; ukÞ
) wk ¼ Df ðxk; ukÞ 2 W ; 8xk 2 X; uk 2 U

where X is a closed set and U a compact set, both of them
containing the origin. The model given by

x̂xkþ1 ¼ f ðx̂xk; ukÞ ð3Þ
denotes the nominal model of the system. The vector uFðkÞ
denotes a sequence of control of M inputs

uFðkÞ ¼ fuðkjkÞ; uðk þ 1jkÞ; . . . ; uðk þ M 
 1jkÞg
where the number of future inputs M is derived from the
context. For a given state xk and a sequence of control actions
uFðkÞ; the future state of the system at time k þ j predicted
by using the nominal model is denoted as x̂xðk þ jjkÞ:
Hence x̂xðk þ j þ 1jkÞ ¼ f ðx̂xðk þ jjkÞ; uðk þ jjkÞÞ; where
x̂xðkjkÞ ¼ xk:

2.2 Reachable sets

Since there are mismatches between the real system and the
nominal model, the predicted evolution using the nominal
model differs from the real evolution of the system.
To consider this effect in the controller synthesis it is
interesting to compute the region around the nominal
prediction that confines the state of the system under any
possible uncertainties.

This idea is the basis of the so-called reachable sets.
Consider that the state of the system at sample time k is xk and
a sequence of control inputs uFðkÞ is applied to the uncertain
system. The evolution of the system depends on the
uncertainties that are known to belong to the bounded set
W. The reachable set at sample time k þ j is denoted as
Xjðxk; uFðkÞÞ: This set is the region that confines the
evolution of the uncertain system under any possible
realisation of the uncertainties until sample time k þ j;
that is 8wkþi 2 W ; for i ¼ 0; . . . ; k þ j 
 1: Note that
this set depends on xk; on the sequence of inputs from k to
k þ j 
 1; i.e. fuðkjkÞ; . . . ; uðk þ j 
 1jkÞg and on the set of
uncertainties W.

Hereafter some definitions and results related to the
reachable sets are presented. First some notations are
introduced; consider sets A and B � R

n; a vector x 2 R
n

and a function gðxÞ : Rn ! R
n then the following sets are

defined: x þ A ¼ fx þ a; a 2 Ag; gðAÞ ¼ fgðaÞ; a 2 Ag;
A þ B ¼ fa þ b; a 2 A; b 2 Bg; and A � B ¼ fc 2 R

n :
c þ B � Ag:

Definition 1: (Reachable set) Consider a system (1) and
consider a given state at sample time k, xk; and a sequence of
control inputs uFðkÞ: Then the reachable set at sample
time k þ j; Xjðxk; uFðkÞÞ; is given by the following
recursion:

Xjðxk;uFðkÞÞ ¼ f ðXj
1ðxk;uFðkÞÞ; uðkþ j
1jkÞÞþW ð4Þ

where X1ðxk; uFðkÞÞ ¼ f ðxk; uðkjkÞÞ þ W :
Note that Xjðxk; uFðkÞÞ is the set that contains the

uncertain evolution of all the states of Xj
1ðxk; uFðkÞÞ;
that is

Xjðxk; uFðkÞÞ ¼
[

x2Xj
1

f ðx; uðk þ j 
 1jkÞÞ þ W

Due to the nonlinear nature of the model, for a given set
A � R

n and a given control action u, the set f (A, u) is very
difficult to compute and thus the reachable sets are not
useful from a practical point of view. To reduce the
complexity of the computation, these sets can be substituted
by tractable approaches denoted as approximate reachable
sets. The approximation is based on a procedure cðA; uÞ to
compute a conservative and tractable approximation of
f(A, u) with a lower computational burden. This procedure
must satisfy the following conditions.

Assumption 1: The approximate procedure cðA; uÞ; where
A � X and u 2 U satisfies the following conditions:

. Inclusion condition: f ðA; uÞ � cðA; uÞ

. Monotonic condition: If B is a set such that B � A; then
cðB; uÞ � cðA; uÞ
Based on this procedure it is possible to compute
conservative approximations to the reachable sets.

