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SUMMARY

The problem of safety verification of a fuel cell (FC) system is addressed in this paper. The aim of safety
verification is to check whether the oxygen ratio can reach dangerous values or not. Assuming that the
compressor voltage is controlled by means of a feedforward control, two algorithms for safety verification
are formulated and applied to the PWA model of the FC. An improved behavior is obtained using an
adaptive predictive controller to determine the voltage to be applied to the compressor. An admissible
robust control invariant set for the PWA model of the system is computed. The control action of the
predictive controller is obtained in such a way that the state is always included in the safe region provided
by the admissible robust control invariant set. This guarantees that the proposed controller always provides
safe evolutions of the system. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, many research efforts have been directed to the study of hybrid systems [1–6].
These systems exhibit discrete and continuous dynamics simultaneously. The presence of the two
types of dynamics leads to the substantial inapplicability of both the classical systems theory and
the automata theory.

Many of the research efforts in hybrid systems have been motivated to verify the behavior of
safety-critical system components. The problem of safety verification is to verify whether some
non-safe regions can be reached or not by a given controlled hybrid system. Verification techniques
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are usually based on computation of the reachable set of a hybrid automaton representing the sys-
tem under study, or an approximation of that set. An alternative method employs the concepts
of abstraction and refinement for computing that approximated set; iteratively, a simplified hy-
brid model is generated (abstraction), an evolution violating the safety condition is searched and
eventually used for refining the abstraction. Important contributions to this research area are pre-
sented in [7–11]. Finally, some computational tools for model checking of hybrid systems must
be mentioned, such as Uppaal, Hytech and CheckMate.

In this paper, the problem of safety verification of a fuel cell (FC) plant is addressed. The
FC, located in the laboratory of the Departamento de Ingenieria de Sistemas y Automatica of
the University of Seville, generates electricity from the chemical reaction between oxygen and
hydrogen. The plant is composed of different sub-systems. In this safety verification problem, it is
assumed that the voltage of the compressor is given by the feedforward control presented in [12].
Under this assumption, a simple discrete-time PWA model of the plant is obtained. The obtained
model has a switching nature that depends on the slope of the current input. Two verification
algorithms are proposed for such class of PWA models.

In order to improve the behavior, an adaptive model predictive controller for the compressor
voltage is presented. The proposed controller relies on the use of an admissible robust control
invariant set. The computation of an admissible robust control invariant sets for hybrid systems
has been addressed in [4]. The computation of the maximal robust control invariant set for a PWA
system is in many situations computationally unaffordable. Using the particular characteristics
of the obtained PWA system, we are able to present an efficient algorithm for the computation
of an admissible robust control invariant set for the FC system. The presented adaptive model
predictive controller incorporates a constraint that forces the evolution to be confined in the
obtained admissible robust control invariant set. This guarantees that, in spite of the simplifications
assumed to obtain an implementable adaptive predictive controller, the evolution of the system
always remains within the safe region.

The paper is organized as follows. In the next section, a brief description of an FC is given.
In Section 3, the problem of safety verification for the FC is formulated and a PWA model
of the system is presented. In Section 4, two verification algorithms are applied to the PWA
model. Section 5 presents a synthesis-oriented model of the system. The computation of the
admissible robust control invariant set is detailed in Section 6. The adaptive predictive controller,
along with different numerical results are presented in Section 7. The paper concludes with
Section 8.

2. DESCRIPTION OF FUEL CELLS

An FC is a device that generates electricity from hydrogen and oxygen. This is achieved by
converting chemical energy of the fuel directly into electricity. An FC is a class of galvanic cell
based on oxidation–reduction reaction composed by three main parts:

1. Anode: where the electrons and ions are produced. The anode reaction is H2 → 2H+ + 2e−.
2. Cathode: where the ions and electrons are combined. The cathode reaction is 1

2O2 + 2H+ +
2e− →H2O.

3. Electrolyte: it is the electric insulator able to conduct ions. The electrolyte of the proposed
FC is a proton exchange membrane (PEM) made of a polymer (Nafion).
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The overall reaction is H2 + 1
2O2 →H2O + Electricity + Heat. See that the secondary products

are merely water and heat. The rate of the reaction is determined by the electricity consumption
of the external load. The elementary FC is assembled forming a membrane electrode assembly
(MEA) where the PEM is sandwiched between the anode, the cathode and the flow field plates.
The anode and cathode are made of carbon fiber paper and a platinum catalyst. An elementary FC
can provide 1.2V although the typical value is 0.6 V. In order to obtain a larger voltage, FCs are
stacked.

The FC system considered in this paper is a PEM FC, which operates with pure hydrogen and
air and an external humidifier. This provides up to 1200W of unregulated DC power at a nominal
output voltage of 26 V. The FC is now connected to a resistive load which can be manipulated
manually and will allow the simulation of different loads. The system is basically divided into
five parts: (1) The Cell stack: it is the part of the system where the electricity is produced. (2) The
electric load: simulates a real consumer of the produced electricity. (3) Air supply and humidity
exchanger: the FC is supplied by air with a required humidity. The air is filtered and accelerated by
a controlled compressor and humidified in an humidity exchanger. The necessary water is obtained
from the water product of the reaction. (4) Hydrogen storage and supply: the hydrogen pressure
and flow are regulated in the operating conditions. (5) Cooling system: the heat produced by the
generation of the electricity is refrigerated by a fan which moves air through the stack, controlling
the temperature of the plant.

