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Abstract

This paper presents a guaranteed method for the parameter estimation of nonlinear models in a bounded-error context. This method is based
on functions which consists of the difference of two convex functions, called DC functions. The method considers DC representations of
the functional form of the dynamic system to obtain an outer bound of the set of parameters that are consistent with the measurements, the
system and the considered bounded error. At each iteration, the proposed algorithm solves several convex optimization problems to discard
from the initial search region subregions that are proved not consistent. This operation is repeated while the obtained solution is improved.
Four examples are provided to clarify the proposed identification algorithm.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

System identification is an active research area and sev-
eral identification techniques have been developed in recent
years. These techniques consider different ways to de-
scribe the uncertainty. The stochastic approach (Ljung, 1999;
(Walter & Pronzato, 1997) assumes a probabilistic description
of the uncertainty. An alternative possibility is to consider
an unknown but bounded uncertainty, that is assumed by the
set-membership identification approach. This paper considers
an additive bounded error in the measurements and a paramet-
ric model. The set of parameters that is compatible with the
model structure, obtained measurements and the considered
uncertainty is named feasible solution set (FSS). The aim of
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set-membership identification methods is to obtain these feasi-
ble solution sets.

A polytope that can be computed exactly is obtained when
the set-membership approach is applied to a model affine in the
parameters. In this case, an algorithm that provides the facets
of the solution set is presented in Broman and Shensa (1988).
Alternatively, the FSS is represented by its vertices in Mo and
Norton (1988). In Walter and Piet-Lahanier (1989), a polyhedric
cone is used to represent the FSS. This representation can be
used when the initial set of parameters is not bounded.

The complexity of the representation of the exact feasible
solution set and the associated computational burden are the
main drawbacks of the exact methods. Approximate feasible
solution sets (AFSS) that bound the corresponding FSS are
used to reduce these limitations. Boxes (Goffin & Vial, 1990;
Milanese & Belforte, 1982), ellipsoids (Belforte, Bona, &
Cerone, n.d.; Fogel & Huang, 1982), parallelotopes (Vicino &
Zappa, 1996) and limited-complexity polyhedrons (Belforte
& Tay, 1990; Piet-Lahanier & Walter, 1993) are used to repre-
sent the AFSS when a time-invariant parametric linear system
is considered. The time-varying parameters case is treated in
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Bravo, Alamo, and Camacho (2006) where zonotopes are con-
sidered to capture the variable nature of the parameters.

When the model of the system is not expressed as an affine
function of the set of parameters, the complexity of the iden-
tification problem can be very high. In Hanebeck (2001), an
equivalent representation in a higher dimensional space is used
to represent the AFSS with a pseudo ellipsoid. If the model is
polynomial in the parameters of the system, signomial program-
ming can be used to find a box that bounds the FSS (Milanese
& Vicino, 1991). An interval branch and bound algorithm is
used in Jaulin and Walter (1993) and Jaulin (2000) to describe
the AFSS as a union of boxes. The set-membership approach is
adopted in Milanese and Novara (2004) to develop a nonlinear
system identification method. It does not require information
on the functional form of the regression function describing the
relations between measured input and output. Only bounds on
the regression function gradient are assumed.

This paper presents a set-membership identification method
for systems that exhibit a nonlinear dependence with respect to
the parameters. An equivalent DC representation of the func-
tional form of the system is used to obtain convex relaxations.
Simplexes are used to represent the approximate feasible so-
lution set that bounds the exact solution set. The method is
an iterative algorithm that solves several convex optimization
problems at each iteration to improve the AFSS.

The paper is organized as follows. In Section 2, the prob-
lem is formulated. Preliminary concepts are presented in
Section 3. Section 4 provides a brief review of DC functions
and DC programming. In Section 5, a detailed version of
the proposed algorithm is presented. Section 6 reports some
examples before the conclusions.

