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and using (26), we obtain

2j�1(j)s
0

+(0)� k0j�1(j)� jg
2

0�2(j) = 0

so

s
0

+(0) =
1

2
k0 + g

2

0

�2(j)

�1(j)
:

Thus, again from Lemma 3, we see that �0(0) = <[s0+(0)] is positive
and the transversality condition for the occurrence of aHopf bifurcation
is satisfied.
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Constrained Min–Max Predictive Control: Modifications of
the Objective Function Leading to Polynomial Complexity

T. Alamo, D. Muñoz de la Peña, D. Limon, and E. F. Camacho

Abstract—In this note, an efficient way of implementing a constrained
min–max predictive controller is presented. The new approachmodifies the
objective function in such a way that the resultingmin–max problem can be
solved in polynomial time. Different modifications are proposed. The main
contribution of the note is to provide a robust constrained min–max pre-
dictive controller that can be implemented in real time. The new controller
stabilizes the uncertain system.

Index Terms—Min–max, optimization algorithms, predictive control of
linear systems, robust control.

I. INTRODUCTION

Min–max robust receding horizon control was first proposed by
Witsenhausen [14]. In the context of robust model predictive control
(MPC), the problem was tackled by Campo and Morari [5]. In gen-
eral, solving a min–max problem subject to constraints and bounded
additive disturbances is computationally too demanding for practical
implementation. Some approaches to overcome this complexity can be
found in literature. Lee and Kouvaritakis proposed a linear program-
ming approach in [9]. In [10], the worst case value of the objective
function is bounded by means of a linear matrix inequality (LMI).
Langson et al. presented a feedback model predictive control that
maintains the trajectories in a tube [8]. Min–max MPC can also be
addressed by the use of multiparametric programming [3], [6], [13].
In this note, an efficient way of implementing a constrained quadratic

min–max predictive controller is presented. The new approach relies on
a slight modification of the objective function. This modification allows
us to solve the min–max problem in polynomial time. The proposed
controller inherits the stability and robustness of the standard min–max
controller.
The note is organized as follows. In Section II, themin–max problem

is stated. It is shown in Section III that there are instances in which
solving the maximization problem can be made in polynomial time.
Different modifications of the objective function are proposed in Sec-
tion IV. The stability of the proposed controller is addressed in Sec-
tion V. An illustrative example is presented in Section VI. The note
draws to a close with a section of conclusions.

II. MIN–MAX MPC WITH GLOBAL UNCERTAINTIES

Consider the discrete-time linear system with bounded uncertainties

xk+1 = Axk +Buk +Dwk (1)

where xk 2 IRn is the state, uk 2 IRn is the control input, andwk 2
W is the uncertainty that is assumed to be bounded by the hypercube
W = fw 2 IRn : kwk1 �g. The set of possible disturbance
sequences of length N will be denotedWN

WN = ffw0; w1; . . . ; wN�1g : wi 2W; i = 0; . . . ; N � 1g :
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It will be assumed that the control input is given by uk = Kxk+vk,
where K is chosen in order to achieve some desired property for the
unconstrained problem. In this way, some amount of feedback is pro-
vided to the predictions [7], [9]. The linearity of the system and the
prestabilization policy guarantee that the disturbance response of the
controlled system is bounded. Note that this prestabilization policy
uk = Kxk + vk is sub-optimal (when compared with theoretical
closed-loop min–max approaches).
The MPC controller will compute the sequence of correction control

signals along the control horizon fv0; . . . ; vN �1g. Defining AK =
(A + BK), the dynamics of the system can be rewritten as: xk+1 =
AKxk + Bvk + Dwk .
Given an initial condition x, a sequence of Nc correction control

inputs v = fv0; v1; . . . ; vN �1g, and a sequence of disturbancesw =
fw0; w1; . . . ; wN�1g 2 WN , the predicted state xj(x;v;w) is given
by

x; if j = 0

Akxj�1(x; v;w) +Bvj�1 +Dwj�1; if 1 j Nc

Akxj�1(x; v;w) +Dwj�1; if Nc < j N

(2)

and the predicted control input uj(x;v;w) by

Kxj(x;v;w) + vj ; if 0 j Nc � 1

Kxj(x;v;w); if Nc j N � 1
: (3)

