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SUMMARY

This article proposes a robust fault detection method that takes advantage of a recently proposed set-
membership identification procedure based on zonotopes for systems linear in the parameters. It is shown
that consistency checks indicating faults can be performed in a natural manner with a zonotope description
of the feasible parameter set. A zonotope-based fault detection algorithm that is able to handle systems with
invariant parameters, with parameter variation bounded between samples and with unbounded variation is
presented. Finally, two application examples are given, which demonstrate how the algorithm works on
a simulated process (a four-tank system) and a real application example (a section of a sewer network).
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1. INTRODUCTION

Model-based fault detection is based on the use of mathematical models of the monitored system.
Reliability and performance of fault detection algorithms depend on the quality of the model used.
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These algorithms can often be improved by refining the models they are based on. However, high
fidelity models are costly and modeling errors and disturbances in complex engineering systems
are inevitable. Hence, there is a need to develop robust fault detection algorithms where model
uncertainty is explicitly taken into account. The robustness of a fault detection system indicates
its ability to distinguish between faults on the one hand and model uncertainty and disturbances
on the other hand, see [1].

The robust fault detection research has roughly focused on two distinct approaches. In one of the
approaches, characterized as active, the central idea is to decouple the effect of the uncertainty [1].
The other approach, known as passive, is based on enhancing the robustness of the fault detection
system at the decision-making stage [2]. The aim with the passive approach is usually to determine,
given a set of models, whether there is any member in the set that can explain the measurements.
A common way to address this problem is to propagate the model uncertainty to the alarm limits
of the residuals. When the residuals are outside the alarm limits, it is argued that model uncertainty
alone cannot explain the residual and therefore a fault must have occurred, see [3] for a recent
article using this approach and [4] for a survey of these techniques. A drawback of these techniques
is that faults that produce a residual deviation smaller than the residual uncertainty due to parameter
uncertainty will not be detected.

Another approach to the passive robust fault detection problem is to explicitly calculate the set
of parameters that are consistent with the measurements [5]. When a measurement is found to be
inconsistent with this set, a fault is assumed to have occurred. As an exact representation of the
set of parameters consistent with the measurements is hard to calculate, outer bounds are often
used instead, using algorithms coming from set-membership identification. This is the approach
adopted in this article.

Set-membership identification methods have been the subject of a number of publications. They
can be classified according to how the approximation of the feasible set of parameters is represented
or parameterized. In [6], the set was overbounded by an ellipsoid. Other authors have focused on
orthotopic approximations, see [7]. When using set-membership identification there is a trade-off
between the set size (conservativeness) and the complexity of the identification method. Simpler
methods generally lead to more conservative set estimates. In [8], it was claimed that parallelotopic
estimates may be consistently better than ellipsoidal estimates while complexity is similar.

Other authors have used set-membership algorithms applied to fault detection, for example,
see [9]. There, the feasible parameter set was approximated with an ellipsoid. A numerically
robust ellipsoid state estimation algorithm was presented in [10]. In [11], a fault detection scheme
based on orthotopic sets was presented. In [12], a consistency state-estimation-based fault detection
scheme was presented, which uses the recursive optimal bounding parallelotope (ROBP) algorithm
presented in [13]. They proposed a moving horizon strategy where an outer bound of the initial
state was propagated using the ROBP and a fault was detected when no noise sequence within
deterministic bounds could explain the observed data. Uncertainty in process parameters was not
considered. In Figure 1, the distinct set of representations that have been used in the literature are
shown.

In this article, the parameter set is bounded with zonotopes, which include parallelotopes as a
special case. In [8], a set-membership identification algorithm was presented, which results in a
parallelotopic representation of the parameter uncertainty for time-invariant systems. In [14], an
extension of the previous algorithm based on zonotopes was presented to deal with time-variant
systems. This article shows that the zonotope representation of the parameter uncertainty combined
with the above-mentioned identification methods is particularly suitable for fault detection based
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Figure 1. Distinct set of representations in the literature.

on consistency tests. Zonotopes provide better estimates of the parameter set leading directly to a
better trade-off between false alarms and missed detections.

Zonotopes have appeared in set-membership approaches to fault detection before. In [15], an
adaptive observer approach was presented where the residual evaluation was performed using set-
membership computations based on zonotopes. In [16], parity relations were designed for linear
systems with additive and multiplicative uncertainty. Both the mentioned methods treat linear
system even though the system matrices could be time-varying.

This article, on the other hand, considers directly the analytical redundancy relations resulting
from any fault detection design methodology (either non-linear or linear). By definition, an analyt-
ical redundancy relation depends only on the input-output data and thus can be expressed as a
regression equation. It has been demonstrated that all model-based fault detection methodologies
are equivalent in the sense that they all result in analytical redundancy relations dependent on
input–output data [17]. Then, a typical starting point for the current methodology would be an
analytical redundancy relation in regressor form that contains several uncertain parameters.