Despite the efficiency of the cell stack being about 60%, the efficiency of the whole FC system is
typically 35% due to the external devices. A detailed dynamic model of the FC has been developed
by Arce and del Real using existing knowledge taken from the literature (see [13]). This model
has been validated on the real plant. A technical report illustrating such model can be found at
page http://www.esi2.us.es/∼bordons. A journal version of this technical report will be available
in the Journal of Power Sources [12].

3. HYBRID MODEL FOR THE VERIFICATION OF THE FUEL CELL

The oxygen ratio is a very important variable to consider when the model is analyzed in terms
of safety verification due to the oxygen starvation phenomenon. The system is said to be in the
starvation mode when the ratio between the oxygen input flow and the reacting one is less than 2.
When it occurs, the current oxygen flow cannot maintain the process and this can damage the
membrane and therefore destroy the FC. It is clear that the importance of monitoring the ratio to
guarantee the system never enters in a starvation mode. Hence, the safety condition is

�O2 = WO2,in

WO2,reacted
�2 (1)

where WO2,in is the oxygen input flow and WO2,reacted is the oxygen reacting in the cell.
The aim of safety verification analysis is to check that the current reference does not lead

to starvation or, alternatively, to formulate conditions over the reference signal to ensure that the
phenomenon does not take place. As detailed in the following sections, a discrete-time PWA model
obtained using the model derived in [12], can be used to efficiently address the safety verification
problem.
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3.1. Discrete-time PWA model of the fuel cell

Consider that, to prove safety, it is necessary to evaluate all the possible evolutions of the system
for a given set of initial conditions. The continuous-time complete model cannot be used for
verification purposes because of the following:

1. The complexity of the system: non-linearities and high-order dynamics.
2. The dynamical variables are strongly coupled.
3. Different time scales: the presence of different physics phenomena lead to very different

time constants.

In this section, a simplified discrete-time PWA model is presented. Obviously, that model has to
capture the main dynamical features of the original one. The current load Ist is initially considered
as the input and the oxygen ratio �O2 as the output. The temperature is considered constant; the
ambient temperature is fixed in 298 K and the FC one in 333 K. This assumption is practically
equivalent to impose the system in a normal operational state, that is, neither in the starting
nor in the stopping phase. Under this assumption, the effect of the variation of temperature is
negligible.

The employed sampling time is t = 0.2s, which is appropriate to capture the main dynamics of the
system and coincides with the sample time of a digital filter present in the air pump block. A low-
order model consisting of a four poles transfer function has been considered. The least square
criterion is employed to obtain the corresponding parameters. The admissible current load goes
from 10 to 40 A, since this is the range in which the model is valid.

Some simulations are executed applying steps as input, that is, varying instantaneously the
current load from a value to another. This kind of input signal has been used since we assume the
electrical loads to be able to switch suddenly from a constant value to another. Different discrete-
time linear models can be obtained for each different input steps. In this way, a PWA model in
which the regions are determined by the input is obtained.

The obtained responses showed that the system reacts immediately to an input variation, that
is, the system is not strictly proper. In Figure 1, the input and output signals are represented. It
can be seen that the input variation leads to a jump of the output to an unsafe value close to
1.5. This is due to the fact that electrochemical dynamics have little time constant compared with
the sampling time. Also, note that the oxygen ratio, after the transitory due to the step input,
recovers its initial value. This is due to the feedforward control implemented in the compressor of
the FC.

The transfer function to identify is parameterized as

y(k)=
[
c + b1z−1 + · · · + bmz−m

1 + a1z−1 + · · · + anz−n

]
u(k) (2)

where u ∈ R is the input, the current load, and y ∈ R denotes the deviation of the oxygen ratio
with respect to the steady value. Given a step input, the initial deviation from the steady value
is determined by the product of c and the size of the step. Therefore, it is concluded that the
different values of the constant c obtained at different operating conditions can be used to fully
characterize the input steps that lead to the violation of the safety restriction (1). However, this
analysis characterizes the starvation phenomenon only under step inputs. A much more evolved
analysis is required to address the verification problem under arbitrary inputs.
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Figure 1. Simulation with a step input.

In order to gain more insight into the nonlinear dynamics of the system, ramp signals were also
used for identifying the plant. Simulations lead to some conclusions:

1. The system steady-state output does not depend on the constant input, that is, if the input is
maintained constant, the oxygen ratio is �O2

∼= 2.2391. This is due to the feedforward control
implemented in the compressor, which drives the system to this steady state when the input
current reaches a constant value.

2. The system depends not linearly on the slope value of the current input. In other words, the
deviation of �O2 with respect to the steady-state value depends in a nonlinear way on the
rate of change of the input.

3. Surprisingly, the output depends only on the ratio between the variation of the current and
the current. That is, defining �Ist(k) = Ist(k) − Ist(k − 1), the output of the plant is basically
determined by

r(k) = �Ist(k)

Ist(k)
(3)

regardless on the particular values �Ist(k) and Ist(k).