Definition 2: (Approximate reachable set) Consider a
system (1) and a procedure cð�; �Þ that satisfies assumption
1 for the system. Then for a given state at sample time k, xk;
and a sequence of control inputs uFðkÞ; the approximate
reachable set at sample time k þ j; X̂Xjðxk; uFðkÞÞ; is given by
the following recursion

X̂Xjðxk;uFðkÞÞ¼cðX̂Xj
1ðxk;uFðkÞÞ; uðkþ j
1jkÞÞþW ð5Þ

where X̂X1ðxk; uFÞ ¼ f ðxk; uðkjkÞÞ þ W ¼ X1ðxk; uFðkÞÞ:
These approximate reachable sets have the following

properties.

Property 1: Consider a given state xk and a sequence of M
control inputs uFðkÞ

uFðkÞ ¼ fuðkjkÞ; uðk þ 1jkÞ; . . . ; uðk þ M 
 1jkÞg

Consider the sequence of M 
 1 inputs �uuFðk þ 1Þ given by

�uuFðk þ 1Þ ¼ fuðk þ 1jkÞ; . . . ; uðk þ M 
 1jkÞg

then

(i) the approximate reachable set contains all the
predicted states for all possible realisation of the uncertain-
ties, that is

Xjðxk; uFðkÞÞ � X̂Xjðxk; uFðkÞÞ j ¼ 1; . . . ;M ð6Þ

(ii) for any possible xkþ1 ¼ f ðxk; uðkjkÞÞ þ wk; then

X̂Xjðxkþ1; �uuFðkþ1ÞÞ� X̂Xjþ1ðxk;uFðkÞÞ j¼ 1; . . . ; M
1

ð7Þ
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Proof: Both properties are proved by induction.

(i) From the definition, X̂X1ðxk; uFðkÞÞ ¼ X1ðxk; uFðkÞÞ:
Assume that Xj
1ðxk; uFðkÞÞ � X̂Xj
1ðxk; uFðkÞÞ; then

Xjðxk;uFðkÞÞ ¼ f ðXj
1; uðk þ j 
 1jkÞÞ þ W

� cðXj
1; uðk þ j 
 1jkÞÞ þ W

� cðX̂Xj
1; uðk þ j 
 1jkÞÞ þ W

¼ X̂Xjðxk;uFðkÞÞ
(ii) It is clear that xkþ1 2 X̂X1ðxk; uFðkÞÞ: By virtue of the
monotony condition of cð�; �Þ;

X̂X1ðxkþ1; �uuFðk þ 1ÞÞ ¼ cðxkþ1; uðk þ 1jkÞÞ þ W

� cðX̂X1ðxk;uFðkÞÞ; uðk þ 1jkÞÞ þ W

¼ X̂X2ðxk; uFðkÞÞ

Consider that X̂Xj
1ðxkþ1; �uuFðk þ 1ÞÞ � X̂Xjðxk; uFðkÞÞ: From
the inclusion condition of cð�; �Þ
X̂Xjðxkþ1; �uuFðkþ1ÞÞ¼cðX̂Xj
1ðxkþ1; �uuFðkþ1ÞÞ;uðkþjjkÞÞþW

�cðX̂Xjðxk;uFðkÞÞ;uðkþjjkÞÞþW

¼X̂Xjþ1ðxk;uFðkÞÞ B

The first property proves that assumption 1 suffices to
compute approximate reachable sets; the second property
establishes that the obtained sets are consistent, that is, the
sequence of approximate reachable sets computed at the
next sampling time for the remaining control sequence is
included in the sequence of approximate reachable sets
computed at the current sampling time.

To implement the computation of the approximate
reachable sets it is necessary to find procedures that satisfy
assumption 1. A procedure based on interval arithmetic is
used in this paper. In the following Section some well-
known results are shown.

2.3 Interval arithmetic

Interval mathematics is a generalisation of real mathematics
in which interval numbers replace real numbers, interval
arithmetic replaces real arithmetic, and interval analysis
replaces real analysis [11]. Interval arithmetic has been
applied in numerical analysis and in the study of the
solutions of equations in compact domains [12], bounding
the solution of ordinary differential equations [13] and
global optimisation problems [14–16].