Only fault detection is considered in this article. Fault isolation is often performed by using a
bank of residual relations, see [18, 19]. The focus of this article is a single residual relation that
could form part of a larger diagnosis system.

The main contribution of this article is to present a robust fault detection algorithm for a
regression equation that uses zonotope estimates of parameter uncertainty set and is based on
the efficient algorithms presented in [14]. The algorithm is able to handle systems with invariant
parameters, with parameter variation bounded between samples and with unbounded variation.
Practical issues such as fault sensitivity are considered and guidelines on how to calibrate the
algorithm are presented. As a remedy towards poor excitation in face of a possible parameter
change, a heuristic version of the fault detection algorithm is proposed based on conditionally
updating the parameter set when a variation has been detected. Finally, an application of the method
to real data from limnimeters in a sewer network is presented.

This article is organized in the following manner. In Section 3, the problem of fault detection
using a parameter consistency test is introduced and a conceptual algorithm is proposed. In
Section 4, zonotopes and related operations required to implement the fault detection algorithm
based on a parameter consistency test are introduced. In Section 5 practical issues are addressed
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such as characterizing the minimum detectable magnitude of abrupt sensor and parametric faults,
how to calibrate the algorithm and the conditional updating approach is introduced. In Section 6,
an example based on a four-tank system that allows one to show the fault detection performance in
the case of invariant parameters and the time-varying case with unbounded and bounded variations
is given. On the other hand, in Section 7, a real application based on a sewer network allows one
to assess the case of bounded variation with conditional updating. Conclusions are presented in
Section 8.

2. BACKGROUND AND NOTATION

In what follows, some preliminary notations are introduced. An interval [a,b] is the set { x :
a�x�b }. The unitary interval is B=[−1,1]. A box is an interval vector. A unitary box in Rm ,
denoted as Bm , is a box composed of m unitary intervals. The Minkowski sum of two setsX andY
is defined byX⊕Y={ x+ y : x ∈X, y∈Y }. Given a vector p∈Rn and a matrix H ∈Rn×m , the set:

Z= p⊕HBm={ p+Hz : z∈Bm }
is called a zonotope of order m. Note that this is the Minkowski sum of the segments defined
by the columns of matrix H . A parallelotope is a zonotope with n=m. Given the parallelotope
P= p⊕HBn , where H ∈Rn×n is invertible,P can be rewritten asP={x :‖H−1x−H−1 p‖∞�1}.
The mathematical representation of an n-dimensional ellipsoid is E={x :(x−x0)TH(x−x0)�1}
where n×n matrix H is positive definite. Finally, a polytope is a set that can be represented with
linear inequalities, P={x : Ax�b}. Figure 1 shows the graphical representation of the zonotopes,
polytopes, parallelotopes and ellipsoids.

3. MODEL-BASED DETECTION USING CONSISTENCY TESTS

3.1. Problem setup

The principle of model-based detection using consistency tests relies on checking whether the
measured sequence of system inputs U and outputs Y available for N points, at every time instant k
lies within the behavior described by a model of the faultless system [17]. If the measurements are
inconsistent with the model of the faultless system, the existence of a fault is proved to conclude
the fault detection task.

In this article it is assumed that the system output can be described by

y(k)=�T(k)�(k)+e(k)+ fy(k) (1)

�(k+1)=�(k)+w(k)+� f (k) (2)

�(0)∈� (3)

where �(k)∈Rn is the parameter vector whose values are assumed to be unknown but belong to
a compact bounded initial set �, �(k)∈Rn is the regressor vector that can contain any function
of inputs and outputs, fy(k) is the sensor fault signal added to the regressor equation and � f (k)
is the parametric fault signal, both are zero in the fault-free case. The noise e(k) and parameter
variation w(k) are limited as

|e(k)|�� and |w(k)|�� (4)
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As the parameter vector is assumed to belong to Rn , so does � and the last inequality is an
elementwise inequality. Note that this system description includes any system linear in the param-
eters. Parameter uncertainty comes from physical modeling or from the set-membership parameter
estimation algorithms applied in a non-faulty situation.

Note that Equation (2) specifies the allowed variance of uncertain parameters �. Depending on
the value of �, three different cases can be considered

• time-invariant case, �=0;
• bounded variance case 1, �= �̄;
• unbounded variance case 2, �=∞.

In the first case, the parameter is unknown within �, but it is known that it will not vary. In the
second case, the parameter variation is bounded specifically by a vector �̄, whereas in the last case,
the variation is implicitly bounded only by the initial parameter set � and can vary at will within
that set.

The first case represents situations when an initial variance comes from component specifications
that are known only with a mean and variance in the beginning of the fault detection task. The
second case represents a system that has been identified over a number of operation conditions,
each with a different � within �, but with the variance between samples bounded by �̄. The last
case corresponds to systems whose sample-to-sample parameter variations are large enough such
that the parameters can reach any value within the original parameter set.