2. Problem formulation

In the context of set membership identification, it will be
assumed that each measurement is a function of a regression
vector rk ∈ Rnr , a parameter vector � ∈ Rn and a given bounded
error:

Assumption 1. A set of measurements y1, y2, . . . , yN is pro-
vided. Each measurement yk ∈ R is related with the parameter
vector � ∈ Rn and the regression vector rk ∈ Rnr by means of
the following expression:

yk = f (rk, �) + ek , (1)

where f (·) is continuous with respect to � and ek represents
the considered error. This error belongs to a bounded set: ek ∈
E = {e ∈ R : |e|��}, where � is a known constant.

In this paper it will be assumed that f (rk, �) is nonlinear
with respect to the parameter �. The term ek bounds the effect
of nonmodelled dynamics, perturbations to the system, noise
in the measurements, etc.

The results presented in this paper can be easily generalized
to the case in which the measurement yk is a vector. It suffices to
consider each component of yk as an individual measurement.

Definition 1 (Feasible solution set). Suppose that the pairs
(yk, rk), k=1, . . . , N are given. The feasible solution set (FSS)
is defined by

FSS = {� : |yk − f (rk, �)|��, k = 1, . . . , N}.

The aim of set-membership identification methods is to find
the set of parameters that are consistent with the assumed para-
metric model and bounded error in the measurements. When
f (rk, �) in (1) is affine in �, the FSS is the intersection of N
strips in the parameter domain and can be computed exactly.
However, the complexity of the FSS is greatly increased when
the dependence of the model with respect to the parameters
is nonlinear. In this case the exact FSS can be a complex, not
convex and not-connected shape. An alternative solution is to
consider outer bounds of the FSS.

Definition 2 (Approximate feasible solution set). An approxi-
mate feasible solution set, denoted AFSS, is a set that satisfies:
FSS ⊆ AFSS.

The next section presents some preliminary concepts re-
quired to introduce the proposed iterative set-membership iden-
tification method.

3. Preliminary concepts

The proposed new identification method is an iterative algo-
rithm that considers the measurements and regression vectors
(yk, rk) with k=1, . . . , N , the error bound � and the regression
function of (1) to obtain a sequence of approximate feasible
solution sets AFSSj with j �1. A set of convex optimization
problems is used at each iteration of the algorithm to improve
the approximate feasible set obtained in the previous iteration.
These convex optimization problems are defined using convex
and concave relaxations of f (rk, �).

Fig. 1 can be used to illustrate the proposed algorithm (in
this case a unique pair (yk, rk) is taken into account). The set
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Fig. 1. Proposed algorithm illustration.
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FSS={� : yk−��f (rk, �)�yk+�} is consistent with the mea-
surement yk , the regressor rk , the considered error bound � and
the functional form of the system. An initial set AFSS0 such that
FSS ⊆ AFSS0 and a candidate set � ⊆ AFSS0 are considered.
Note that �∩FSS=∅ and a new candidate AFSS1 =AFSS0\�,
where \ is the set subtraction, can be considered to bound the
FSS. To prove the equality �∩FSS=∅ the proposed identifica-
tion method uses convex f̌ (rk, �) and concave f̂ (rk, �) relax-
ations (represented by dashed lines in Fig. 1) of the regression
function f (rk, �) in �. Next, both definitions are given.

Definition 3 (Valid convex relaxation). Consider the set � and
the pairs (yk, rk) with k=1, . . . , N . The functionsf̌ (rk, �) with
k = 1, . . . , N are valid convex relaxations of f (rk, �) in �
if they are convex and f̌ (rk, �)�f (rk, �) for all � ∈ � with
k = 1, . . . , N .

Definition 4 (Valid concave relaxation). Consider the set �
and the pairs (yk, rk) with k=1, . . . , N . The functions f̂ (rk, �)

with k = 1, . . . , N are valid concave relaxations of f (rk, �) in
� if they are concave and f̂ (rk, �)�f (rk, �) for all � ∈ �
with k = 1, . . . , N .