The objective function VN (x;v;w) is

N�1

j=0

kxj(x;v;w)k2
Q
+ kuj(x;v;w)k2

R
+ kxN (x;v;w)k2

P

where kxkA =
p
xTAx. MatricesQ and P are positive definite andR

is positive semidefinite. Linear constraints in state and input, xk 2 X

and uk 2 U are considered. In order to achieve stability, a polytopic
terminal region constraint (xN(x;v;w) 2 
) is also considered [11].
In this way the min–max constrained predictive controller results in
the solution of the following min–max optimization problem [denoted
PN (x)]:

J
�
N(x) = min

v

max
w2W

VN (x;v;w)

s:t:

xj(x;v;w) 2 X; 8w 2WN ; j = 0; . . . ; N � 1

xN (x;v;w) 2 
 8w 2WN

uj(x;v;w) 2 U 8w 2WN ; j = 0; . . . ; N � 1:

This optimization problem is solved at each sample instant. An op-
timal vector of control correction signals v� is obtained and the control
input u0 = Kx + v�0 = KMPC(x) is applied.
Terminal region 
 � X is assumed to satisfy the following condi-

tions:

• C1) If x 2 
, then AKx +Dw 2 
, for every w 2W .
• C2) If x 2 
, then Kx 2 U .

Matrix P , that characterizes the terminal cost kxN(x;v;w)k2P , is as-
sumed to satisfy

• C3) P � ATKPAK > Q +KTRK .

The stability of AK = A + BK guarantees the existence of a posi-
tive–definite matrix P satisfying C3).
Observe that the predictions xj(x;v;w) and uj(x;v;w) depend

linearly on x, v and w. This means that it is possible to find a vector
d 2 IRp and matrices Gx, Gv and Gw such that the linear constraints
of problem PN (x) can be rewritten as

G
i
xx+G

i
vv +G

i
ww di; i = 1 . . . ; p 8w 2WN

where Gix, G
i
v , G

i
w denote the ith rows of Gx, Gv and Gw , respec-

tively, and di is the i-esime component of d 2 IRp. Denote now kGiwk1
the sum of the absolute values of row Giw . Taking into account that
maxw2W Giww = maxkwk �G

i
ww = �kGiwk1, the robust ful-

fillment of the constraints is satisfied if and only if: Gixx + Givv +
�kGiwk1 di, i = 1 . . . ; p.

III. TRACTABLE CASES OF THE MAX FUNCTION

The objective function VN (x;v;w) is a quadratic function of x, v
and w. That is, matrices Hx, Hv and Hw can be found in such a way
that

VN (x;v;w) = kHxx+Hvv +Hwwk22
=wT

Mw + q(x;v)Tw + VN (x;v; 0)

whereM = HT
wHw and q(x;v) = 2HT

w (Hxx + Hvv). Therefore,
the computation of the max function

V
�
N(x;v) = max

w2W
VN (x;v;w)

belongs to the following class of maximization problems:

�
� = max

kwk �
w
T ~Mw + q

T
w:

In principle, computing �� is an NP-hard problem. However, there
are some instances in which �� can be obtained in polynomial time.
The complexity of the computation can be dramatically reduced if ma-
trix ~M 2 IRn�n, where n = nwN , belongs to one of the following
categories.

1) ~M is a positive semidefinite band matrix:Matrix ~M is an
L-band matrix if ji � jj L, implies ~Mij = 0. It has
been recently shown (see [1]) that under the assumption of
band structure, the maximization problem can be solved in
polynomial time O(n22L).

2) All the elements of ~M are non-negative: In this case, it is
well known (see [2] and [12]) that the maximization problem
can be posed as a min cut graph problem. This graph problem
can be solved in polynomial time O(n3).

3) ~M is a negative–semidefinite matrix: In this case, �� =
�minkwk �(w

T (� ~M)w� qTw). It results that � ~M is
positive semidefinite. Therefore,�� can be computed solving
a quadratic convex problem. This can be accomplished in
polynomial time.

4) ~M is a positive–semidefinite diagonal matrix: In this case
�� = �2tr ~M + �kqk1, where tr ~M denotes the trace of
matrix ~M . The maximum is attained atw� = � � sign(q).

Note that for the considered tractable cases, not only the value of the
max function is obtained in polynomial time, but also the vertex at
which this maximum is attained. This means that a subgradient (with
respect to v) can also be obtained in polynomial time.