A fourth case will also be considered in this article. A constant � takes into account that systems
can change continuously over time, for example, as they move from one operating region to
another. If the system, on the other hand, does not move for an interval of time from a specific
operating region, a constant � can lead to conservativeness and poor fault sensitivity. This problem
is specially difficult if there is poor excitation in the data set. As a remedy to this problem, a fault
detection algorithm based on conditionally updating the parameter set depending on the severity
of the inconsistency detected is used.

3.2. Fault detection algorithm

From the model description above the following sequences are defined:

�N ={�(k)}k=0,...,N−1, YN ={y(k)}k=0,...,N−1 (5)

To define what constitutes a fault, the feasible solution set at time N is defined as follows.

Definition 1
Given the data sequences �N and YN , the parameter � is said to belong to the feasible solution
set at time N , (denoted FSSk), if there exist �(0),�(1), . . . ,�(N−1) such that

|y(k)−�T(k)�(k)|��, k=0, . . . ,N−1 (6)

|�(k)−�(k−1)|��, k=1, . . . ,N−1 (7)

�(0)∈� (8)

Using the previous definition, a fault is now defined for the sequences �N and YN .

Definition 2
Given the data sequences �N and YN , a fault is said to have occurred if the set FSSN is empty.
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Each new measurement defines a set of consistent parameters defined by

Fk={�∈Rn :−��y(k)−�(k)T���} (9)

where Fk is the region between two hyperplanes. The normalized form of this strip is expressed as

Fk =
{

�∈Rn :
∣∣∣∣∣ y(k)�

−�(k)

�

T

�

∣∣∣∣∣�1

}

= {�∈Rn : |d(k)−c(k)T�|�1} (10)

This strip Fk available at time k allows one to iteratively refine the feasible parameter set FSSk

FSSk+1=FSSk∩Fk (11)

and to detect the presence of a fault if its intersection with the feasible parameter set FSSk is
empty

FSSk∩Fk=∅ (12)

In practice, the computation of FSSk is difficult. The fault detection algorithm presented in
this article is based on using a zonotope to upper bound the feasible solution set, creating an
approximate feasible solution set denoted as AFSSk that fulfills FSSk⊆AFSSk and for which
consistency is checked. In the case when �>0, the set AFSSk is expanded to take the allowed
parameter variance into account in the next sample. The expanded set is denoted as AFSSk+1.

Algorithm 1 provides a general conceptual form of the suggested fault detection strategy based on
the use of a parameter consistency test. The basic idea of this algorithm is as follows: at every time
instant, input/output system measurements obtained from sensors are used to build the regressor
�(k) and strip Fk according to Equations (5) and (10), respectively. Then, consistency between
strip and the zonotope AFSSk is checked. In case consistency is proved, the algorithm proceeds
to refine the current zonotope by its intersection with the strip Fk and the resulting zonotope is

Algorithm 1. Fault detection using a parameter consistency test
1. k←0
2. AFSSk←�
3. while k<N do
4. Obtain input–output data {u(k), y(k)} at time instant k, build regressor �(k) and strip Fk

according to Equations (5) and (10).
5. if AFSSk∩Fk=∅
6. Indicate fault and estimate the parameter variation �� using Equation (22) in order to

identify the faulty parameters and the size of change.
7. else Calculate AFSSk that fulfills Fk∩AFSSk⊂AFSSk and
8. Expand AFSSk taking into account � to obtain AFSSk+1.
9. endif
10. k←k+1
11. end while
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expanded by the allowed parameter variance �. Otherwise, if an inconsistency is detected, a fault
is considered to be present.

4. IMPLEMENTATION OF THE FAULT DETECTION ALGORITHM USING ZONOTOPES

In this article, zonotopes are used to bound the set of uncertain estimated sets and to implement
Algorithm 1. In this section, zonotopes and their related operations required to implement this
algorithm are introduced. Looking at Algorithm 1, these operations are

• checking the consistency of a zonotope with a strip (step 5);
• intersection between a zonotope and a strip (step 7);
• expansion of the parameter set taking into account �(k) (step 8).

4.1. Checking consistency of a zonotope with a strip

Given a new data point {y(k)} at time instant k, regressor �(k) and strip Fk according to
Equation (10) is built. Assuming that FSSk⊆Z, where Z= p⊕HBm is a zonotope, consistency
can be assessed by checking if

Z∩Fk=∅ (13)

This check is very easy to perform using the following definition:

Definition 3
Given a zonotope Z= p⊕HBm and a vector c, the zonotope support strip is defined by FS=
x :qd�cTx�qu, where qd and qu satisfy

qu=max
x∈Z

cTx and qd=min
x∈Z

cTx (14)

and can easily be calculated as

qu=cT p+‖HTc‖1 (15)

qd=cT p−‖HTc‖1 (16)

where ‖·‖1 is the 1-norm of a vector.