Valid convex and concave relaxations of f (rk, �) are used by
the algorithm to obtain the set Υ�,k =[inf�∈�f̌ (rk, �), sup�∈�
f̂ (rk, �)]. Considering Υyk

={y : |yk −y|��}, if Υ�,k ∩Υyk
=∅

then it is inferred that � ∩ FSS = ∅ and consequently, � can
be discarded from AFSS0 and a new outer bound AFSS1 can be
computed by set subtraction.

Once AFSS1 is obtained, a new candidate set � ⊆ AFSS1
can be considered and this process is iterated while the obtained
approximate feasible set is improved.

As will be shown in the following section, DC programming
can be used to obtain valid convex and concave relaxations.

4. DC functions

A DC function is a function composed by the difference of
two convex functions. The structure of these kind of functions
supplies an efficient way to obtain convex and concave relax-
ations (Carrizosa, 2001; Tuy, 1995). In this section, it is as-
sumed that f (rk, �) is a DC function or that it is possible to
build an equivalent DC representation. This assumption pro-
vides an efficient method to obtain convex and concave relax-
ations of the functions f (rk, �) with k = 1, . . . , N . Next, some
notations about DC functions are introduced.

Definition 5. Let S be a convex polytope (bounded polyhedral
set) of Rn. A real-valued function f : S → R is called DC on
S, if there exists two convex functions g, h : S → R such that
f can be expressed in the form: f (x) = g(x) − h(x).

It is known that the set of DC functions defined on a com-
pact convex set of Rn is dense in the set of continuous func-
tions of this set (Horst & Thoai, 1999; Tuy, 1995). Therefore,
every continuous function on a compact convex set can be ap-
proximated by a DC function with any desired precision and

every C2-function is a DC function. Given a twice differen-
tiable function it is possible to obtain a DC function adding
and subtracting convex terms.

Consider for example the function f (x) = x3 + x2 + 1 in
the domain x ∈ [−1, 1]. Note that (�2/�x2)f (x) = 6x + 2
and if x ∈ [−1, 1] then (�2/�x2)f (x) ∈ [−4, 8]. Defining
g(x) = f (x) + 2x2 and h(x) = 2x2, the equivalent function
f (x)=g(x)−h(x) is a DC function in x ∈ [−1, 1]. Indeed, h(x)

and g(x) are convex functions as they satisfy (�2/�x2)h(x)�0
and (�2/�x2)g(x)�0 for all x ∈ [−1, 1]. A general method to
compute DC representations can be obtained using the results
presented in Adjiman, Dallwig, Floudas, and Neumaier (1998)
and Floudas (2000).

In this paper, it will be assumed that polytope S is a simplex:

S = Co{v1, v2, . . . , vn+1},
where vi ∈ Rn, i =1, . . . , n+1, are the n+1 vertices of S and
Co {·} denotes the convex hull. The following property will be
used to obtain a bound of the range of a DC function over a
simplex.

Property 1. Given a simplex S of nonzero volume and a con-
vex function h : S → R, define the linear function hM(x) as
hM(x) = h0 + hT

Lx, where h0 ∈ R and hL ∈ Rn are obtained
from

[
h0

hL

]
=

⎡
⎢⎢⎢⎢⎢⎣

1 vT
1

1 vT
2

...

1 vT
n+1

⎤
⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎣

h(v1)

h(v2)

...

h(vn+1)

⎤
⎥⎥⎥⎥⎥⎦

,

where vi , i = 1, . . . , n+ 1 are the vertices of S. Then hM(vi)=
h(vi), i = 1, . . . , n + 1 and h(x)�hM(x), ∀x ∈ S.

Proof. As the volume of the simplex is different from zero, the
expression that provides h0 and hL is well defined. Moreover,
by construction, the equality hM(vi) = h(vi), i = 1, . . . , n + 1
is trivially satisfied. In order to prove the second claim of the
property it suffices to show that

min
x∈S

hM(x) − h(x)�0.