IV. MODIFICATION OF THE OBJECTIVE FUNCTION

In this section, a modification of the objective function that allows
us to solve the min–max problem in polynomial time while preserving
the stability and robustness properties of the standard approach is pre-
sented. The new objective function is an upper bound of the original one
and it will be denoted as ~VN (x;v;w). The proposed objective function
differs only in a quadratic term on w and a constant

~VN (x;v;w)=VN (x;v;w)+wT
Fw+c�2

=wT(M+F )w+q(x;v)Tw+VN(x;v; 0)+c�
2
:
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Note that with an appropriate choice of matrix F , it is always possible
to make ~M = M + F belong to any of the tractable cases of the max
function. The modified max function will be denoted as

~V �N (x;v) = max
w2W

~VN (x;v;w):

It is clear that ~VN (x;v;w) = VN (x;v;w)+wTFw+c�2 =kHxx+
Hvv+Hwwk

2

2+w
TFw+c�2 is a convex function in x and v. Since

the pointwise supremum of an arbitrary infinite set of convex functions
is convex [4], it follows that ~V �N(x;v) = maxkwk �

~VN (x;v;w) is
also convex in x and v. Choosing conveniently F and c, the following
assumption will be satisfied:

• C4) V �N(x;v) ~V �N(x;v) V �N(x;v) + ��2.

It will be shown how to compute F and c in such a way that C4 is
satisfied and � minimized. For this purpose, it is important to introduce
the following auxiliary lemmas.

Lemma 1: Let us suppose that T 0 is a diagonal matrix and that
0 F T and c = 0. Then, making � = tr T , C4) is satisfied.

Proof: FromF 0 it is inferred thatwTFw 0 and, therefore,
V �N(x;v) ~V �N(x;v). From F T and the diagonal nature of T , it
is inferred that wTFw w

TTw (tr T )�2. Thus, ~V �N(x;v)
V �N(x;v) + (tr T )�2.

Lemma 2: Let us suppose that T 0 is a diagonal matrix; 0
F �T and c = tr T . Then, making � = tr T , C4) is satisfied.

Proof: From the assumptions of the lemma, wTFw

�wTTw �(trT )�2. From this inequality and the fact that c = trT
it is inferred that wTFw + c�2 0. Thus V �N(x;v) ~V �N(x;v).
On the other hand, 0 F implies that wTFw � 0 and therefore
~V �N(x;v) V �N(x;v) + (tr T )�2.
Using previous lemmas, F and c will be chosen in such a way that

~M = M+F belongs to one of the categories for which the maximiza-
tion problem can be solved in polynomial time.

A. ~M = M + F is a Positive–Semidefinite Band Matrix

Obtain matrix F and the diagonal matrix T (of minimum trace) such
that 0 F T ,Mij + Fij = 0, 8ji � jj L. Then making c = 0
and � = tr T , ~M = M + F is a positive–definite L-band matrix.
Moreover, Lemma 1 guarantees that C4) holds.
The control input to the system uk = Kxk + vk is chosen in such a

way thatAK = A+BK is stable. This implies that the elementsMij

of matrixM vanish with the absolute value of ji�jj. Thus, the original
matrixM can be approximated by an L-band and, therefore, the value
of �, that measures the difference between V �N(x;v) and ~V �N(x;v),
decreases in an exponential way with the width of the band matrix.
Moreover, ifK is chosen in such a way that all the eigenvalues of AK
are at the origin (dead-beat control), thenAnK = 0. Under this control,
it is not difficult to show that matrix M has a band structure and no
approximation is required.

B. ~M = M + F has Non-Negative Elements

Note that there are systems for whichM has non negative elements
(see [2]). In this case, no approximation is required and F = 0, c =
� = 0. If M does have negative elements, obtain matrix F and the
diagonal matrix T (of minimum trace) such that 0 F T ,Mij +
Fij 0, 8i, 8j. Then making c = 0 and � = tr T it results that ~M =
M+F has nonnegative elements. Moreover, Lemma 1 guarantees that
C4) holds again.