From the aforementioned observations, it is concluded that an appropriate strategy to obtain a
PWA model of the system involves considering the ratio (3) as the excitation input and the oxygen
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(a)

(b)

Figure 2. Evaluation of the identified PWA models under random ratio input. The maximal error of the
PWA model with the integrator is about 30 times greater than the one of the PWA model identified without

imposing the presence of an integrator: (a) random ratio and input and (b) oxygen ratios y errors.
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ratio �O2, normalized around the steady-state value, as the output. The proposed PWA model is
the following:

y(k)=Gi (z)u(k) if u(k) ∈ Ri (4)

where the input is u(k) = r(k) and ni regions Ri , i = 1, . . . , ni are considered. Note that the
different regions are characterized only by the input r(k). For the identification, two different
models have been considered:

1. A 3 zeros–3 poles model with a discrete integrator:

y(k)= z−1

1 − z−1

bi0 + bi1z
−1 + bi2z

−2 + bi3z
−3

1 + ai1z
−1 + ai2z

−2 + ai3z
−3

u(k) (5)

2. A 4 zeros–4 poles model without imposing the presence of a discrete integrator:

y(k)= bi1z
−1 + bi2z

−2 + bi3z
−3 + bi4z

−4

1 + ai1z
−1 + ai2z

−2 + ai3z
−3 + ai4z

−4
u(k) (6)

The identification algorithm is applied computing a linear system for each ratio between −0.1
and 0.1 s−1 and variation of 0.01 s−1, that is, ri = −0.1,−0.09, . . . , 0.09, 0.1 s−1, i = 1, . . . , ni
with ni = 21. Two PWA systems, composed of a family of transfer functions, one for each ratio,
are obtained.

In Figure 2(a) and (b), the results of the identification are displayed. Figure 2(a) shows the input;
in the upper plot a random ratio input is represented, in the lower one the corresponding current
load is displayed. In Figure 2(b), the evolutions corresponding to the complex continuous-time
model [12] and the identified time-discrete PWA models are represented in the upper plot. In
the lower plot, the prediction errors corresponding to both PWA models are shown. The error is
greater than 0.06 for the model with an integrator. However, for the other model, the error never
reaches values greater than 0.002. The outputs of the continuous-time model and those of the PWA
discrete-time corresponding to the transfer function without integrator are practically equal.

4. SAFETY VERIFICATION USING THE PWA MODEL

The identification procedure illustrated in the previous section provides two discrete-time PWA
linear systems, good approximations of the continuous-time nonlinear one. In this section, the
PWA model is employed for evaluating if the system is safe. Moreover, since the PWA model
without the integrator provides a better approximation, this one is considered.

First, it is opportune to reformulate each PWA model in state-space representation. For
that purpose, it is necessary to define a state vector. We consider the state vector x(k)=
[y(k), y(k−1), y(k−2), y(k−3), u(k−1), u(k−2), u(k−3)]T. Dynamical system (6) can be re-
written as

x(k + 1)= Ai x(k) + Biu(k) if u(k) ∈ Ri (7)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2008; 22:142–160
DOI: 10.1002/acs



SAFETY VERIFICATION AND ADAPTIVE MODEL PREDICTIVE CONTROL 149

where

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ai1 −ai2 −ai3 −ai4 bi2 bi3 bi4

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bi = [bi1 0 0 0 1 0 0]T

(8)

for i = 1, . . . , ni . In the following, we will consider u(k) = r(k).
Due to the PWA nature of the model, each transfer function is considered valid for a neighbor-

hood of a nominal ratio ri . The considered nominal values are ri = −0.1,−0.09, . . . , 0.09, 0.1,
i = 1, . . . , ni , where ni = 21 is the number of different regions. The distance between them is
�r = 0.01. It is concluded that the PWA regions are

Ri ={r ∈ (−0.105, 0.105) : |r − ri |�0.5�r } (9)

for i = 1, . . . , ni . Note that it has been supposed that the ratio cannot exceed the value of 0.105
in magnitude. Clearly, if u(k) ∈ Ri then �r (k) = ri − u(k) satisfies |�r (k)|�0.5�r = 0.005.

Moreover, denote with w the additive uncertainty due to the difference between the complex
continuous-time model given in [12] and the identified PWA one, excited by the same input, that
is w(k) = �O2(k) − y(k). Various simulations have confirmed that the error can be considered
bounded, that is |w(k)|��w = 0.002.

Hence, the following PWA model will be considered for validation purposes:

x(k + 1) = Ai x(k) + Biri + Bi�r (k) + Ew(k) if r(k) = ri + �r (k) ∈ Ri (10)

where E = [1 0 0 0 0 0 0]T, |w(k)|�0.002 and i = 1, . . . , ni .
Suppose, without loss of generality, that the input and the output are bounded in two polyhedral

sets: y(k)∈ Y ={y ∈ R : 1�y�3}, u(k) ∈U ={u ∈ R : −0.105�u�0.105}. Such bounds do not
exclude any interesting state. These bounds on the values of y(k) and u(k) imply that the state space
x(k) is assumed to belong to a bounded polyhedron X ⊂ R7, which can be easily obtained from Y
and U . Moreover, the safety condition can be expressed in the polyhedral form, that is, the state x
is said to satisfy the safety condition if it belongs to the polyhedron S = {x ∈ R7 : Hsx�Ks}⊆ X .

In this section, we show that the particular structure adopted for the PWA model of the system
allows us to propose two algorithms for checking whether the system is safe or not. In particular,
the fact that the PWA region active at each instant depends only on the input and not on the state,
strongly simplifies the verification analysis. This is illustrated in the following sections.

An instrumental proposition is introduced before further analysis.