Then, calculating the constants qu and qd, the intersection between Z and Fk is empty if and
only if FS∩Fk=∅ or

qu<
y(k)

�
−1 or qd>

y(k)

�
+1 (17)

This condition of inconsistency was reported in [8].

4.2. Intersection between a zonotope and a strip

Definition 4
Given a zonotopeZ= p⊕HBm and a strip F= x :qa�cTx�qb, the zonotope tight strip is obtained
by S=F∩FS , where FS is the zonotope support strip defined by c and Z.
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According to Bravo et al. [14], given the zonotope Z= pk⊕HBr , the tight strip S={x ∈Rn :
|cTx−d|��} and vector �∈Rn , a family of zonotopes containing the intersection between the
zonotope and the strip is given by

Z∩S⊆v( j)⊕T ( j)Br (18)

where

v( j)=

⎧⎪⎨
⎪⎩
p+

(
d−cT p
cTHj

)
Hj if 1� j�r and cTHj �=0

p otherwise

and

T ( j)=
{[T j

1 T
j
2 . . .T j

r ] if 1� j�r and cTHj �=0
Hj otherwise

with

T j
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Hi−

(
cTHi

cTHj

)
H if i �= j

(
�

cTHj

)
Hj if i= j

There are r+1 possible choices of j to obtain a zonotope that bounds the intersection. An
optimum integer j∗,0� j∗�r , can be obtained such that the volume of the outer-bounding zonotope
is minimized, i.e.

j∗=arg min
0� j�r

Vol(v( j)⊕T ( j)Br ) (19)

where Vol(·) denotes the volume of the zonotope v( j)⊕T ( j)Br . In order to compute j∗, the
method proposed in [14] is used.

4.3. Expansion of the parameter set

The initial value of the approximated feasible set AFSS0 is a zonotope Z0 initialized with the
initial parameter set �. What differentiates the algorithm for the three cases of allowed parameter
variance is the update procedure in step 8 of Algorithm 1. In all cases, at each iteration of the
algorithm, the zonotope Zk is an outer bounding of the feasible solution set FSSk .

4.3.1. Bounded variance case (�= �̄). Note that in this case the bound on parameter variation
given by Equation (2) can be expressed as

�(k+1)∈�(k)⊕�Bn (20)

where � is a diagonal matrix with the elements equal to �. One of the principal features of
zonotopes is that the Minkowski sum of a box and a zonotope is another zonotope. Therefore, if
at time k it is known that the parameter belongs to set Zk= p⊕HBm then using Equation (20)
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and taking into account Equation (2), the parameter set at time k+1 can be expressed as

Zk+1= p⊕HBm⊕�Bn= p⊕[H �]Bm+n

4.3.2. Unbounded variance case (�=∞). In this case, as the parameters can vary at will within
the initial parameter set �, the update procedure consists of taking the zonotope Zk+1 equal to
the initial parameter set �.

4.3.3. Time-invariant case (�=0). In this case, as �=0, the procedure in step 8 of Algorithm 1
returns the set unchanged.

4.4. Calculating the parameter variation when inconsistency occurs

Given a strip

|cT�(k)−d|�1

that does not intersect a zonotope Z= p⊕HBm , the shortest variation of the parameter vector ��
from the zonotope to the strip can be easily calculated. Assume that qu<d−1, where qu is the
constant of the ‘upper’ supporting hyperplane. Then the point �̂ in Z that is closest to the strip
can be calculated as

�̂= p+HT(ei ) (21)

where ei=[sign(hT1c) sign(hT2c) · · ·sign(hTmc)]T. It is assumed that sign(0)=0. The problem is then
reduced to calculating the projection of a point to a hyperplane. The error �� is easily calculated as

��= d−1−cT�̂
‖c‖2 c (22)

5. PRACTICAL ISSUES

In this section, a number of practical issues related to the proposed algorithm are addressed.

5.1. Characterization of algorithm fault sensitivity

An important characteristic of robust fault detection algorithms is the sensitivity towards faults.
In this section, the minimum abrupt fault magnitude that is guaranteed to cause an alarm will be
determined for the output sensor faults fy(k) and parametric faults � f (k).

5.1.1. Minimum sensor fault magnitude fy(k). A fault is detected if either consistency check
given by Equation (17) fails. Without loss of generality, the minimum abrupt fault magnitude
will be determined for the left inequality in Equation (17). It is assumed that �(k)∈ p⊕HBn and
e(k)∈[−�,�] (see Equation (4)). Substituting qu with Equation (15) and y(k) with Equation (1),
the following equation is obtained:

cT p+‖HTc‖1<cT�(k)+ e(k)

�
+ fy(k)

�
−1 (23)

Note that the index k of c,H and p has been omitted for simplicity.
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Assuming the worst-case values of �(k) and e(k), i.e. minimizing the term cT�(k)+(e(k)/�),
the condition on the magnitude of fy(k) is obtained as

2‖HTc‖1+2< fy(k)

�
(24)

where 2‖HTc‖1 stands for the width of the zonotope H in the c direction and the integer 2 is
the width of the band (2�) as fy(k) is normalized by � in the equation. The condition given in
Equation (24) shows that in addition to measurements noise amplitude �, the width of the zonotope
in the direction of normalized regression vector c determines the sensitivity of the algorithm to
detect abrupt sensor faults.