An interval number X ¼ ½a; b� is the set of real numbers
such that fx : a � x � bg: The same concept is extended to
interval vectors, where each component is an interval
variable. Note that an interval vector X is a set in R

n: The set
of real compact intervals ½a; b�; a; b 2 R is denoted by I, and
the sets of interval vectors in R

n is denoted by In:
Interval arithmetic is an arithmetic defined on sets of

intervals, instead of sets of real numbers. The four basic
interval operations [11] are given by

½a; b� þ ½c; d� ¼ ½a þ c; b þ d�
½a; b� 
 ½c; d� ¼ ½a 
 d; b 
 c�
½a; b� � ½c; d� ¼ ½minða � c; a � d; b � c; b � dÞ;

maxða � c; a � d; b � c; b � dÞ�

½a; b�=½c; d� ¼ ½a; b� � 1

d
;
1

c

� �
if 0 62 ½c; d� ð8Þ

The ranges of the four elementary interval arithmetic
operations are exactly the ranges of the corresponding real

operations. Extension of the interval arithmetic to include
0 in division can be found in [17]. The interval extension of
standard functions, such as sin, cos, tan, arctan, exp, ln, abs,
sqrt, is also possible.

Consider a function g: Rn ! R
m and consider an

interval vector X 2 In; then the set g(X) denotes the
range of gð�Þ over the interval X. Note that it is not an
interval vector in general. Computing the exact range of
an arbitrary function gð�Þ over an interval vector X is a
difficult problem. However, interval arithmetic can be
used to obtain interval bounds of the exact range g(X).

Definition 3: (Inclusion function) A function G: Rn ! R
m

is called an inclusion function for gð�Þ if gðXÞ � GðXÞ
for any X of In:

Definition 4: (Inclusion monotonic function) The inclusion
function Gð�Þ is inclusion monotonic if for every X;Y 2 In

such that X � Y it is satisfied that GðXÞ � GðYÞ:

Definition 5: (Natural interval extension [14]) If g: Rn !
R

m is a function computable as an expression, algorithm or
computer program involving the four elementary operations
interspersed with evaluations of standard functions, then a
natural interval extension of gð�Þ is obtained by replacing
each occurrence of each component xi of x by the
corresponding interval Xi of X, by executing all operations
according to (8) and by computing exact ranges of standard
functions.

Note that a natural interval extension of a function
gðxÞ: Rn ! R

m is a function cðXÞ: In ! Im:

Theorem 1 [14]: Natural interval extensions are inclusion
monotonic functions, i.e. for any X 2 In; gðXÞ � cðXÞ and
for any X � Y ; cðXÞ � cðYÞ:

The conclusion is that natural interval extensions can be
obtained for any function or any procedure. Bounds on the
ranges can be computed from any expansion (rational, Taylor
series, etc.) that has an explicit formula for the error term.

Now let cðX; uÞ be a natural interval extension of the
model f(x, u), considering the inputs u as a parameter.
Hence it can be used as an inclusion function. From
theorem 1, for any X, Y 2 In such that X � Y and for any
u, f ðX; uÞ � cðX; uÞ; and cðX; uÞ � cðY ; uÞ: Therefore this
procedure satisfies assumption 1 and it can be used to
compute the approximate reachable sets. Note that the set of
uncertainties W must be an interval vector, since the set
cðX; uÞ þ W must be an interval vector to compute the
following set in (5). This is a mild condition since an
interval vector which contains W can be used for the
computation of the approximate reachable sets.

It is worth noting that the computational cost of the
evaluation of the procedure cðX; uÞ is of the same order of
complexity as that of the evaluation of the function f(x, u)
(see for instance the interval extensions of the basic
arithmetic operations, where an interval product operation
requires at most eight scalar products and six comparisons).

The approximate character of the obtained interval ranges
can be reduced using several methods.