Proposition 1
Consider PWA system (10) and a polyhedral set P ={x ∈ R7 : Hx�K }. The set of states mapped
inside the set P by means of the i th PWA model, regardless of the input r(k) ∈ Ri and the
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admissible uncertainty w ∈W , is equal to

Q ={x ∈ R7 : HAi x�K − HBiri − 0.5|HBi�r | − |HE�w|} (11)

where |HBi�r | and |HE�w| are the vectors whose entries are the absolute values of the elements
of HBi�r and HE�w, respectively.

Proof
In order to prove the result, the following equality should be proved:

Q ={x ∈ R7 : H(Ai x + Bir + Ew)�K ,∀r ∈ Ri , ∀w ∈W }
Denoting with Hk the kth row of matrix H , with Kk the kth element of vector K and with nk the
number of rows of H and K , it follows

Q = {x ∈ R7 : H(Ai x + Bir + Ew)�K , ∀r ∈ Ri , ∀w ∈W }

=
{
x ∈ R7 : max

r∈Ri ,w∈W{Hk(Ai x + Bir + Ew)}�Kk, ∀k = 1, . . . , nk

}

=
{
x ∈ R7 : Hk Ai x + max

r∈Ri ,w∈W {Hk(Bir + Ew)}�Kk, ∀k = 1, . . . , nk

}

=
{
x ∈ R7 : Hk Ai x + max

r∈Ri
{HkBir} + max

w∈W {HkEw}�Kk, ∀k = 1, . . . , nk

}
(12)

Noting that

max
r∈Ri

{HkBir} = HkBiri + 0.5|HkBi�r | ∀k = 1, . . . , nk

max
w∈W {HkEw}= |HkE�w| ∀k = 1, . . . , nk

we obtain Q ={x ∈ R7 : H Ai x + HBiri + 0.5|HBi�r | + |HE�w|�K }. �

Consider the i th linear model and suppose that the input does not exit from the i th region, that
is, r(k) ∈ Ri or equivalently r(k) = ri + �r (k), with |�r (k)|�0.5�r , for every k�0. Denote Sij the
set of initial states x(0) such that the trajectories generated by the i th linear model remain inside
the safe region during at least the first j samples, regardless of the uncertainty w(k) ∈W and the
ratio r(k) ∈ Ri , for all k = 0, . . . , j . Note that, by definition Si0 = S. Suppose that the set Sij is a

polyhedron, that is, it can be expressed as Sij ={x ∈ Rn : Hi
j x�Ki

j }. Then, the set Sij+1 is given by

Sij+1 = {x ∈ S : Hi
j (Ai x + Bir + Ew)�Ki

j , ∀r ∈ Ri , ∀w ∈W } (13)

for all i = 1, . . . , ni . This implies that the sequence Sij , for j�0, can be computed iteratively. It is

clear that Sij+1 ⊆ Sij and that the sequence converges to a set S
i∞. That is, lim j→∞ Sij = Si∞, which

is the desired safe set (assuming that the input r belongs always to Ri ). The following proposition
provides a way for computing the set Sij+1 given Sij .
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Proposition 2
Consider the set Sij+1 defined in (13). Define

T i
j+1 = S ∩ {x ∈ R7 : H̃ i

j+1x�K̃ i
j+1}

where H̃ i
j+1 = Hi

j Ai and K̃ i
j+1 = Ki

j − Hi
j Biri −0.5|Hi

j Bi�r |− |Hi
j E�w|. Note that |Hi

j Bi�r | and
|Hi

j E�w| denote the vectors whose entries are the absolute values of the elements of Hi
j Bi�r and

Hi
j E�w, respectively. Then T i

j+1 = Sij+1.

Proof
The proof stems directly from Equation (13) and Proposition 1:

Sij+1 = S ∩ {x ∈ R7 : Hi
j (Ai x + Bir + Ew)�Ki

j , ∀r ∈ Ri , ∀w ∈W }
= S ∩ {x ∈ R7 : Hi

j Ai x�Ki
j − Hi

j Biri − 0.5|Hi
j Bi�r | − |Hi

j E�w|} = T i
j+1 �

Note that by construction, if Sij is a polyhedral set then Sij+1 is polyhedral. Hence, from this

and the fact that by definition Si0 = S is polyhedral, it follows that every set Sij is polyhedral. This
result can be employed to design two algorithms to determine the set of initial conditions that
guarantee a safe evolution of the plant. These two algorithms for the safety verification of the
PWA model are detailed in the following.

1. The first algorithm provides a necessary condition for safety. It is based on the following idea:
consider individually each linear model and, for each of them, suppose that the system remains in
the related region. This is equivalent to impose that the ratio remains always in a unique region Ri .
Then, under this assumption, the possible trajectories are a subset of the admissible ones. Hence,
if one or more linear systems yield unsafety, the whole PWA system is unsafe. The benefit of this
algorithm is that it has a low computational burden when compared with the second one which
can be avoided if the system results unsafe.

Then, for each region Ri , for i=1, . . . , ni , apply

Algorithm 1

(a) Given the admissible region S = {x ∈ R7 : Hsx�Ks}, set Hi
0 = Hs and Ki

0 = Ks . Make
T i
0 = S and j = 1.