As hM(x) is an affine function and h(x) is convex in S it results
that hM(x) − h(x) is concave in S. This implies that the mini-
mum of hM(x)−h(x) is attained at the vertices of the simplex.
Thus,

min
x∈S

hM(x) − h(x) = min
i=1,...,n+1

hM(vi) − h(vi) = 0. �

Property 2. Given a DC function f (x) = g(x) − h(x), the
function f̌ (x) = g(x) − hM(x) is convex and f (x)� f̌ (x),

∀x ∈ S.

Proof. It is clear that f̌ (x)=g(x)−hM(x) is convex as it is the
difference of a convex function and an affine one. By property 1,
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hM(x) − h(x)�0, ∀x ∈ S then f (x) = g(x) − h(x)�g(x) −
hM(x) = f̌ (x), ∀x ∈ S. �

Note that the obtained convex bound is a second order ap-
proximation (in a Taylor sense) and it is exact in the vertices
v1, . . . , vn+1 of S. A concave overestimation f̂ (x) of f (x) =
g(x) − h(x) can be obtained by the convex relaxation of the
function −f (x) = h(x) − g(x).

Remark 1. In principle, the application of DC-representations
is not limited to simplexes. It is possible to obtain a convex
relaxation of a DC representation of a nonlinear function in
any polytopic domain S. Next, we summarize the advantages of
using simplexes. The proposed method is based on the use of an
affine function hM(x) that bounds the convex term h(x) of
the DC function. This affine function must fulfill hM(x)�h(x)

with x ∈ S ⊆ Rn. Because of the concavity of hM(x) − h(x),
this condition can be verified checking only that the condition
is satisfied at the vertices of S. If S is a simplex, n + 1 vertices
must be visited. If S is a box, 2n vertices must be visited, which
implies an exponential number of vertices with respect to the
dimension of the problem. If S ⊂ Rn is a simplex with nonzero
volume, then hM(x) is obtained from the equalities, hM(vi) =
h(vi), i =1, . . . , n+1, where vi , i =1, . . . , n+1 represent the
vertices of the simplex (in this way, the approximation is exact
at the vertices of the simplex). Furthermore, it was proved in
Carrizosa (2001) that this choice of hM(x) is optimal in the
sense that it provides the tightest convex relaxation. If S is not
a simplex, then it is not easy to obtain the optimal value for
hM(x).

Remark 2. It is clear that the DC representation of a given non-
linear function is not unique. The performance of the method
can be improved choosing an optimal DC representation of the
function. There exist some results in the literature addressing
this point. In particular, the systematic and efficient result pre-
sented in Adjiman et al. (1998) can be used to obtain an ap-
propriate DC approximation. Note that given f : S → R, and
a definite positive matrix A, the representation f (x)+ xTAx −
xTAx is DC in S if the Hessian of f (x)+xTAx is definite pos-
itive in S. Thus, an optimal way to select a DC representation
is to find an optimal matrix A providing the least overestima-
tion. In Adjiman et al. (1998) a systematic method to obtain
a suboptimal diagonal matrix A is provided. The convexity of
f (x) + xTAx is determined in an efficient way by an interval
arithmetic evaluation of the Hessian of f (x) + xTAx in S.

As will be shown in the following section, the potential ad-
vantages of the use of DC programming methods in bounded-
error identification are that DC programming provides convex
second order relaxations of the original identification problem,
and all the measurements can be considered at the same time.

5. Proposed identification algorithm

This section presents the new identification algorithm con-
sidering DC functions and simplexes. Given a set � ⊆ Rn in

the parameter space, the next theorem constitutes a method to
study its consistence with the considered measurements, system
and bounded error. To check if the intersection of � and FSS
is an empty set a convex optimization problem can be solved.
The set � can be discarded from the final outer bound solution
if this intersection is empty.

Theorem 1. Given (1), the pairs (yk, rk) with k = 1, . . . , N ,
a convex set � ⊆ Rn, valid convex and concave relaxations
f̌ (rk, �) and f̂ (rk, �) in �, k = 1, . . . , N and the convex opti-
mization problem P(�)

�min = min
�,�

�

s.t.