C. ~M = M + F is a Negative–Semidefinite Matrix

Obtain matrix F and the diagonal matrix T (of minimum trace) such
that 0 F �T and M + F � 0. Then, making c = � = tr T ,

~M =M +F is a negative–semidefinite matrix. It follows that Lemma
2 guarantees that C4) holds.
This modification of the objective function is closely related toH1

control when F is chosen to be a diagonal matrix. Let us suppose that
F = ��I and thatM � �I < 0, then ~VN (x;v;w)� c�2 is equal to

kxN(x;v;w)k2
P
+

N�1

j=0

kxj(x;v;w)k2
Q

+ kuj(x;v;w)k2
R
� �w

T
j wj :

Thus, ~VN (x;v;w) � c�2 is a finite quadratic cost, strictly concave
inw, with the same structure as the objective functions encountered in
the literature of H1 control (see [11, Sec. 4.7]).

D. ~M = M + F is Positive Semidefinite and Diagonal

Obtain diagonal matrix S and the diagonal matrix T (of minimum
trace) such that 0 S �M T . Then, making F = S �M , c = 0
and � = tr T , ~M = M + F = S is a positive–semidefinite diagonal
matrix and Lemma 1 guarantees that C4) is satisfied.

V. PROPOSED MIN–MAX PREDICTED CONTROL: STABILITY

The new min–max problem (that will be denoted ~PN (x) ) is stated
as

~J�N(x) = min
v

~V �N(x;v)

s:t:

xj(x;v;w) 2 X; 8w 2WN ; j = 0; . . . ; N � 1

xN (x;v;w) 2 
; 8w 2WN

uj(x;v;w) 2 U; 8w 2WN ; j = 0; . . . ; N � 1

where ~V �N(x;v) denotes one of the approximations of the max function
proposed in the last section. Note that the feasibility region of ~PN (x)
equals the feasibility region of PN (x).
It is clear that the optimal solution ~v� of problem ~PN (x) is a subop-

timal feasible solution for problem PN (x). As it is claimed in the fol-
lowing property, the difference between the optimal value of the orig-
inal objective function and the value obtained with ~v�~v�~v� is bounded by
��2.

Property 1: Denote ~v� the optimal solution to problem ~PN (x). If
assumption C4C4C4 is satisfied, then

• V �N(x; ~v
�) J�N(x) V �N(x; ~v

�)� ��2;
• ~J�N(x) J�N(x) ~J�N(x)� ��2.

Proof: First claim: The first inequality stems directly from the
suboptimality of ~v�. Denote now v� the optimal solution to problem
PN (x), the second inequality is obtained from C4)

J
�
N(x) =V

�
N(x;v

�) ~V �N(x;v
�)� ��

2

~V �N(x; ~v
�)� ��

2
V
�
N(x; ~v

�)� ��
2
:

Second claim: Again, from C4)

~J�N(x) = ~V �N(x; ~v
�) V

�
N(x; ~v

�) V
�
N(x;v

�) = J
�
N(x):

J
�
N(x) =V

�
N(x;v

�) ~V �N(x;v
�)� ��

2

~V �N(x; ~v
�)� ��

2 = ~J�N(x)� ��
2
:

From a computational point of view, the main properties of the pro-
posed objective function ~V �N(x;v) are that it is convex in v and that
its evaluation for a given pair (x;v) can be made in polynomial time.
Moreover, given (x;v), a subgradient (with respect to v) can also be
obtained in polynomial time. This class of optimization problem can
be solved in polynomial time using standard convex algorithms [4].
Note also that all the LMI problems proposed in the previous section
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TABLE I
PERFORMANCE COMPARISON

are always feasible and solved offline. The following property, which
is proved in Appendix I, plays an important role when analyzing the
stability of the proposed controllers.

Property 2: Denote �(x; w) = kxk2P �kAKx+Dwk
2
P �x

T (Q+
KTRK)x+�2. If the system xk+1 = AKxk is asymptotically stable
then there exists a positive–definite matrix P and a positive scalar 
such that C3) is satisfied and �(x;w) 0, 8x 2 IRn , 8w 2W .
As it is stated in the following theorem (proved in Appendix II), the

new min–max controller guarantees that the uncertain system evolves
to a bounded set that contains the origin.

Theorem 1: Let us suppose the following.