. Analysing the function, reordering and grouping terms to
reduce the so-called multi-incidence problem. This problem
appears when a variable is repeated in an expression [14].
For example, when interval arithmetic evaluates an
expression like x 
 x; the result is an outer approximation
of the real solution.
. If the model function does not satisfy some monotony
condition [15, remark 3.2], the range of the function cannot
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be exactly enclosed by an interval vector. In this case, when
the sequence of approximate reachable sets is computed, the
so-called wrapping effect may appear. This problem has
been widely studied and some procedures to overcome it
have been proposed [11, 12, 15]. In [13], the intervals have
been extended to the notion of zonotopes: a zonotope is an
affine mapping of an hypercube and it is quite more general
than standard intervals. In this case, zonotopes can be used
to obtain tighter approximations of the range of a function.
Kühn’s method has been used in [18] to obtain tighter
approximations of the reachable sets.
. Using a prestabilisation structure: in this case, the control
action uk is given by uk ¼ KðxkÞ þ nk; where KðxkÞ is a
given controller and nk is the new control input; thus the
system is given by

xkþ1 ¼ f ðxk; ukÞ ¼ f ðxk;KðxkÞ þ nkÞ ¼ fKðxk; nkÞ
The control law K(x) is designed to stabilise the system or
merely to reduce the error of the approximation of the
interval extension. That is, it is designed to obtain a function
fKðx; nÞ such that its interval extension provides better
approximations. It can be obtained for instance to cancel
terms which induce large errors in the interval extension.

Once we have a method to compute the approximate reachable
sets, these are used to design a new robust MPC controller.
This technique is presented in the following Section.

3 Robust MPC strategy

Model predictive control is a well established optimal
control strategy which considers constraints on the states
and on the control actions [1]. The control law KMPCðxkÞ is
obtained solving a constrained optimisation problem and
applying the optimal control action to the system in a
receding-horizon manner. Consider the finite-horizon MPC
optimisation problem stated as follows.

min
uFðkÞ

JNðxk; uFðkÞÞ

¼
XN
1

i¼0

Lðx̂xðk þ ijkÞ; uðk þ ijkÞÞ þ Vðx̂xðk þ NjkÞÞ

subject to

x̂xðk þ jjkÞ 2 X 8j ¼ 1; . . . ;N

uðk þ jjkÞ 2 U 8j ¼ 0; . . . ;N 
 1

x̂xðk þ NjkÞ 2 O

where the vector of decision variables uFðkÞ ¼ fuðkjkÞ;
uðk þ 1jkÞ; . . . ; uðk þ N 
 1jkÞg denotes the future
sequence of control inputs of the system along the
prediction horizon N and x̂xðk þ ijkÞ is the predicted nominal
state of the system applying uFðkÞ; L(x, u) is the so-called
stage cost, which is a semidefinite positive function. Notice
that the MPC includes a terminal cost Vð�Þ in the cost
function and a terminal constraint given by the region O:
Taking into account that the optimal minimiser u�

FðxkÞ only
depends on xk; and the receding-horizon policy, the control
law is given by uk ¼ KMPCðxkÞ ¼ u�ðkjkÞ: In the absence of
uncertainties, this control law asymptotically stabilises the
system under some assumptions on the terminal cost and the
terminal region [1]. Moreover, the optimal cost function
J�

NðxkÞ is a Lyapunov function of the closed-loop system.
The domain of attraction of the controller XN is the set
where the optimisation problem is feasible.

If the system is uncertain, then stability, and probably,
feasibility of the nominal MPC may be lost. In [8] a terminal
constraint is added to the MPC and dual-mode controller is

proposed. The terminal set is considered a subset of a robust
invariant set to ensure robust stability. Based on the
Lipschitz continuity of the model, a bound of the
uncertainties such that the uncertain system is stabilised is
given. Due to the global nature of the Lipschitz constant the
bound obtained may be over-conservative.

In this paper a robust dual-mode MPC is proposed. It is
based on the computation of the approximate reachable sets
shown in Section 2.2. These sets allow us to consider all
possible realisations of the uncertainties in the computation
of the MPC control law. It is worth pointing out that the
approximate reachable sets are local bounds on the effect of
the uncertainties and hence, less conservative than global
bounds based on a global Lipschitz constant.