� ∈ �,

f̌ (rk, �) − (yk + �)��, k = 1, . . . , N ,

yk − � − f̂ (rk, �)��, k = 1, . . . , N

then, if �min > 0 it is inferred that � ∩ FSS = ∅.

Proof. Suppose that �∩FSS 
= ∅, then there is �∗ ∈ �∩FSS.
As �∗ ∈ �, note that by definition: f̌ (rk, �

∗)�f (rk, �
∗)� f̂

(rk, �
∗) with k=1, . . . , N . As �∗ ∈ FSS then f (rk, �

∗)− (yk +
�)�0 and (yk − �) − f (rk, �

∗)�0 with k = 1, . . . , N . It is
deduced that f̌ (rk, �

∗)−(yk+�)�0 and (yk−�)−f̂ (rk, �
∗)�0

with k = 1, . . . , N which yields to �min �0. From this it is
inferred that �min > 0 implies � ∩ FSS = ∅. �

Now, it is possible to introduce the proposed identification
algorithm. At iteration j a simplex that bounds the FSS is avail-
able. This simplex is composed by n + 1 vertices and it is de-
noted by AFSSj−1 =Co{v1, v2, . . . , vn+1}. Then a new AFSSj

can be computed by the following algorithm:

Algorithm.

for p = 1, . . . , n + 1
for q = 1, . . . , n + 1 with q 
= p

vB = vq+vp

2
while ‖vB − vp‖ > �1
�p,q(vB) = Co{v1, v2, . . . , vq−1, vB, vq+1, . . . , vn+1}
Build valid convex f̌p,q(rk, �) and concave
f̂p,q(rk, �) relaxations in �p,q of system (1)
with k = 1, . . . , N , following the method of Section 4.
�min = P(�p,q(vB))

if�min > 0 then vp = vB

else vB = vB+vp

2
endif

endwhile
endfor

endfor
AFSSj = Co{v1, v2, . . . , vn+1}
End of algorithm
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Fig. 2. Illustration of sets AFSSj−1 and �p,q (vB).

The algorithm considers vertices vp, vq ∈ AFSSj−1 to
visit all edges of the simplex AFSSj−1. A new vertex
vB = (vq + vp)/2 ∈ AFSSj−1 is obtained. Using this vertex,
the set �p,q(vB) = Co{v1, v2, . . . , vq−1, vB, vq+1, . . . , vn+1}
is defined, see Fig. 2. Next, valid convex f̌p,q(rk, �) and
concave f̂p,q(rk, �) relaxations of f (rk, �) in �p,q with
k = 1, . . . , N are built following the method explained in Sec-
tion 4. Then, the convex optimization problem P(�p,q(vB))

is solved, obtaining the minimum value of �, denoted �min.
By Theorem 1, if �min > 0 then �p,q(vB) ∩ FSS = ∅ and
�p,q(vB) can be discarded. The set AFSSj−1 is updated
to AFSSj−1=AFSSj−1\�p,q(vB)=Co{v1, v2, . . . , vp−1, vB,

vp+1, . . . , vn+1}. If �min �0 and ‖vB − vp‖ > �1 (where
�1 ∈ R+ is a design parameter), the vertex vB is updated to
vB = (vB + vp)/2. These operations are iterated with all edges
of AFSSj−1. Finally, the algorithm returns a set AFSSj that is
composed by the updated vertices.

The algorithm can be used while the volume of the obtained
approximate feasible set decreases, that is: Volume(AFSSj−1)

−Volume(AFSSj ) > �2, where �2 ∈ R+ is a design parameter.

Remark 3. The number of optimization problems to solve at
each iteration j is bounded by O(log2(dv/�1) ∗ (n + 1) ∗ n)

where dv is the maximum distance between two vertices of
AFSSj−1. Note that standard convex optimizations algorithms
can be used to solve the aforementioned convex problems. See,
for instance Boyd and Vandenberghe (2004).