5.1.2. Minimum parametric fault magnitude � f (k). Analogously, the minimum abrupt parametric
fault magnitude will be determined for the left inequality in Equation (17) by substituting Equation
(15) for qu, Equation (1) for y(k) and Equation (2) for �(k). This yields

cT p+‖HTc‖1<cT(�(k−1)+w(k−1)+� f (k−1))+ e(k)

�
−1 (25)

Taking the parametric variation bounds given in Equation (4) into account, the condition for
inconsistency becomes

2‖HTc‖1+2+
n∑

i=1
|ci�i |<cT� f (k) (26)

This condition shows that if the parameter fault is in an orthogonal direction to the normalized
regression vector, the fault will never be detected, independent on the magnitude of the fault.
Thus, the direction of the regression vector is of importance. This requirement is similar to the
requirements of persistent excitation in system identification. This is an already known issue when
applying parameter estimation methods to fault detection [20].

5.2. Calibration of algorithm

As seen in the previous section, the fault sensitivity of the presented algorithm depends on, among
other things, noise level � and parameter variation �. It is desirable that these are as small as
possible to maximize fault sensitivity. The selection of these parameters of the algorithm is, on the
other hand, a non-trivial problem. If selected too small, false alarms can occur, whereas if selected
too large, faults can go undetected.

In Section 3, a discussion was presented relating the distinct cases of � to the properties of the
system under consideration. For example, � can sometimes be related to the sensor accuracies of
the signals in Equation (1). If no previous information about � and � is available, it is possible to
obtain preliminary values by using sets of data without faults. It should be noted that � can always
be selected so that �=0, i.e. it is always possible to select the noise level large enough so that the
system can be considered time invariant. This selection might be useless due to little sensitivity
towards faults and frequent missed detections. A selection of � and � is therefore a decision of
a suitable trade-off between false alarms and missed detections. Algorithm 2 is used to obtain an
initial value of � given a value of �.
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Algorithm 2. Estimation of � given a value of �.
1. k←0
2. �←0
3. AFSSk←�
4. while k<N do
5. Obtain input–output data {u(k), y(k)} at time instant k, build regressor �(k) and strip Fk

according to Equations (5) and (10).
6. if AFSSk∩Fk=∅ (an inconsistency is detected)
7. �k←�� where �� is calculated using Equation (22)
8. Expand AFSSk taking into account �k
9. else Calculate AFSSk+1 that fulfills Fk∩AFSSk⊂AFSSk+1
10. end if
11. k←k+1
12. �k←0
13. end while
14. �=max {�0,�1, . . . ,�N−1} (i.e. the maximum value component wise over all parameter error

vectors �� encountered in the data set)

These steps can provide with a first guess of parameter �. Conservativeness can be reduced
by reducing � and testing again whether inconsistency is observed when the algorithm is run on
fault-free data.

5.3. Fault detection using conditional updating

In the calibration procedure described in Algorithm 2, the zonotope was allowed to vary only when
an inconsistency was detected. A similar idea can be used for fault detection procedure presented
in Algorithm 1. Step 5 in this algorithm is then changed so that if an inconsistency is detected, the
zonotope is expanded by �. Then, the fault detection test is repeated. If inconsistency persists, a
fault is indicated. Otherwise, the fault is not indicated and the fault detection algorithm proceeds
with the next sample. In case no inconsistency is detected, the expansion of the zonotope is not
performed. Thus, the name conditional updating of the zonotope for this procedure follows.

This approach has many advantages. First of all, the conservativeness related to having a fixed
� at each sample can be reduced. The zonotope is in this way allowed to change as long as the
change is not so large. This might be a more accurate description of parameter variation when
systems spend large amount of time at a similar operating region where the parameters do not
change.

6. APPLICATION EXAMPLE 1: FOUR-TANK SYSTEM

A quadruple-tank process (see [21]) is proposed as a first application example to understand how
the fault detection algorithm proposed in Section 3.2 works.

A diagram of the process is shown in Figure 2. The process inputs are v1 and v2 (input voltages
to the pumps). The experiments presented in this section consider only the analytical redundancy
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Figure 2. Quadruple-tank process.

relation coming from the first tank assuming that levels h1, h3 and voltage v1 are measured

dh1
dt
=− a1

A1

√
2gh1+ a3

A1

√
2gh3+ �1k1

A1
v1 (27)

where A1=28cm2, k1=3.33cm3/Vs and g=981cm/s2. Parameters a1 and �1 are assumed to
belong to the intervals a1∈[−0.029,0.171] and �1∈[0.55,0.85]. The fault detection algorithm is
tested in three different cases of parametric fault scenarios affecting a1 and �1. For all cases the
non-faulty system is simulated with parameters equal to a1=a3=0.071cm2, a2=a4=0.057cm2,
�1=0.7 and �2=0.6.