(b) T i
j = S ∩ {x ∈ R7 : H̃ i

j x�K̃ i
j }, where

H̃ i
j = Hi

j−1Ai , K̃ i
j = Ki

j−1 − Hi
j−1Biri − 0.5|Hi

j−1Bi�r | − |Hi
j−1E�w|

(c) Obtain a non-redundant set of linear constraints Hi
j x�Ki

j such that the obtained set T i
j is

rewritten as T i
j ={x ∈ R7 : Hi

j x�Ki
j }.

(d) If T i
j = T i

j−1, or T
i
j is empty then stop. Else, set j = j + 1 and return to step b.

At the end of the procedure, if the set is empty then there exists at least an unsafe trajectory
and the system is unsafe. By construction, and from Proposition 2, which states that T i

j = Sij , the

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2008; 22:142–160
DOI: 10.1002/acs



152 M. FIACCHINI ET AL.

set T i
j is the set of initial conditions x(0) such that the first j steps of the trajectories generated

by the i th model, x(k), for k = 0, . . . , j , are contained in the safe region S, regardless of the
uncertainty and for all the possible ratios belonging to the i th region, r(k) ∈ Ri , k = 0, . . . , j . This
means that, if T i

j is empty at the end of the algorithm, no safe initial condition can be maintained
indefinitely inside the safe region or, equivalently, that for all the initial condition x(0)∈ S there
is an input sequence r(k) ∈ Ri and an uncertainty sequence w(k) ∈W , k = 0, . . . , j , such that the
considered initial condition evolves in the unsafe region. Note that repeating the algorithm for all
i = 1, . . . , ni imply to consider only the set of input sequences that do not switch from a region
to another, which is a subset of all the admissible input sequences. Hence, an unsafe trajectory for
the restricted analysis, in which no switchings between regions is allowed, is admissible also for
the PWA model. This proves that if the algorithm terminates with an empty set then the system is
unsafe.

However, in order to guarantee safety with respect to the considered uncertain PWA model, the
following algorithm is required.

2. In the second algorithm, all the possible trajectories of the system are considered. Therefore,
the complexity is higher. However, it determines in an exact way the initial conditions that lead
to safe trajectories regardless of the uncertainty and the input.

Algorithm 2

(a) Given the admissible region S = {x ∈ R7 : Hsx�Ks}, set H0 = Hs and K0 = Ks . Make
T0 = S and j = 1.

(b) Tj = S ∩ {x ∈ R7 : H̃ j x�K̃ j } where

H̃ j =

⎡
⎢⎢⎢⎢⎣

Hj−1A1

Hj−1A2

. . .

Hj−1Ani

⎤
⎥⎥⎥⎥⎦ , K̃ j =

⎡
⎢⎢⎢⎢⎣

K j−1 − Hj−1B1r1 − 0.5|Hj−1B1�r | − |Hj−1E�w|
K j−1 − Hj−1B2r2 − 0.5|Hj−1B2�r | − |Hj−1E�w|

. . .

K j−1 − Hj−1Bni rni − 0.5|Hj−1Bni �r | − |Hj−1E�w|

⎤
⎥⎥⎥⎥⎦

(c) Obtain a non-redundant set of linear constraints Hj x�K j such that the obtained set Tj is
rewritten as T i

j ={x ∈ R7 : Hj x�K j }.
(d) If Tj = Tj−1, or Tj is empty then stop. Else, set j = j + 1 and return to step b.

As it is justified below, if the algorithm stops with an empty set Tj then the set of initial conditions
yielding safe trajectories is empty. On the other hand, if the algorithm finishes providing a non-
empty set Tj , then this set equals the set of initial conditions that correspond to a safe operation
regardless of the uncertainty w(k) and the input r(k).

Consider the polyhedral set Tj−1 and denote nrj−1 the number of rows of matrices Hj−1 and
K j−1. Hence, matrices Hj and K j defined in step b of Algorithm 2 have ni ·nrj−1 rows. Following
the same lines as for Algorithm 1 (see Proposition 2), it is concluded that the first nrj−1 rows
of Hj and K j determine the set of states which are mapped inside Tj−1 by every r(k) ∈ R1 and
every w ∈W , the rows from nrj−1 + 1 to 2nrj−1 determine the set of points mapped inside Tj−1

for every r(k) ∈ R2 and every w ∈W , and so on and so forth. Hence, Hj , K j determine the subset
of S that is mapped inside Tj−1 regardless of r(k) and w ∈W . From this and T0 = S, it can be
proved that the set Tj is the set of initial conditions such that all the trajectories generated by the
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PWA model remain inside the safe region at least for the next j steps regardless of the input r(k)
and the uncertainty w(k).

4.1. Safety verification of the fuel cell: results

Executing the first algorithm for the FC PWA model, the result is that some inputs yield to
unsafety. In particular if ri = 0.1, 0.09, 0.08 then the output can reach the threshold of 2. Note
that the result agrees with the simulation; from Figure 2(a) and (b), and from other simulations
not shown here, it is concluded that if the ratio is maintained at values close to 0.09 or larger,
then the oxygen ratio decreases to values lower than 2. It is concluded that if the ratio is greater
than or equal to 0.08, then the process is not at a safe operation. This means that in order
to avoid the starvation, ratio inputs greater than 0.08 should be avoided. In order to check if
the system operates in a safe way for ratios smaller than 0.08, the regions corresponding to
ratios greater than or equal to 0.08 are not considered when running the second algorithm. Once
eliminated the unsafe inputs 0.08, 0.09 and 0.1, the second algorithm terminates with a non-
empty set, which corresponds to the set of initial conditions that correspond to a safe operation
of the plant (provided that the input ratio does not enter into the regions corresponding to ratios
0.08, 0.09 and 0.1).

