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An efficient maximization algorithm with
implications in min-max predictive control

T. Alamo, D. Muñoz de la Peña and E.F. Camacho

Abstract— In this note an algorithm for binary quadratic
programs defined by matrices with band structure is proposed. It
was shown by the authors in [2] that this class of problems arise
in robust model predictive control when min-max techniques
are applied. Although binary quadratic problems belongs to
a class of NP-complete problems, the computational burden
of the proposed maximization algorithm for band matrices is
polynomial with the dimension of the optimization variable
and exponential with the band size. Computational results and
comparisons on several hundred test problems demonstrate the
efficiency of the algorithm.

Index Terms— Combinatorial optimization; Binary quadratic
programming; Band matrices; Model predictive control; Min-
max techniques.

I. INTRODUCTION

The objective of binary quadratic programming (BQP) is
to find a binary vector that maximizes a quadratic function.
These kind of problems belong to a class of NP-complete com-
binatorial problems that have many interesting applications.
Capital budgeting and financial analysis [20], traffic message
problems [9] and machine scheduling [3] can be formulated
as BQP problems. In model predictive control (MPC), BQP
problems arise when min-max techniques are applied to linear
systems with bounded additive uncertainties; see [7], [15],
[17]. In this case, a BQP problem has to be solved in order
to evaluate the inner maximization problem at each iteration
of the minimization algorithm.

There is a vast literature on BQP that goes back to the
70’s, see [10], [19], [11] and the references therein. Solution
approaches include linear programming-based methods [4],
branch and bound with preprocessing [18], eigenvalue-based
approaches [16] and semi-definite relaxations [11]. These
techniques deal with large scale (possibly sparse) problems
and are able to solve problems with hundred of variables.
However, in general are not appropriate for application to
MPC because in this case, a high number of low order (less
than 50 variables) BQP problems have to be solved. Therefore,
techniques that depend on linear or semi-definite programming
solvers are too cumbersome. This make the implementation of
min-max controllers a hard issue.

In [2] several approximate techniques were proposed to
solve the inner maximization problem in polynomial time. In
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A preliminary version of this work was presented in [1].

particular, it was proved that the maximization problem can
be approximated by an BQP problem with band matrix, i.e.
the matrix M = {mij} satisfies mij = 0 if |i− j| ≥ L where
L is the band size. This problem is highly structured and can
be solved efficiently. In this note the algorithm that solves
this class of problems is presented. The computational burden
of the proposed maximization algorithm is polynomial with
the dimension of the optimization variable and exponential
with L, the band size. The algorithm uses no multiplications
or divisions and it is appropriate to implement the inner
optimization of the min-max problem. The primary goal is to
provide a detailed description and computational experiments
of the algorithm for BQP problems with band structure. The
results in this note complements the previous work [2].

The paper is organized as follows: In Section II some
preliminary notation is introduced. The problem formulation
is presented in Section III. Section IV presents the main
contribution of the paper. An example of application is shown
is Section V. The computational burden of the proposed
algorithm is analyzed in Section VI. The paper ends with a
section of conclusions.

II. PRELIMINARY NOTATION

Given a vector w, w(k) denotes the k-th component of the
vector. Vector 0̄n is a vector of zeros of dimension n. Given
n, Bn = {w ∈ R

n : w(k) ∈ {−1, 1}, k = 1, . . . , n} denotes
the set of vertices of the unit-hypercube in R

n. Given a vector
w ∈ R

n and an integer k (1 ≤ k ≤ n), sk(w) = [w(n + 1 −
k), . . . , w(n− 1), w(n)]T ∈ R

k denotes the suffix of length
k of w.

III. PROBLEM FORMULATION

The objective of binary quadratic programming (BQP) is to
find, given a symmetric matrix M and a vector q, a binary
vector w of dimension N that maximizes:

F (w) = wT Mw + qT w. (1)

In this paper an algorithm to solve efficiently BQP problems
in which the matrix M = {mij} has a band structure, that is,
mij = 0 if |i−j| ≥ L, where L is the band size, is presented.
The algorithm exploits the structure of the matrix to build a set
of 2L hypotheses that contains the maximum. To build this set
and evaluate the maximum, the algorithm requires a number
of evaluations of F (w) equal to (N−L)2L. The maximization
problem, that will be referred to as “L-Band” problem from
now on, is:

γ∗ = max
w∈BN

F (w) = max
w∈BN

wT Mw + qT w, (2)

where M is a band matrix with band size L.
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A. Min-Max Model Predictive Control