Equation (27) can be expressed in the form given by Equation (1), once Euler discretization
with sampling time equal to 1 has been applied

h1(k+1)=h1(k)+
(
− a1
A1

√
2gh1(k)+ a3

A1

√
2gh3(k)+ �1k1

A1
v1(k)

)
+e1(k) (28)

where |e1(k)|�0.02 is a bounded random noise. Note that the results obtained in this section could
be improved using the other three equations of the model. Considering that the parameter vector
� is composed of �=[a1 a3 �1]T, the regressor vector can be expressed as follows:

�y1(k)=
[
−
√
2gh1(k)

A1

√
2gh3(k)

A1

k1v1(k)

A1

]T
(29)

Taking the uncertainty intervals associated with a1 and �1 given above into account, the initial
parameter uncertainty set for the fault detection stage is assumed to be

�={� :�= p0+H0�̃,‖�̃‖∞�1}
where p0=[0.071 0.071 0.7]T, H0=diag([0.1 0 0.15]T).
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Figure 3. Fault detection test for time-invariant case, a1 vs �1.

6.1. Time-invariant parameters

First, uncertain parameters are considered time invariant, that is, �=0 in Equation (4). The fault
considered is a variation in the parameters a1 and �1 from time instant k=5: a1 f =a1+0.05 and
�1 f =�1+0.1. This variation of parameters is inside the initial zonotope, but as the parameters are
assumed to be invariant a fault should be indicated. Figure 3 shows the result of the fault detection
test. The dashed box represents the initial zonotope for a1 and �1. The solid line represents the
zonotope intersection of the parameters consistent with the first four measurement outputs. The
dotted line represents the band of parameters consistent with the measurement output for time
instant k=5. As this band does not intersect with the zonotope, a fault is consequently indicated.

6.2. Time-varying parameters case 1

In this case, uncertain parameters are considered time varying with

�=diag([0.01 0 0.03]T)

in Equation (4). The fault considered is a variation in the parameters a1 and �1 from time instant
k=5: a1 f =a1+0.03 and �1 f =�1+0.05. Despite this variation, the parameters are inside their
uncertainty intervals. However, as the variation is higher than the allowed value at each time instant
given by �, a fault should be indicated. Figure 4 shows the fault detection test at time instant k=5.
The dashed box represents the valid interval for parameters a1 and �1. The solid lines represent
the zonotope that bounds the parameters consistent with the first four measurement outputs. The
dotted line represents the band of parameters consistent with the measurement output for time
instant k=5. As this band does not intersect with the zonotope, a fault is effectively indicated.

6.3. Time-varying parameters case 2

Finally, uncertain parameters are considered to be time varying with �=∞ in Equation (4). This
means that the parameters are only by the initial parameter set � but they can vary within this
set. The fault considered is outside the box of allowed parameters, from time instant k=5, that
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Figure 4. Fault detection test for time-varying case 1, a1 vs �1.
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Figure 5. Fault detection test for time-varying case 2, a1 vs �1.

is a1 f =a1+0.15. Figure 5 shows the fault detection test result. The dashed box represents the
allowable parameters region for a1 and �1. The dotted line represents the band of parameters
consistent with the measurement output for time instant k=5. A fault is indicated as this band
does not intersect with the box of allowed parameters.

7. APPLICATION EXAMPLE 2: SEWER NETWORK

As a second application example, the zonotope-based consistency approach for robust fault detec-
tion is tested on the limnimeters (water-level meters) of Barcelona’s sewer system where they
are used for the control system [22]. A telemetry network containing more than 100 limnimeters
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connected to a Supervisory Control and Data Acquisition system has been in operation since 1994.
One of the main problems is that often these instruments are out of order in rain scenarios when
the control system must be fully operative.

7.1. Limnimeter models

Limnimeters can be monitored using a rainfall-runoff model of the sewer network. Complex non-
linear rainfall-runoff models are very useful for off-line operations (calibration and simulation) of
the sewer network, but for online purposes (as for the global optimal control and fault detection
and diagnosis), a more simpler structure of the model must be selected. One possible model
methodology to derive a rainfall-runoff real-time model of a sewerage network is through a
simplified graph relating the main sewers and set of virtual and real reservoirs [22]. A virtual
reservoir is an aggregation of a catchment of the sewer network that approximates the hydraulics
of rain, runoff and sewage water retention thereof. The hydraulics of virtual reservoirs are

dV (t)

dt
=Qup(t)−Qdown(t)+P(t)S (30)

where V is the volume of water accumulated in the catchment, Qup and Qdown are flows entering
and exiting the catchment, P is the rain intensity falling in the catchment and S is its surface.
Upstream Lup and downstream Ldown sewer levels are measured using limnimeters and they can
be related with flows using a linearized Manning relation

Qup(t) = MupLup(t)

Qdown(t) = MdownLdown(t)
(31)

where Mup and Mdown are the Manning constants associated with upstream and downstream
sewers.