1) Assumptions C1)–C4) are satisfied.
2) kxk2P �kAKx+Dwk2P � xT (Q+KTRK)x+ �2 � 0,

8x 2 IRn , 8w 2 W .
3) ~v� = f~v�0 ; ~v

�
1 ; . . . ; ~v

�
N �1g is the optimal solution to

problem ~PN (xk).
Then, the min–max controller ( ~KMPC(xk) = Kxk + ~v�0) guarantees
that the state is ultimately bounded and for every wk 2 W , xk+1 =
Axk + B ~KMPC(xk) +Dwk is such that

1) vs = f~v�1 ; ~v
�
2 ; . . . ; ~v

�
N �1; 0g is a feasible solution to prob-

lems PN (xk+1) and ~PN (xk+1);
2) J�N(xk)� J�N(xk+1) xTkQxk � ( + �)�2.

It is important to observe that  and � do not depend on the size of the
uncertainty.

VI. ILLUSTRATIVE EXAMPLE

Let us consider the linear uncertain system

xk+1 =
1 1

0 1
xk +

0

1
uk +

1

0
wk

where both the state and the control action are constrained, namely
kxkk1 5 and jukj 5. The uncertainty is bounded, kwkk �,
� = 1. The objective function is defined bymatricesQ = I andR = 1.
The control gain matrix K = [�0:4221 � 1:2439] corresponds to
an LQR control law. The terminal region 
 is chosen as the maximal
robust invariant set of the system for K . The terminal cost function is

defined by P =
4:0696 3:8641

3:8641 6:6199
.

As it is stated in Property 1, the difference between the optimum
value J�N(xk) and the one obtained with the optimal solution of the
modified problem is bounded by ��2. Table I shows the value of � for
the proposed controllers for a prediction horizon N = 15.
The values of J = 1

k=0
xTkQxk + uTkRuk obtained when the

different controllers are applied to the system are shown in Table I. For
the computation of these values, a vanishing disturbance was applied to
the system; the initial condition was x0 = [1 2:5]T and the prediction

Fig. 1. Computational burden comparison.

horizon N was equal to 15. As it can be observed in Table I, the value
of J corresponding to the nominal MPC is equal to 119.81, 10.45%
greater than the one corresponding to the original min–max problem.
Given xk , the nominal MPC is obtained minimizing, with respect v,
VN (xk;v; 0). The constraints of the nominal MPC problem are the
same as the ones of the original min–max problem.
Fig. 1 shows the computational burden comparison between the orig-

inal min–max problem and the modified approaches. These results are
given for the system and controller presented in this section, for dif-
ferent prediction horizons and over a hundred random samples. A log-
arithmic scale is used in the figure.

VII. CONCLUSION

A new formulation of the min–max predictive control is presented
in this note. The new controller is based on a modification of the objec-
tive function that allows us to compute the max function in polynomial
time. This makes possible the implementation of min–max predictive
control in real-time applications. It has been shown that the proposed
controller guarantees the robust satisfaction of the constraints and the
convergence to a bounded set that contains the origin.

APPENDIX I
PROOF OF PROPERTY 2

As xk+1 = AKxk is asymptotically stable, there exists a symmetric
matrix P > 0 such that C3C3C3 is satisfied. This implies that matrix S =
P�ATKPAK�Q�K

TRK is definite positive. Note that�(x;w) can
be rewritten as �(x;w) = xTSx � 2xTATKPDw � wTDTPDw +
�2. Since S is a positive–definite matrix, �(x;w) is a convex function
on x. It can be easily shown that the minimum of �(x;w) is attained at
x� = S�1ATKPDw. Thus, �(x;w) � �wTDT (PAKS

�1ATKP +
P )Dw+�2. Taking into account that the term on the right is a concave
function on w, it is concluded that �(x;w) � 0 if

�
2 max

w2vertfWg
w
T
D
T

PAkS
�1
A
T

k P + P Dw

where vertfWg denotes the vertices of W . Note that S is a posi-
tive–definite matrix. This implies that there is a finite value of  that
satisfies previous inequality. Dividing the last inequality by �2, the fol-
lowing equivalent inequality is obtained:

 max
#2vertfB g

#
T
D
T

PAkS
�1
A
T

k P + P D#
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where vertfBn
1 g denotes the vertices of the unit hypercube in IRn .