The algorithm proposed in this note complements the results
presented in [2] on min-max model predictive control. Min-
max robust receding horizon control was first proposed by
Witsenhausen [21]. In the context of robust MPC, the problem
was tackled by Campo and Morari [8]. See [14] and [13]
for a discussion on the estability properties of this class of
controllers. The problem that has to be solved in order to
obtain the optimum input is of the form:

J∗(x) = min
u

max
‖w‖∞≤1

J(x, u, w), (3)

subject to linear constraints in x and u. The state vector is
x. The optimization vector u is the input trajectory that is
used to minimize the worst case cost. Vector w ∈ R

N is the
uncertainty trajectory. The uncertainty is supposed to lie in
the unit box1, i.e. ‖w‖∞ ≤ 1. The objective function when a
quadratic cost function is taken into account can be expressed
as follows:

J(x, u, w) = wT MMPCw + qMPC(x, u)T w + J(x, u, 0̄N ).

This cost function depends on the original weighting matrices
of the cost function, the linear system description and the
uncertainty bound. See for example [7] for details on how
to compute these matrices.

Therefore, the computation the inner maximization problem
has the same form as the BQP cost function stated in (1). And
because the maximum of a convex function can be found in
at least one vertex of the feasibility region, i.e. w∗ ∈ BN

(see [5], theorem 3.4.6), this problem indeed belongs to the
class of BQP problems. This makes solving (3) a hard issue.
Although it is a convex problem, each time the maximum has
to be evaluated, a BQP problem has to be solved. It follows
that in general, large scale BQP solving techniques are not
appropriate and specific solvers are needed.

If matrix MMPC is a band matrix, the maximization func-
tion can be done efficiently (in polynomial time) using the
algorithm proposed in this note and the control law can be
evaluated using standard optimization algorithms for convex
problems. In [2] an approximate formulation that guarantees
that matrix MMPC is a band matrix was presented. This
controller guarantees that the closed-loop system is ultimately
bounded in a closed region that contains the origin. The size
of this region depends of the approximation error, which can
be made arbitrarily small increasing the band size. Note that
increasing the band size increases the computational burden
of solving the corresponding BQP problems. This implies
that there is a tradeoff between precision and computational
complexity.

The L-Band approximation is appropriate when the control
action of a min-max MPC is obtained computing a sequence
of correction control actions to a given stabilizing control
law (see [6], [12]). In this case the |mij | decreases in an
exponential way with |i − j| and the original problem can
be approximated efficiently by an BQP problem with band
structure. Moreover, if the stabilizing control law is chosen in

1Arbitrary box constraints can be scaled to the unit box

such a way that all the eigenvalues of the closed loop system
are at the origin (dead-beat control), then matrix MMPC has
a band structure and no approximation is required. See [2] for
more details on the approximation technique.

IV. L-BAND MAXIMIZATION ALGORITHM

In this section the main results of the note are presented.
First a general procedure to solve a quadratic maximization
problem (regardless of the structure of matrix M ) is in-
troduced. The algorithm for L-Band problems follows this
procedure exploiting the structure of matrix M to implement
it in an efficient way. The following definitions are used to
describe the general procedure.

Definition 1: The solution set SN is defined as the set of
vertices of BN for which the maximum is attained.

SN = {w ∈ BN : F (w) = γ∗}.
Definition 2: Given the integer k, 1 ≤ k < N , we define

the solution set of order k, denoted Sk, as the following set
in Bk:

Sk = {w ∈ Bk : There is α ∈ BN−k such that [wT αT ]T ∈ SN}.
Algorithm 1: General BQP solving algorithm (2 ≤ L ≤

N ):

1) CL−1 = BL−1

2) For k = L to N

a) Obtain the hypothesis set Hk from Ck−1 as fol-
lows:

Hk = {[wT β]T : w ∈ Ck−1, β ∈ B1}.

b) Obtain a candidates subset Ck ⊆ Hk such that
Ck

⋂
Sk is not the empty set.

3) end for
Property 1: The candidates set CN obtained from Algo-

rithm 1 satisfies:

γ∗ = max
w∈CN

F (w).

Proof:
As SL−1 ⊆ BL−1 = CL−1 and the algorithm assures at

each iteration t k, Ck

⋂
Sk is not the empty set, there exists

at least a vector w ∈ CN such that F (w) = γ∗.
The hypotheses set contains all possible vectors of size k

that can be obtained from the candidates set of size k − 1.
From this set a smaller subset is built rejecting those vertices
that are known not to be part of the solution set Sk. This is
the candidates set. The higher the number of rejected vertices,
the more efficient is the algorithm.