In what follows it is considered that the system
satisfies the following assumption.

Assumption 2: There is a region O � X with an associated
control law u ¼ hðxÞ such that O is an admissible robust
positively invariant set for the uncertain system. That is, if
x 2 O then hðxÞ 2 U and f ðx; hðxÞÞ þ w 2 O; 8w 2 W :

There exists well-established methods to compute robust
controllers for nonlinear systems [19]. If an associated
robust Lyapunov function is obtained then it can be used as
terminal cost and a level set can be used as terminal set. This
choice can be considered as a quasi-infinite prediction
horizon, and hence it provides an enhanced closed-loop
performance [20].

Note that we only require that this controller robustly
stabilises the system in a neighbourhood of the steady state;
this allows us to use local approximation to the nonlinear
system around the steady state. Thus, a linear approximation
can be used in a similar way that the proposed one in [20].
Another technique is approximating the nonlinear system by
a linear differential inclusion (LDI) and compute a robust
linear controller and the maximal robust invariant set, which
is a polyhedron [21].

The proposed controller is derived from the following
optimisation problem:

Robust dual-mode MPC optimisation problem Pd
kðxkÞ

� �
min
uFðkÞ

JN
kðxk; uFðkÞÞ

¼
XN
k
1

i¼0

Lðx̂xðk þ ijkÞ; uðk þ ijkÞÞ þ Vðx̂xðNjkÞÞ

s:t X̂Xjðxk; uFðkÞÞ � X 8j ¼ 1; . . . ;N 
 k ð9Þ
uðk þ jjkÞ 2 U 8j ¼ 0; . . . ;N 
 k 
 1 ð10Þ

X̂XN
kðxk; uFðkÞÞ � O ð11Þ
The robust dual-mode control law is such that when the
system is not in the terminal region, then the solution of
Pd

kðxkÞ is applied, and when the system is in the terminal
region, the local robust control law is applied. Thus the
dual-mode control law is given by

Kd
MPCðxkÞ ¼

u�ðkjkÞ if xk 62 O
hðxkÞ if xk 2 O

�
where u�ðkjkÞ is the first control input of u�

FðkÞ; solution to
the optimisation problem Pd

kðxkÞ:
Note that the control horizon of the optimisation problem

is reduced at each sample time. Therefore this optimisation
problem is only defined for k ¼ 0 to k ¼ N 
 1: In the
following Section it is proved that the system reaches the
terminal region in N steps, i.e. xN 2 O; and hence the local
control law u ¼ hðxÞ makes the system remains in O:
Consequently the controller is well defined.
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The approach proposed in this paper is different to the one
proposed in [8]: the notion of a reachable set is added and
hence the effect of the uncertainty is considered along the
control horizon. This fact allows us to consider the
constraints on the states in a more natural way. Conse-
quently it is not necessary to use a more conservative
terminal region as in [8].

We propose the use of local procedures for the
computation of the approximate reachable sets. This
constitutes the main difference with respect to [8] where a
global Lipschitz constant is used. Hence, our method is
potentially less conservative, which leads to a larger domain
of attraction.

4 Stability analysis

Since the uncertainties are merely bounded and they may
not be decaying, the origin is not a steady state of the
uncertain system. Hence, the aim of a stabilising controller
is to steer the state to a neighbourhood of the origin and keep
the state evolution in it. This set is a robust positively
invariant set for the closed-loop system and its size depends
on the bound on the uncertainties. Therefore the notion of
asymptotic stability is not suitable and the definition of
system ultimately bounded is introduced:

Definition 6 [19]: A system is asymptotically ultimately
bounded if the system evolves asymptotically to a bounded
set, i.e. there exist positive constants b and c such that for
every a 2 ð0; cÞ; there is a k� such that for all kx0k � a then
kxkk � b; 8k>k�:

This definition of stability is closely related to the notion
of input-to-state stability (ISS). In this case sufficient
stability conditions are imposed by means of the so-called
ISS-Lyapunov function. See for instance [22] where an ISS
MPC controller is proposed.