5. A SYNTHESIS-ORIENTED MODEL

In the FC system, the control of the air compressor is a crucial task as it is responsible for a safe
operation of the system. In previous sections, we assume that the control of the air compressor is
the feedforward control law, as detailed in [12]. This control maintains the output �O2 at a safe
value for constant currents. As the variations on the compressor voltage have an important effect on
the dynamics of �O2, this voltage will be considered as the control input for the system. The idea
is to obtain, by means of an adaptive predictive controller, a control correction signal that added
to the original feedforward control improves the performance of the system while guaranteeing
that the unsafe transients are avoided. This adaptive strategy provides better results than the ones
obtained with the original feedforward control, regulating the output to the desired stable value
and guaranteeing that the safe constraints are fulfilled.

In the model described in the previous sections, the controller for the air compressor is the
aforementioned feedforward law. In order to control the air compressor, a new model of the
system is required. This new model should describe the evolution of �O2 as a PWA model. In this
section, we present a synthesis-oriented PWA model consisting of two inputs: the current load (or
its ratio) and the variations of compressor voltage. The ratio r(k) will be considered as an external
signal defining the system dynamics, that is, the active linear model of the PWA at each instant.
That signal will be used in the adaptive model predictive control for selecting the linear model to
employ for computing the prediction. The predictive controller provides a correction signal that
is added to the feedforward law. The main objective is to compute the correction signal in such a
way that it robustly avoids the unsafe starvation region.

For this aim and knowing that the dynamics of the system depend on the ratio r(k), the synthesis-
oriented PWA model has been identified applying two pseudorandom binary signal (PRBS): the
first on the current ratio, around the nominal value ri , and the second as voltage variation added
to the compressor voltage.
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In other words, for each nominal ratio ri ∈ {−0.1, −0.09, . . . , 0.09, 0.1}, the ratio excitation is

r(k) = ri + rPRBS(k) (14)

where rPRBS(k) = {+ �r
2 , − �r

2 } is the value of the PRBS.
The other excitation signal is the variation of the compressor voltage:

vcmp(k) = vFF(Ist(k)) + vc(k) (15)

where the nominal voltage vFF(Ist(k)) is the one provided by the feedforward control and it depends
only on the current, vc(k) ={−1,+1} is the added PRBS signal and the compressor voltage vcmp(k)
is given by their sum.

Moreover, the system is initially at the equilibrium given by vcmp(k) = vFF(Ist(k)) and the
constant current Ist(k) = Ist. The output considered for identification is the value y(k)= �O2 −
2.2391 and it has been employed to identify the linear model valid around the nominal ratio ri .
The least squares criterion has been applied jointly with the four-pole model:

y(k) = bi1z
−1 + bi2z

−2

1 + ai1z
−1 + ai2z

−2 + ai3z
−3 + ai4z

−4
r(k)

+ ci1z
−1 + ci2z

−2

1 + ai1z
−1 + ai2z

−2 + ai3z
−3 + ai4z

−4
vc(k) (16)

for i = 1, . . . , ni . Note that the model is given by the sum of two transfer functions whose four poles
are the same. This structure provides good identification results and is very useful for computing
a robust control invariant set due to its simplicity.

The model can be rewritten in the form of regressor function, that is,

y(k)= �(k)T�i (17)

for i = 1, . . . , ni and where �(k) is the regressor composed of the last values of output and inputs
and the parameter vector is �i =[−ai1,−ai2, −ai3, −ai4, b

i
1, b

i
2, c

i
1, c

i
2]T. It is easy to compute the

parameter vector �i solution of the least squares problem.
Then, for each admissible nominal ratio, a linear model is computed. As a further level of

simplification, we consider a PWA model composed of ni = 9 linear models, that is, the related to
ri ∈ {−0.1,−0.075, 0.05, . . . , 0.075, 0.1}, with ni = 9 number of regions. Hence, the active linear
model is the i th if r(k) = ri +�r (k), with |�r (k)|�0.5�r , where �r = 0.025 and i = 1, . . . , ni . The
choice of a lower number of regions, ni = 9 in spite of the 21 employed for the safety verification
PWA model, relies on practical reasons. Indeed, the computation of the robust control invariant set,
presented in the following, generates a sequence of polyhedra whose complexity grows with the
number of regions. Hence, we decided to reduce the number of regions at the expense of greater
uncertainties affecting the precision of the model. The number of regions ni = 9 represented a
good trade-off between the complexity of the generated sets and the precision of the model needed
to obtain an appropriate non-empty control invariant set.
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6. ROBUST CONTROL INVARIANT SET

The first step to design the adaptive model predictive controller is to find an admissible robust
control invariant set for the PWA model. This requires the computation of a region of the state
space in which there exists an admissible input such that the next state is contained in that set,
regardless of the uncertainty and the active linear model. First, the PWA model (16) is formulated
in state-space form. Define the state-space PWA model as

x(k + 1) = Ai x(k) + BR
i r(k) + BVc

i vc(k) + Ew(k) if r(k) ∈ Ri (18)

where

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ai1 −ai2 −ai3 −ai4 bi2 ci2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, BR
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bi1

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, BVc
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci1

0

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

for i = 1, . . . , ni . The state, normalized around the steady-state value of 2.2391, is x(k)=
[�O2(k)−2.2391, �O2(k−1)−2.2391, �O2(k−2)−2.2391, �O2(k−3)−2.2391, r(k−1), vc(k−1)]T.
The active model of the PWA model is determined by the current value of the ratio r(k): the i th
model is valid at time k if r(k) ∈ Ri . As the value of r(k) is accessible, at each instant it is possible
to know which of the nine linear models determines the dynamics of the system.