In general, without any prior knowledge, it is not possible to
reject any vertex that is not full length. In this case CN = BN

and no gain is obtained. For L-Band problems, it is possible to
reject half of the hypothesis vectors in each step. In this case
the number of components of CN is much lower than the
number of vectors in BN so the solution of the maximization
problem is obtained in an efficient manner. In particular, it will
be shown that Ck has 2L−1 elements for k = L − 1, . . . , N .
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A. Eliminating vertices from the hypothesis set

In this section an algorithm to obtain the candidates subset
from the hypothesis subset for L-Band problems is presented.
The algorithm is based on the following result:

Property 2: Consider function (1) where M ∈ R
N×N is a

matrix with band structure and band size L. If s ∈ BL−1 and
pa,pb ∈ Br then:

F (

⎡
⎣pa

s
y

⎤
⎦) − F (

⎡
⎣pb

s
y

⎤
⎦) = F (

⎡
⎣pa

s
0̄k

⎤
⎦) − F (

⎡
⎣pb

s
0̄k

⎤
⎦),

for all y ∈ Bk with k = N − r − L + 1.

Proof: Given the structure of M if s ∈ BL−1, the
objective function can be rewritten as:

F (

⎡
⎣p

s
y

⎤
⎦) =

⎡
⎣p

s
y

⎤
⎦

T ⎡
⎣Mpp Mps 0̄py

MT
ps Mss Msy

0̄T
py MT

sy Myy

⎤
⎦

⎡
⎣p

s
y

⎤
⎦ + qT

⎡
⎣p

s
y

⎤
⎦ ,

where Mpp,Mps,Mss,Msy and Myy are submatrices of M
of appropriate size and 0̄py = 0̄r0̄T

k . The equality is obtained
operating.

Property 2 can be used to eliminate possible beginnings of
the maximum solution. Given all possible vectors w of length
n ≥ L with a given suffix s(w) of length L − 1, only one of
them needs to be considered to obtain the optimal solution.
This idea is applied in the following procedure.

Algorithm 2: Algorithm to build the candidates set Ck from
the hypotheses set Hk.

• Ck = Hk.
• While there exists wa, wb ∈ Ck such that sL−1(wa) =

sL−1(wb):

– If F (
[

wa

0̄N−k

]
) ≥ F (

[
wb

0̄N−k

]
) then Ck = Ck/wb

else Ck = Ck/wa.

• end while

Note that the operator / is the set subtraction operator.
Property 3: If Hk is such that Hk

⋂
Sk is not empty then

the candidate set Ck ⊆ Hk obtained using Algorithm 2
satisfies that Ck

⋂
Sk is not the empty set.

Proof: It suffices to show that no element of Hk

⋂
Sk

is rejected when compared to an element of Hk that does
not belongs to Sk. Suppose w∗ ∈ Hk

⋂
Sk, wb /∈ Sk, and

sL−1(w∗) = sL−1(wb). Then it follows that

F (
[
w∗

α

]
) = γ∗, F (

[
w∗

α

]
) − F (

[
wb

α

]
) > 0.

and applying Property 2

F (
[
w∗

α

]
) − F (

[
wb

α

]
) = F (

[
w∗

0̄N−k

]
) − F (

[
wb

0̄N−k

]
) > 0.

This implies that when w∗ ∈ Hk

⋂
Sk is compared to wb /∈

Sk, w∗ is not subtracted from the candidates set.

B. Algorithm Implementation

The algorithm proposed in this section constructs in a
recursive way a set of candidates for the maximum solution to
Problem (2). The algorithm starts with a set of 2L−1 different
vectors of L − 1 components. These are all the possible
beginnings of a vector. Therefore, it is guaranteed that the
maximum will have one of this beginnings. This is the set of
candidates CL−1.

In each iteration, the algorithm builds a candidate set of
2L−1 vectors with one more component than the previous
iteration. When the vectors have dimension N the algorithm
finishes and the maximum can be evaluated.

When a new component is added, the number of vectors
is doubled, one for each of the possible values of the new
component. This is the hypothesis set Hk (the subindex k
denotes the dimension of the vectors) and it is made of 2L

vectors. To eliminate half of these vectors we use Property 2.
This property allows us to compare vectors with the same
suffix of length L−1, eliminating one of them. We obtain the
new set of candidates vectors Ck, which has 2L−1 elements.