As proved in the following theorem, for any feasible
initial state, the proposed controller steers the uncertain
system to the terminal region where it remains for all the
time. Hence, the closed-loop system is ultimately bounded.

Theorem 2: (Stability) Consider a system (1) with additive
uncertainties subject to (2) and with constraints on the states
xk 2 X and on the inputs uk 2 U: Consider a robust invariant
set for the system O with an associated local controller
u ¼ hðxÞ such that both satisfy assumption 2. Consider that a
procedure to compute the approximate reachable sets
satisfying assumption 1 is available. Then the system
controlled by u ¼ Kd

MPCðxkÞ is ultimately bounded for all
x0 such that the optimization problem Pd

0ðx0Þ is feasible.

Proof: The stability is based on the feasibility of the
optimisation problem for all the time. That is, if the initial
state x0 is feasible, then the optimisation problem Pd

kðxkÞ is
feasible for all k � 0: Since the control horizon is reduced at
each sampling time, the system reaches the terminal region
in N steps. Once the system is in O; the controller switches
to h(x) and this controller makes the system never leave O:

Feasibility is proved by induction. By assumption, x0 is
such that the optimisation problem Pd

0ðx0Þ is feasible.
Assume that in xk
1 the optimisation problem Pd

k
1ðxk
1Þ is
feasible and the optimal (a feasible) solution is

u�
Fðk
1Þ¼fu�ðk
1jk
1Þ; u�ðkjk
1Þ;...;u�ðN
1jk
1Þg

Let xk ¼ f xk
1;Kd
MPCðxk
1Þ

� �
þ wk
1 be the state where the

uncertain system evolves at k, and let �uuFðkÞ be a sequence of
control inputs given by

�uuFðkÞ ¼ fu�ðkjk 
 1Þ; u�ðk þ 1jk 
 1Þ; . . . ;
u�ðN 
 1jk 
 1Þg ð12Þ

then we are going to prove that �uuFðkÞ is a feasible solution to
Pd

kðxkÞ for all possible uncertainty wk
1 2 W :

. Input constraints: Since u�
Fðk 
 1Þ is a feasible solution to

Pd
k
1ðxk
1Þ; then u�ð jjk 
 1Þ 2 U for all j ¼ k 
 1; . . . ;

N 
 1: Therefore from (12) we derive that �uuFðkÞ is
admissible.
. State constraints: It is clear that xk 2 X̂X1ðxk
1; u�

Fðk 
 1ÞÞ;
then in virtue of property 1 we have that

X̂Xj
1ðxk; �uuFðkÞÞ � X̂Xj xk
1; u�
Fðk 
 1Þð Þ � X

for j ¼ 2; . . . ;N 
 k þ 1

. Terminal constraint: From the state constraints we also
derive that

X̂XN
kðxk; �uuFðkÞÞ � X̂XN
kþ1 xk
1; u�
Fðk 
 1Þð Þ � O ð13Þ

Therefore �uuFðkÞ is a feasible solution of Pd
kðxkÞ and by

induction, the optimisation problem is feasible for all the
time.

Now we prove that the state of the closed-loop system at
time N is in the terminal region, i.e. xN 2 O: In effect, from
(13) at sampling time k ¼ N 
 1 the control action must
guarantee that X̂X1ðxN
1; u�ðN 
 1jN 
 1ÞÞ � O; and hence,
due to xN 2 X̂X1ðxN
1; u�ðN 
 1jN 
 1ÞÞ for all wN
1 2 W ;
we derive that xN 2 O:

Once the system reaches the terminal set the controller
switches to the local controller u ¼ hðxÞ which by
assumption 2 guarantees that the closed-loop system
evolution remains into the terminal region O: Thus the
closed-loop system is ultimately bounded. B

Remark 1: Note that the stability is guaranteed thanks to the
feasibility of the computed control action at each sample
time. Hence optimality is not required and a suboptimal
solution of the optimisation problem suffices to guarantee
stability. This property allows us to relax the computational
burden of the optimisation problem. Moreover, from the
stability proof we derive that at each sampling time we can
compute an initial feasible solution based on the solution
obtained at the previous sampling time; this initial state is a
hot start for the optimisation problem. This property and the
relaxation of the optimality requirement allow us to reduce
the computational burden necessary to compute the control
action at each sampling time.