Remark 4. Theorem 1 provides only a sufficient condition to
check if the intersection of a given convex set and the FSS is
empty. The conservativeness of the sufficient condition can be
arbitrarily reduced using a branch and bound scheme. The idea
is simple, as is shown in the following. The original simplex
is divided into two simplexes. If Theorem 1 determines that
both simplexes have an empty intersection with the FSS we are
done. If not, those simplexes satisfying the sufficient condition
provided by Theorem 1 are discarded. The division process is

done again with the simplex (simplexes) not discarded in the
previous step. Using Theorem 1, the discarding process is done
again. All this is repeated till the size of the simplexes reaches
a pre-specified threshold or till the discarding process deter-
mines that the intersection of the original simplex with the FSS
is empty. Of course, this means a worst case exponential com-
putational time, but the convergence to the exact solution set
is assured because the approximation error incurred when us-
ing DC approximations decreases quadratically with the size of
the simplex. Note that the exponential complexity correspond-
ing to the exact solution to the problem is not a surprise due
to the NP-hard nature of the addressed problem. The solution
returned by the Branch and Bound algorithm is a set of sim-
plexes that bounds the FSS. A convex envelope of this AFSS (a
box or an ellipsoid) can be computed easily using the vertices
of the simplexes.

The following lemma proves that if FSS ⊆ AFSS0 then
the sequence AFSSj bounds the exact feasible solution set for
all j > 0.

Lemma 1. Given system (1), the pairs (yk, rk) with k =
1, . . . , N and an initial AFSS0 such that FSS ⊆ AFSS0 then,
the sets computed by the proposed algorithm are approximate
solution sets:

FSS ⊆ AFSSj , ∀j �1.

Proof. The proposed algorithm updates set AFSSj−1 to
AFSSj−1\�p,q(vB) where �p,q(vB) ⊆ AFSSj−1 and
�min > 0. By Theorem 1, FSS ∩ �p,q(vB) = ∅, so FSS ⊆
AFSSj−1\�p,q(vB). Then it follows that FSS ⊆ AFSSj ,
∀j �1. �

6. Examples

The design parameters used in all examples are �1=�2=0.01.

6.1. Example 1

The proposed identification method is used to identify the
nonlinear system (Esposito & Floudas, 1998)

yk = �1 + 1

rk − �2
+ ek ,

where yk is the output, rk is the regressor, �1 and �2 are the
parameters to identify and ek is an error term. It is consid-
ered that rk − �2 
= 0. The initial search space is the simplex
AFSS0 =Co{(−20, 5), (0, 20), (20, 5)}. The functional form of
the regression function of the system is a DC function where
�1 and −1/(rk − �2) are convex functions in AFSS0. Five
regressors rk = k with k =0, . . . , 4 are considered to obtain the
measurements corresponding to �1 = 2 and �2 = 6. The param-
eters of system (1) are defined by

� =
[�1

�2

]
, � = 0.1.
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Fig. 3 shows the evolution of the AFSSj with j �0. The cloud
of points represents the FSS consistent with the measurements
and the bounded error. It has been obtained by a sufficiently
dense random search in AFSS0. The algorithm provides a
sequence of AFSSj whose volume is reduced at each iteration.
The final AFSS obtained by the proposed algorithm is defined
by Co{(1.8, 8), (1.9, 5.4), (2.7, 5.5)}.

6.2. Example 2

The proposed identification method is used to identify the
nonlinear system (Jaulin & Walter, 1999)

yk = 20e−�1rk − 8e−�2rk + ek ,

where yk is the output, rk = k is the time, �1 and �2 are the
parameters to identify and ek is an error term where � = 0.1.
The initial search space is AFSS0 = Co{(−2, 0), (1, 3)(4, 0)}.
Note that the functional form of the regression function of the
system is a DC function in AFSS0.

Ten sample times, k=1, . . . , 10, are considered to obtain the
measurements corresponding to �1 = 0.4 and �2 = 0.3. Fig. 4
shows the final simplex obtained by the algorithm. The cloud
of points represents the FSS consistent with the measurements
and the bounded error. It can be seen that this set is formed
by two nonconnected regions. To improve the solution a single
bisection of the final simplex can be considered. The couple of
obtained simplexes are reduced applying the algorithm again.
The new sequence is represented in Fig. 5.