Algorithm 3: Implementation of Algorithms 1-2. Note that
in this algorithm the sub-index indicates enumeration and
not componentwise value of a vector. In each iteration the
dimension of the vector is increased until the candidates set
of full dimension is obtained. The dimension of each vector is
denoted by its super-index. The candidate vectors are denoted
as wk

i while the hypothesis vectors are denoted as hk
i . Proper

enumeration is vital to this algorithm in order to ensure that
the set of candidates is mutually exclusive and yet collectively
exhaustive. In the algorithm this is achieved by connecting the
enumeration to the binary digits of the numbers 0 to 2L − 1.

1) Initial candidates set CL−1 = {wL−1
0 , wL−1

1 , . . .,
wL−1

2L−1−1
} = BL−1.

wL−1
i =

⎡
⎢⎣

wL−1
i (1)

...
wL−1

i (L − 1)

⎤
⎥⎦

with wL−1
i (j) =

{
1 if bL−1

i (j) = 0
−1 if bL−1

i (j) = 1

where bL−1
i (j), j = 1, . . . , L − 1 are the L − 1 binary

digits of i, i.e. i =
L−1∑
j=1

bL−1
i (j)2j−1.

2) For k = L to N

a) Build the hypothesis set Hk =
{hk

0 , hk
1 , . . . , hk

2L−1} from Ck−1 =
{wk−1

0 , wk−1
1 , . . . , wk−1

2L−1−1
}.

hk
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
wk−1

i

1

]
if i ≤ 2L−1 − 1

[
wk−1

i−2L−1

−1

]
otherwise

b) Obtain a candidates subset Ck =
{wk

0 , wk
1 , . . . , wk

2L−1−1} ⊆ Hk such that Ck

⋂
Sk
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is not the empty set.

wk
i =

⎧⎨
⎩

hk
2i if F (

[
hk

2i

0̄N−k

]
) ≥ F (

[
hk

2i+1

0̄N−k

]
)

hk
2i+1 otherwise

3) end for
Property 4: The candidates set

CN = {wN
0 , wN

1 , . . . , wN
2L−1−1}

obtained applying Algorithm 3 satisfies:

γ∗ = max
i=0,...,2L−1−1

F (wN
i ).

Proof: In order to prove Property 4, it must be proved that
Algorithm 3 implements correctly Algorithms 1-2. Part of the
proof is is presented in the appendix. Algorithm 3 enumerates
each vector in a defined way which allows one to obtain the
hypothesis set in an efficient way. Step 1 implements step
1 of Algorithm 1, that is, CL−1 = BL−1. An appropriate
enumeration of each vertex is given.

Step 2(a) implements step 2(a) of Algorithm 1. Given Ck−1,
step 2(a) obtains

Hk = {[wT β]T : w ∈ Ck−1, β ∈ B1}.
An appropriate enumeration of the hypothesis vectors is also
given.

In step 2(b) is implemented the vertex rejection algorithm
(Algorithm 2). The value function of the hypothesis vectors
are compared by pairs. Vector hk

2i is compared to hk
2i+1. In

the appendix is shown that both vectors share the same suffix
of size L − 1, that is

sL−1(hk
2i) = sL−1(hk

2i+1), (4)

i = 0, . . . , 2L−1 − 1, k = L − 1, . . . , N.

Thus, the assumptions of Property 3 are satisfied and the con-
struction of the candidates set Ck (step 2(b) of Algorithm 1)
is done in a correct way.

Note that the cost function for a given hypothesis vector may
be efficiently evaluated using the value of the cost function
previously evaluated of the candidates set. At each iteration
of the algorithm, these values can be obtained with a number
of operations proportional to (∼ O(N)).

V. EXAMPLE

Consider the following example in which N = 4 and L = 3:

M =

⎡
⎢⎢⎣

6 1 −2 0
1 6 1 −2
−2 1 5 2
0 −2 2 4

⎤
⎥⎥⎦ , q =

⎡
⎢⎢⎣

2
−7
8
−1

⎤
⎥⎥⎦ .

The initial candidates set C2 is made up of all possible
beginnings of length L − 1 = 2.

C2 =
w2

0 w2
1 w2

2 w2
3

1 −1 1 −1
1 1 −1 −1

The hypothesis set H3 has the double of vectors because
another component has been added with the two possible

values. The functional is evaluated for each vector, and then,
the next candidates set is made of the ones with the higher
functional between those that have the same suffix of length
2 (recall that L = 3). Entry F k

i denotes the value of the cost
function F (

[
hkT

i 0̄T
N−k

]T
). Note that (4) holds throughout

the example.