Remark 2: The feasibility is guaranteed by means of the
reduction of the control horizon at each sampling time.
To maintain the horizon considered in the cost to minimise,
a constant prediction horizon Np can be considered. In this
case the local control law is used to predict the evolution
from the control horizon to the prediction horizon [23].
This is equivalent to using the following modified terminal
cost:

Vðx̂xðNjkÞÞ ¼
XNp

j¼N
k

Lðx̂xðk þ jjkÞ; hðx̂xðk þ jjkÞÞÞ ð14Þ

where x̂xðk þ j þ 1jkÞ ¼ f ðx̂xðk þ jjkÞ; hðx̂xðk þ jjkÞÞÞ for j ¼
N 
 k; . . . ;Np: Note that stability is independent on both the
stage cost and the terminal cost. Thus this choice of the
terminal cost function has only effect on the performance
but not on the stability of the closed-loop system. The
proposed controller can be extended to fixed control horizon
considering the robust invariance condition [24].
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Remark 3: The proposed controller is able to stabilise the
system at any feasible initial state. Thus, the size of the
domain of attraction of the closed-loop system is related
with the considered bounds of the uncertainties; in fact, if
the uncertainty is reduced, the domain of attraction is
enlarged. The open-loop nature of the proposed robust MPC
makes the controller conservative in the sense that the
resulting domain of attraction is probably smaller than
the robustly stabilisable region. This conservativeness can
be reduced considering a prestabilisation policy. This
provides some degree of feedback in the prediction
(although it is not a closed-loop formulation). Note that in
this case, the input constraints are interval constraints, since
an interval estimation of the control action for every
approximate reachable set is required. Additionally, this
technique can also improve the accuracy of the approxi-
mation of the reachable sets, as it was shown in the Section
2.3. Another technique to reduce the conservativeness is
to consider zonotopic estimations of the approximate
reachable sets [18].

5 Application to CSTR model

To illustrate the proposed robust MPC controller it is
applied to a benchmark system [23]: the continuous stirred
tank reactor (CSTR). A CSTR for an exothermic, irrevers-
ible reaction A ! B with constant liquid volume is
considered. The continuous time model is derived from
the mass and energy balances and it is given by [23, 25]

dCA

dt
¼ q

V
ðCAf 
 CAÞ 
 k0 exp 
 E

RT

� 	
CA þ wCA

dT

dt
¼ q

V
ðTf 
 TÞ 
 DHk0

rCp

exp 
 E

RT

� 	
CA

þ UA

VrCp

ðTc 
 TÞ þ wT

where CA is the concentration of A in the reactor, T is
the reactor temperature and Tc is the temperature of the
coolant stream; wCA

and wT model the uncertainty on
both states. The parameters on the model are [23]:
r ¼ 1000 g=l; Cp ¼ 0:239 J=gK; DH ¼ 
5 � 104 J=mol;
E=R ¼ 8750K; k0 ¼ 7:2 � 1010 min
1; and UA ¼ 5 � 104

J=minK: The nominal operating conditions are given

by [23]: q ¼ 100 l=min; Tf ¼ 350K; V ¼ 100 l; CAf ¼
1:0mol=l: Under these conditions the steady state is Co

A ¼
0:5mol=l; To ¼ 350K and To

c ¼ 300K; which is an
unstable equilibrium point. The temperature of the coolant
is constrained to 280K � Tc � 370K; the concentration of
A is constrained to 0:4mol=l � CA � 0:6mol=l: As in [23],
the model is discretised using a sampling period Ts ¼
0:03min: We consider that the uncertainties are bounded by
jwCA

j � 0:1mol=ðlminÞ and jwT j � 8K=min: The objec-
tive is to regulate in an admissible way the concentration
CA and the reactor temperature T around the steady state
manipulating the temperature of the coolant in its
admissible range, for any possible uncertainty.