It can be shown by means of Schur’s complement that this inequality
is satisfied if and only if for every # 2 vertfBn

1 g

 � #TDTPD# #TDTPAk

ATk PD# P �ATk PAk �Q�KTRK
> 0: (4)

APPENDIX II
PROOF OF THEOREM 1

First Claim: Given ŵ = fŵ0; ŵ1; . . . ; ŵN�1g 2 WN and wk 2
W , denote

d(wk; ŵ) = fwk; ŵ0; ŵ1; . . . ; ŵN�2g 2WN :

With this notation, and taking into account (2) and (3), it results that
for all ŵ 2 WN and for all wk 2 W

xj(xk+1; vs; ŵ)=xj+1(xk; ~v
�
; d(wk; ŵ)); 0 j N�1 (5)

uj(xk+1;vs; ŵ)=uj+1(xk; ~v
�
; d(wk; ŵ)); 0 j N�2: (6)

As ~v�~v�~v� is a feasible solution for problem ~PN (xk) it results (from the
previous equalities) that for all ŵ 2 WN and for all wk 2 W :
xj(xk+1; vs; ŵ) 2 X , j = 0; . . . ; N � 1 and uj(xk+1;vs; ŵ) 2 U ,
j = 0; . . . ; N � 2.
Thus, it only remains to show that uN�1(xk+1;vs; ŵ) 2 U

and xN (xk+1;vs; ŵ) 2 
, 8ŵ 2 WN . From the previous
equalities and the feasibility of ~v� : xN�1(xk+1;vs; ŵ) =
xN (xk; ~v

�; d(wk; ŵ)) 2 
, 8ŵ 2 WN . Taking into account
the assumptions on 
, it is inferred that uN�1(xk+1;vs; ŵ) =
KxN�1(xk+1; ~v

�
s ; ŵ) 2 U , 8ŵ 2 WN and xN (xk+1; vs; ŵ) =

AKxN�1(xk+1;vs; ŵ)+DŵN�1 2 
, 8ŵ 2 WN .
Second Claim: From equalities (5) and (6), it is inferred that, for

every wk 2 W and for every ŵ = fŵ0; ŵ1; . . . ; ŵN�1g 2 WN ,
VN (xk+1; vs; ŵ) is equal to

N�1

j=1

kxj (xk; ~v
�
; d(wk; ŵ))k

2

Q
+ kuj (xk; ~v

�
; d(wk; ŵ))k

2

R

+ kxN�1(xk+1;vs; ŵ)k2
Q
+ kuN�1(xk+1;vs; ŵ)k2

R

+ kxN (xk+1;vs; ŵ)k2
P

= VN (xk; ~v
�
; d(wk; ŵ))� x

T
kQxk � u

T
kRuk

� kxN (xk; ~v
�
; d(wk; ŵ))k

2

P

+ kxN�1(xk+1;vs; ŵ)k2
Q
+ kuN�1(xk+1;vs; ŵ)k2

R

+ kxN (xk+1;vs; ŵ)k2
P
:

Taking into account that uN�1(xk+1;vs; ŵ) =
KxN�1(xk+1;vs; ŵ) and that xN (xk+1; vs; ŵ) =
AKxN�1(xk+1;vs; ŵ) + DŵN�1 it results that for every wk 2 W

and every ŵ 2 WN

VN (xk+1;vs; ŵ)� VN (xk; ~v
�
; d(wk; ŵ))

is equal to

kxN�1(xk+1;vs; ŵ)k2
Q+K RK

+ kAKxN�1(xk+1;vs; ŵ) +DŵN�1k
2

P

� x
T
kQxk � u

T
kRuk � kxN�1(xk+1;vs; ŵ)k2

P
:

Thus, from the second assumption of the theorem, 8wk 2 W , 8ŵ 2
WN

VN (xk+1;vs; ŵ)� VN (xk; ~v
�
; d(wk; ŵ)) �xTkQxk + �

2
:

From this inequality, it is inferred that V �N(xk+1;vs)�V
�

N(xk; ~v
�)

�xTkQxk+�
2, 8wk 2W . From the last inequality and the first claim

of property 1), it results that for all wk 2 W

J
�

N(xk+1) V
�

N(xk+1; vs) V
�

N(xk; ~v
�)� x

T
kQxk + �

2

J
�

N(xk)� x
T
kQxk + ( + �)�2:

Define �� = fx 2 IRn : PN (x) is feasible and xTQx ( + �)�2g.
Then, the system evolves into set 
� = fx 2 IRn : J�N(x) �(�)g
where �(�) = max

x2�
J�N(x) + ( + �)�2.
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