The additive uncertainty w(k) represents the error due to the difference between the PWA
model and the nonlinear model presented in [12]. As it has been checked by a sufficient large
number of simulations, this uncertainty never reaches amplitudes greater than 0.015. Thus, the
constraint w(k) ∈W ={w(k)∈ R : |w(k)|��w = 0.02} provides an appropriate conservative bound.
The control input is bounded too: vc(k) ∈ V ={v(k) ∈ R : |vc(k)|�10}.

The safety condition, namely �O2�2, bounds the admissible region of the state space. The
admissible region for the first four states, which are the past values of �O2 − 2.2391, is given by

2 − 2.2391�x j (k)�3 − 2.2391, j = 1, . . . , 4 (20)

where the upper bound is a trivial bound never reached by �O2 (�O2 never reaches values higher
than 3). This bound has been added to avoid eventual computational problems related to managing
unbounded polyhedra. The fifth state is the past value of the ratio. As we restrict to ratios included
between −0.1 − 0.5�r and 0.1 + 0.5�r , it results that x5 must satisfy

−0.1125�x5(k)�0.1125 (21)

The sixth state, which is the past compressor voltage, has to fulfill

−10�x6(k)�10 (22)

These linear inequalities define a safe polyhedron of the state space which can be expressed as
X ={x ∈ R6 : Mx�N } ⊆ R6.
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Define the set Ck as the set of states x for which there is an adaptive robust control policy that
guarantees that the sequence x(0), x(1), . . . , x(k) belongs to the admissible set X regardless of
the uncertainty and the ratio input. It is clear that Ck ⊆Ck−1, ∀k. Moreover, standard arguments
for invariant set allows one to affirm that the set

lim
k→∞ Ck =C∞

constitutes an admissible robust control invariant set.
Define, as an extended state, the vector composed by the state x and the input vc, that is:

xe(k) =[x(k)T, vc(k)T]T ∈ R7. Given the polyhedral representation of Ck in the state-space R6,
Ck ={x ∈ R6 : Mkx�Nk}, the set Ck+1 is given by

Ck+1 =
ni⋂
i=1

Projx (P
i
k+1) (23)

where

Pi
k+1 ={xe ∈ X × V : Mk(Ai x + BVc

i vc + BR
i r + Ew)�Nk, ∀r ∈ Ri , ∀w ∈W } (24)

and Projx (P
i
k+1) indicates the projection of the set Pi

k+1 ⊆ R7 on the subspace R6 related to
state x .

Note that Pi
k+1 is the set of xe =[xT, vTc ]T such that the state x is mapped inside Ck , by means

of the control action vc, when the model is the i th and regardless of the admissible values of r
and w. Then, projecting Pi

k+1 on the subspace of x , the result is the set of states for which there
exists at least an admissible value of vc such that the successor state is mapped inside Ck for all
r ∈ Ri and w ∈W . Hence, the intersection of the projections provides the set of states that can be
maintained in the safe region k + 1 steps. Note that the previous statement relies on the fact that
the value of r(k) is assumed to be measurable.

The following proposition provides a way for computing Pi
k+1 given Ck . This, and Equation (23)

allows one to compute Ck+1.

Proposition 3
Consider the set Pi

k+1 defined in (24). For any i = 1, . . . , ni , define

Fi
k+1 = {xe ∈ X × V : Mk Ai x + MkB

Vc
i vc�Nk − MkB

R
i ri − 0.5|MkB

R
i �r | − |MkE�w|} (25)

where |MkBR
i �r | indicates the vector whose entries are the absolute values of the elements of

MkBR
i �r . The same for |MkE�w|. Then Pi

k+1 = Fi
k+1.

Proof
The result stems directly from the definition of Pi

k+1 and Proposition 1:

Pi
k+1 = (X × V ) ∩ {xe ∈ R7 : Mk(Ai x + BVc

i vc + BR
i r + Ew)�Nk, ∀r ∈ Ri , ∀w ∈W }

= (X × V ) ∩ {xe ∈ R7 : Mk(Ai x + BVc
i vc) + MkB

R
i ri + 0.5|MkB

R
i �r | + |MkE�w|�Nk}

= Fi
k+1 �
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The following algorithm provides a way to compute an admissible robust control invariant set.

Algorithm 3

1. Set the initial region C0 = X ={x ∈ R6 : M0x�N0} and j = 0.
2. For each region Ri , for i = 1, . . . , ni , define

Fi
j+1 ={xe ∈C0 × V : Mj Ai x + Mj B

Vc
i vc�N j − Mj B

R
i ri − 0.5|Mj B

R
i �r | − |Mj E�w|}

3. Compute

C j+1 =
ni⋂
i=1

Projx (F
i
j+1)

4. Obtain a non-redundant set of linear constraints Mj+1x�N j+1 such that C j+1 ={x ∈ R6 :
Mj+1x�N j+1}.

5. If C j+1 =C j , or C j is empty then stop. Else, set j = j + 1 and return to step 2.

The algorithm has been applied to the PWA model of the FC and it converged after 19 iterations
to a non-empty polyhedron Ĉ ={x ∈ X : M̂x�N̂ }. This polyhedron represents a robust control
invariant set for the uncertain PWA system that can be used to implement the adaptive model
predictive control proposed in the following section.