To improve the robust controller a prestabilisation
structure is considered. This controller locally stabilises
the system, thus it is used also as a local control law for the
dual-mode MPC controller. The control law is

KðxÞ ¼ 33:46 
 7:2 � 1012 exp 
 E

RT

� 	� 	
CA 
 1:868T

þ 987:07

The closed-loop system has been approximated by a LDI to
compute a robust invariant set O: The obtained polytope is
used as terminal region in the MPC formulation. As terminal

cost is considered a cost function given by (14), with Np ¼
50: The considered stage cost Lðx; uÞ ¼ xT � Q � x þ uT Ru;
with

Q ¼ 2:0 0

0 2:9 � 10
3

� �
and R ¼ 3:33 � 10
3

as in [23]. The MPC controller has been executed
with a control horizon N ¼ 15: In Fig. 1 the sequence of
N approximate reachable sets computed for the optimal
solution in a given initial state is shown.

To illustrate the evolution of the system the uncertainty
has been considered as constant with time with an extreme
value. Thus, four different scenarios have been considered:
scenario 1 with wCA

¼ 0:1 and wT ¼ 8; scenario 2 with
wCA

¼ 0:1 and wT ¼ 
8; scenario 3 with wCA
¼ 
0:1 and

wT ¼ 
8 and scenario 4 with wCA
¼ 
0:1 and wT ¼ 8:

The state portrait of the closed-loop evolution for several
initial points in the four scenarios considered are depicted in
Figs. 2, 3, 4 and 5, respectively. In these the admissible
convergence of the closed-loop system in spite of the
uncertainties is demonstrated. Moreover, the collection of
the chosen initial state shows the size of the domain
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Fig. 1 Sequence of predicted approximate reachable sets of
optimal solution at k ¼ 0
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Fig. 2 Trajectories of closed-loop system scenario 1
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of attraction of the controller. In these figures the system
evolves to a steady state that is different at each scenario due
to the uncertainties; the steady state is depicted with a circle.
Note how the uncertainties affect this steady state, which
gives an idea of the amount of uncertainty considered.

6 Conclusions

A robust dual-mode MPC controller for constrained
discrete-time nonlinear systems with additive uncertainties
has been presented. It is based on the addition of the
uncertain prediction of the system in the MPC optimisation
problem. This is done via the so-called approximate
reachable sets, which provide a tractable way of considering
the effect of the uncertainties on the predictions. It has been
demonstrated that interval arithmetic is an appropriate and
tractable technique for the online computation of the
approximate reachable sets.

Based on the computation of the approximate reachable
sets, a robust dual-mode MPC strategy was proposed.
Considering a robust positively invariant set as a terminal
region, any feasible initial state is robustly steered to the
terminal set, where it remains. Thus, under the feasibility of
the optimisation problem in the initial state, robust stability
and feasibility of the closed-loop system is guaranteed. The
local character of the approximate reachable sets makes that
the proposed controller improves previous robust dual-
mode MPC formulations. Furthermore, suboptimal solution
of the optimisation problem guarantees stability and hence
optimality is not necessary. The proposed controller has
been applied to a CSTR model to illustrate some of its
properties and how interval arithmetic is used to compute
the uncertain evolution sets.

7 Acknowledgments

The authors would like to thank the anonymous reviewers
and the editor for their helpful comments. We also
acknowledge MCYT-Spain (contracts DPI-2001-2380-03-
01 and DPI-2002-4375-C02-01) for funding this work.

8 References

1 Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert, P.O.M.:
‘Constrained model predictive control: Stability and optimality’,
Automatica, 2000, 36, pp. 789–814

2 Camacho, E.F., and Bordons, C.: ‘Model predictive control’ (Springer-
Verlag, 1999, 2nd edn.)

3 Qin, S.J., and Badgwell, T.A.: ‘A survey of industrial model predictive
control technology’, Control Eng. Pract., 2003, 11, pp. 733–764
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