Assuming that in Equation (30)

Qdown(t)=KvV (t) (32)

substituting Equation (31) into Equation (30) and discretizing, we obtain

Ldown(k+1)=aLdown(k)+bLup(k)+cP(k) (33)

where a=(1−Kv�t), b=MupKv�t/Mdown and c= SKv/Mdown.
Using this modeling methodology, a model of a part of the Barcelona’s sewer network is

presented in Figure 6. Its structure depends on the topology of the network and its parameters are
estimated using the real data from the sensors in the network.

7.2. Zonotope-based consistency test (time-invariant case)

The zonotope-based consistency test for robust fault detection, described in Section 3.2, is applied
to limnimeter L45 of the Barcelona’s sewer network. According to the modeling methodology
presented in the previous section and taking into account the conceptual scheme for the portion
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Figure 6. Virtual reservoir model of the Barcelona prototype network.

of sewer network considered (Figure 6), this limnimeter is related with limnimeters L41 and L47.
Its model can be represented by Equation (1) considering that

y(k) = L45(k)

�(k) = [L45(k−1) L47(k−1) L41(k−1)]
�(k) = [�1(k) �2(k) �3(k)]T

(34)

First, it will be assumed that parameters � are time invariant (i.e. �=0). Using a set of
non-faulty scenarios (14/01/2001,20/04/2001,03/05/2001,04/05/2001 and 05/05/2001) the
feasible parameter set is estimated, adjusting measurement noise (�) such that no fault is indicated.

Once the feasible parameter set has been estimated, it is used to initialize the fault detection
algorithm (Algorithm 1) that is applied to the real faulty scenario 28/09/2001 provided by the
Barcelona’s sewer management company.

Figure 7 presents the result of the fault detection test. It can be observed that at time instant
k=6 a fault is detected. Figure 8 presents the strip associated with the measurement data and
the zonotope that approximates the feasible parameter set at this time. As the intersection is the
empty set, this is why the fault is detected at that time (see Figure 7). It can also be noted that
the strip associated with the measurement data is very wide. This is because the linear model
for the liminimeter (33) is valid only around a given operating point. In fact, the real behavior
is non-linear, which means the parameters of model (33) are not time invariant, but time varying
according to the operating point. When considering those parameters as time invariant, parameter
variance is implicitly considered as additive measurement noise to obtain a consistent model in
the model identification phase. This forces to use a wide noise bound �=0.22. According to the
results presented in Section 5, this implies that fault detection test would require a bigger fault
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Figure 7. Result of detection test corresponding to episode 28/09/2001.
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Figure 8. Intersection between strip and zonotope at time k=6 for episode 28/09/2001.

to be active as the minimum detectable depends on an inverse proportional way with respect to
the noise bound �. In order to decrease the size of the minimum detectable fault, noise bound
could be reduced by taking into account parameter variance by considering that parameters are
time varying with a bounded allowable variation instead of time invariant.
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7.3. Zonotope-based consistency test (time-varying case)

The allowed variance of parameters �(k) should also be estimated from real data coming from
non-faulty scenarios. The procedure presented in Section 5.2 is used. Figure 9 shows how the
maximum allowed parameters’ variation (�) varies when changing the measurement noise bound
(�), that is, there is a trade-off between measurement noise and allowed parameter variance bounds.
Decreasing the measurement noise bound (in order to decrease the size of the minimum detectable
fault) implies that the allowable parameter variance bound should be increased. Therefore, fixing
the size of the minimum detectable fault, the required measurement noise bound can be determined.
In particular, in the following, the noise bound has been set to �=0.16, which leads to set the
allowed parameter variance to �=diag([0.09 0.09 0.09]T). This value has been determined using
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Figure 9. Allowed parameter variance (�) vs measurement noise bound (�).

Figure 10. Intersection between strip and zonotope at time k=6 for episode 28/09/2001.
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Algorithm 2 in the parameter estimation phase in order to obtain a consistent model in case of the
set of non-faulty scenarios considered (14/01/2001,20/04/2001,03/05/2001,04/05/2001 and
05/05/2001).

Once the maximum allowed parameter variation has been estimated, fault detection using the
conditional updating presented in Section 5.3 is used. The real faulty scenario 28/09/2001, already
considered in Section 7.2 when parameters are assumed to be time invariant, is considered. Figure 10
presents the strip and the zonotope that approximates FPS at time k=6 for the considered fault
scenario. As the intersection is an empty set, the fault is detected. However, comparing with
Figure 10, it can be seen that the strip is tighter as the noise bound is smaller, but the zonotope that
approximates FPS is wider because of their expansion with the maximum allowed variation bound.
This will allow one to detect smaller additive faults than in the case of considering parameters as
time invariant.