7. ADAPTIVE MODEL PREDICTIVE CONTROL

The admissible robust control invariant set Ĉ is used to guarantee that the proposed controller
provides a safe operation of the FC. Every control strategy forcing the state x(k) to remain inside
the admissible robust control invariant set ensures that the system remains in the safe region.
We employ an adaptive model predictive control strategy which minimizes a quadratic cost and
guarantees that the state remains in the safe region. The model used for the prediction depends on
the current ratio.

PWA model (18) has been used for designing the model predictive control. The inputs of the
controller are the measurement of �O2(k) and of the current Ist(k). At each instant the ratio r(k)
is computed from the current input:

r(k) = Ist(k) − Ist(k − 1)

Ist(k)
(26)

and the state x(k) of PWA model (18) is updated.
The active linear model is given by the value of r(k) as previously described. Moreover, we

assume that the ratio is maintained constant at N steps, where N is the control (and prediction)
horizon. Note, however, that, if in the prediction the current reaches the extremal values of 9 V
or 41 V, then the ratio is set to zero for the rest of the prediction horizon. The original nonlinear
system is valid for a range of current between 9 and 41 A, then we used an opportune saturation
(ratio equal to zero) when these extreme values are attained. Thus, in the case that the predicted
current reaches the saturated region, the considered ratio is r(k + j) = 0 and the related system is
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employed. Hence, the ratio in the prediction horizon is

r(k + j) =
{
r(k) if Ist(k + j) ∈ [9, 41]
0 otherwise

(27)

and Ist(k + j) is computed from Ist(k) and using Equation (26).
Through a set of linear constraints, we imposed that the first predicted state belongs to the

admissible robust control invariant set Ĉ despite the uncertainties. This guarantees that the evolution
of the system always remains in Ĉ . An additional set of constraints imposes that the predicted
nominal state does not violate the safety condition (�O2>2).

The proposed model predictive control is the following:

min
vc(k),...,vc(k+N−1)

{
N−1∑
j=0

(x(k + j |k)TQMPCx(k + j |k) + vc(k + j)TRMPCvc(k + j))

+ x(k + N |k)TPMPCx(k + N |k)
}

s.t. x(k|k)= x(k)

x(k + j + 1|k)= Ai x(k + j |k) + BR
i r(k + j) + BVc

i vc(k + j)

if r(k + j)∈ Ri , j = 0, . . . , N − 1

M̂(Ai x(k) + BR
i r(k) + BVc

i vc(k)) + |M̂ E�w|�N̂ if r(k) ∈ Ri

x1(k + j |k)�(2 − 2.2391), j = 1, . . . , N

(28)

The prediction horizon has been fixed to N = 8, for practical reasons. In fact, we tested the
adaptive MPC for different values of N , and we found that beyond this value, the MPC control
does not provide substantial improvement with respect to horizon 8. The cost is quadratic in
the predicted state x(k + j |k) and in the control input vc(k + j), j = 1, . . . , N . The considered
output is y(k)=Cx(k)= [1, 0, 0, 0, 0, 0]x(k)= �O2(k) − 2.2391 and the weighting matrices are
QMPC = 10 CTC and RMPC = 0.1.
Note that the optimization problem which has to be solved at each sampling time is a quadratic

programming problem. The sequence of predicted ratios, defined in Equations (26) and (27), is
used for computing the state and the set of constraints, depending on the ratios as well as the
initial state x(k) and the initial voltage vc(k).

Note that, in practice, the ratio is not indefinitely maintained at a non-zero value. As a matter
of fact, in normal operation, the ratio will be close to zero. Only during the transitory due to a
change from a current load to another, the ratio will take values different from zero. Hence, we
consider the system corresponding to ratio zero for computing the matrix PMPC. The final cost
matrix PMPC is the one corresponding to the LQR obtained using the same weighting matrices.

The employment of different linear models depending on the current ratio provides the adaptive
nature to the control strategy. This, jointly with the safety constraint x(k + 1)∈ Ĉ , allows one to
ensure safeness avoiding the use of more conservative strategies, such as the min–max predictive
controller.
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Figure 3. Evolution with MPC and a random varying r(k).

In Figure 3, it is shown the result of the application of the MPC to the nonlinear system. The
ratio r(k) is constant during each interval of 5 s and it takes random values. The current Ist reaches
a wide range of admissible values. The control action is smooth and it has an amplitude smaller
than 2V. Note that the value of �O2 never reaches the unsafe values, not even between 5 and 10 s,
when the ratio is maintained at a value which would have caused unsafety in the absence of the
proposed adaptive control strategy.

8. CONCLUSIONS

In this paper, the problem of safety verification of an FC plant has been addressed. The safety
verification for the FC consists in checking whether the oxygen ratio reaches values lower than
2 or not, under variation of the current load. A simple discrete-time model in the PWA form has
been obtained. Specific algorithms to check the safe operation of the plant have been provided. An
adaptive model predictive controller has been proposed. Such a controller relies on the computation
of an admissible robust control invariant set. The controller forces the system to remain in a safe set.
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