6.3. Example 3

The proposed identification method is used to identify the
nonlinear system:

yk = �1e−�2rk − �3e−�4rk + ek ,
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θ 2
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FSS 

Fig. 4. The clouds of points represents the FSS. Solid lines represent the final
simplex obtained.
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Fig. 5. Bisection of the final simplex. New AFSSj evolution of the couple
of obtained simplexes is shown.

where |ek|�� = 0.1. It will be assumed that �1, �2, �3, �4 > 0.
In order to obtain an appropriate DC representation, a change
of variables is considered: �′

1 = log(�1) and �′
3 = log(�3). Then,

the modified nonlinear system is

yk = e−�2rk+�′
1 − e−�4rk+�′

3 + ek .

Note that the functional form of the regression function of
the system is a DC function. The corresponding values of the
system parameters used to obtain the input-output data are
�′

1=log(20)=2.9957, �2=1, �′
3=log(8)=2.0794 and �4=0.1.

The initial search space is AFSS0 = Co{(0, 0, 0, 0),(7, 0, 0, 0),
(0, 5, 0, 0, ), (0, 0, 7, 0), (0, 0, 0, 5)} with volume = 51.0417.
The final AFSS obtained simplex is Co{(1.94, 0.05, 1.95, 0.05),
(5.01, 0, 1.98, 0), (3.13, 1.61, 1.60, 0), (3.02, 0, 3.97, 0),
(2.65, 0, 3.54, 0.57)} with volume = 0.2282. The volume has
been drastically reduced.
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Next, in order to improve the obtained solution a Branch
and Bound scheme has been applied (see Remark 4). In this
case the final obtained simplex constitutes a sharp bound with
volume equal to 6.4343 × 10−5. The proposed algorithm uses
2124 branches.

6.4. Example 4

The proposed method is used to identify the parameters �1,
�2, �3 satisfying the following constraints:

0 = 2�2
1 − 2�1�2 + 2�2

2 − 2�1�3 + 2�2
3 − 2�2�3,

0 = 2�2
1 + 2�1�2 + 2�2

2 + 2�1�3 + 2�2
3 + 2�2�3,

0��2
1 + �2

2 + �2
3 − 1.

Note that there is a unique solution to these constraints (�1 =
�2 = �3 = 0). An implementation of the proposed algorithm
is executed in a Pentium IV (3.2 GHz) computer. The ini-
tial simplex considered is AFSS0 =Co{(0, 0, 3), (2

√
2, 0, −1),

(−√
2,

√
6, −1), (−√

2, −√
6, −1). A simplex with volume

1.2986×10−5 that bounds the exact solution is obtained in 8.9 s
solving 48 convex optimization problems. An implementation
of SIVIA algorithm (Jaulin & Walter, 1993) has been developed
with the interval arithmetic library INTLAB (Rump, 1999). Us-
ing the same computer and considering the unitary initial box
AFSS0 ={[−1, 1], [−1, 1], [−1, 1]}, SIVIA algorithm provides
a list of boxes that bounds the feasible solution. In order to ob-
tain a volume approximately equal to the one obtained with the
method proposed in this paper, SIVIA algorithm requires 784
branchings and a computational time of 16.7 s.

7. Conclusions

This paper has presented a guaranteed method for the param-
eter estimation of nonlinear models in a bounded-error context.
The proposed iterative algorithm is based on a DC representa-
tion of the functional form of the considered system. Simplexes
are used to bound the set of parameters that are consistent with
the measurements, the system and bounded error. At each itera-
tion of the proposed algorithm, a simplex that bounds the exact
solution set is considered. To improve this outer bound, the al-
gorithm discards the subsets of the initial simplex that are not
consistent with the bounded error. This operation can be made
solving several convex optimization problems. The number of
optimization problems to solve is polynomial in the number of
considered parameters to identify. Finally, three examples have
been included to clarify the proposed algorithm.
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