8. CONCLUSIONS

A robust fault detection method has been proposed that takes advantage of a recently proposed
set-membership identification procedure based on zonotopes for systems linear in the parameters.
A general algorithm was presented based on proving that the feasible solution set of parameters for
a series of data is empty. Three distinct cases of allowed parameter variance have been considered.
Computational procedures based on zonotopes were given for each step in the algorithm and the
minimum abrupt sensor and parametric fault detectable is characterized. Finally, the method was
applied to two application examples: a four-tank system and a real application case (a piece of a
sewer network) showing its effectiveness.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive comments and suggestions to improve this article.
This work is supported by the Research Commission of the Generalitat of Catalunya (Grup SAC ref.
2005SGR00537) and by the Spanish Ministry of Science and Technology under grants DPI-2005-05415,
DPI2006-15476-C02-01 and DPI2007-66718-C04-01.

REFERENCES

1. Chen J, Patton R. Robust Model-based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers:
Dordrecht, 1999.

2. Puig V, Quevedo J, Escobet T, Heras SDL. Robust fault detection approaches using interval models. Proceedings
IFAC World Congress (b’00), Barcelona, Spain, 2002.

3. Fagarasan I, Ploix S, Gentil S. Causal fault detection and isolation based on a set-membership approach.
Automatica 2004; 40:2099–2110.

4. Armengol J, Trave-Massuyes L, Vehi J, de la Rosa JL. A survey on interval model simulators and their properties
related to fault detection. Annual Reviews in Control 2000; 24:31–39.

5. Puig V, Mrugalski M, Ingimundarson A, Quevedo J, Witczak M, Korbicz J. A gmdh neural network based
approach to passive robust fault detection using a constraints satisfaction backward test. IFAC World Congress,
Prague, Tzech Republic, 2005.

6. Fogel E, Huang YF. On the value of information in system identification—bounded noise case. Automatica 1982;
18:229–238.

7. Pearson RK. Block-sequential algorithms for set-theoretic estimation. SIAM Journal on Matrix Analysis and
Applications 1988; 9:513–527.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2008)
DOI: 10.1002/acs



A. INGIMUNDARSON ET AL.

8. Vicino A, Zappa G. Sequential approximation of feasible parameter sets for identification with set membership
uncertainty. IEEE Transactions on Automatic Control 1996; 41:774–785.

9. Watkins J, Yurkovich S. Fault detection using set-membership identification. IFAC World Congress, San Francisco,
U.S.A., 1996.

10. Lesecq A, Barraud K, Dhin T. Numerical accurate computations for ellipsoidal state bounding. Eleventh
Mediterranean Conference on Control and Automation MED’03, Rhodes, Greece, 18–20 June 2003.

11. Tzes A, Le K. Fault detection for jump discrete systems. IEEE Proceedings of the American Control Conference,
San Diego, U.S.A., 1999.

12. Kesavan P, Lee JH. A set based approach to detection and isolation of faults in multivariable systems. Computers
and Chemical Engineering 2001; 25:925–940.

13. Chisci L, Garulli A, Vicino A, Zappa G. Block recursive parallelotopic bounding in set membership identification.
Automatica 1998; 34:15–22.

14. Bravo JM, Alamo T, Camacho EF. Bounded error identification of systems with time-varying parameters. IEEE
Transactions on Automatic Control 2006; 51:1144–1150.

15. Combastel C, Zhang Q. Robust fault diagnosis based on adaptive estimation and set-membership computations.
Proceedings of SAFEPROCESS 2006, Beijing, China, 2006.

16. Ploix S, Adrot O. Parity relations for linear uncertain dynamic systems. Automatica 2006; 42:1553–1562.
17. Blanke M, Kinnaert M, Lunze J, Staroswiecki M. Diagnosis and Fault-tolerant Control. Springer: Berlin,

Heidelberg, 2003.
18. Gertler J. Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker: New York, 1998.
19. Nyberg M, Krysander M. Combining ai, fdi and statistical hypothesis-testing in a framework for diagnosis.

Proceedings of IFAC Safeprocess’03, Washington, U.S.A., 2003; 891–896.
20. Isermann R. Process fault detection based on modelling and estimation methods. Automatica 1984; 20:387–404.
21. Johansson KH, Nunes JLR. A multivariable laboratory process with an adjustable zero. Proceedings of 17th

American Control Conference, Philadelphia, PA, 1998.
22. Cembrano G, Quevedo J, Salamero M, Puig V, Figueras J, Mart J. Optimal control of urban drainage systems:

a case study. Control Engineering Practice 2004; 12(1):1–9.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2008)
DOI: 10.1002/acs