H3 =

h3
0 h3

1 h3
2 h3

3 h3
4 h3

5 h3
6 h3

7

1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1

F 3
0 F 3

1 F 3
2 F 3

3 F 3
4 F 3

5 F 3
6 F 3

7

20 20 26 34 8 −8 22 14

The new candidates set has again 2L−1 = 4 vectors, but
now with one more component.

C3 =

w3
0 w3

1 w3
2 w3

3

1 −1 1 1
1 −1 1 −1
1 1 −1 −1

Again the hypothesis set is constructed and the functional
evaluated.

H4 =

h4
0 h4

1 h4
2 h4

3 h4
5 h4

5 h4
6 h4

7

1 −1 1 1 1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1

F 4
0 F 4

1 F 4
2 F 4

3 F 4
4 F 4

5 F 4
6 F 4

7

23 45 3 25 25 31 21 27

The maximum is guaranteed to be in the last candidates set
C4 that is made up of w4

0 = h4
1, w4

2 = h4
3, w4

2 = h4
5 and

w4
3 = h4

7. The maximum is w4
1 = h4

2 and the value of the
functional is 45.

VI. COMPUTATIONAL EFFICIENCY

Generally, the BQP problem is an NP-complete optimization
problem. Without any prior knowledge the complexity of the
computational effort is exponential with N , the dimension of
the optimization variable. The algorithm presented for band
matrices has a computational effort exponential with L, the
band size, but quadratic with N , namely ∼ O(N22L). In
Figure 1 the computational burden of the L-Band algorithm
is shown. The estimation of the order of the complexity is
useful for choosing the band size of the approximated min-max
controller. It is also important to note that the computational
burden is always the same because the algorithm is a sort of
exhaustive efficient search. This is an interesting property for
a control implementation.

As explained in the introduction, there are several different
solution strategies for BQP in the literature. However, most of
them are designed to deal with large scale problems and often
rely on linear programming or semi-definite programming
solvers. For small problems, these techniques are too cumber-
some. In order to demonstrate that the proposed algorithm is
indeed appropriate for LBand problems, we have compared it
with the well known branch and bound technique proposed
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Fig. 1. Computational burden of the L-Band algorithm (a) for fixed N and
varying L and (b) for fixed L and varying N.

in [18]. This technique is appropriate for the comparison
because it uses no multiplications or divisions (as the LBand
algorithm), can be easily implemented and outperforms most
solutions techniques (see [11]) for small sparse problems
(dimension less than 50). This is the class of problems we are
interested (L-Band matrices are sparse). Both algorithms have
been programmed fully in Matlab 6.3. Table I shows compu-
tation results for problems of different dimension N and band
size L. For each dimension and band size a hundred different
problems have been generated using the technique proposed
in [18] for generating random band symmetric matrices with
elements in -100,100. Entry Tlb is the mean computation time
of the LBand algorithm, while Tbb, std, min and max are the
mean, standard deviation, minimum and maximum time of
the branch and bound algorithm respectively. All times are in
seconds.

Note that the LBand algorithm always has the same com-
putational burden, while the branch and bound algorithm has
a standard deviation of the same order of magnitude of the
mean computation time. In the results it can be seen that the
LBand algorithm outperforms the branch and bound algorithm
when the band size is small enough. For increasing values of

TABLE I

COMPARISON WITH THE BRANCH AND BOUND ALGORITHM PRESENTED

IN [18].

N L Tlb Tbb std min max
20 10 0.1410 0.1756 0.0895 0.0310 0.4690
20 15 0.4690 0.3498 0.1657 0.1090 0.9370
20 16 0.7970 0.4428 0.2072 0.1410 1.2970
20 17 1.3590 0.4757 0.2166 0.0630 1.1720
20 18 2.1720 0.4609 0.2111 0.0940 0.9680
20 19 5.5630 0.5189 0.2677 0.1250 1.2660
30 10 0.2340 3.1389 2.4634 0.2820 12.7660
30 15 1.5000 7.3387 4.8364 1.2970 24.0940
35 10 0.0470 12.9916 8.3566 1.3280 46.6250
35 15 2.1250 43.7799 34.3757 3.0470 206.6720
40 10 0.0620 63.2074 58.9678 1.9840 338.8280

L for a dimension of 20, it can be seen that the branch and
bound algorithm is faster.

VII. CONCLUSIONS

In this note an efficient algorithm for solving BQP problems
with band structure is presented. This algorithm is relevant in
the robust MPC context and complements the results presented
in [2]. The algorithm uses no multiplications or divisions and
the computational complexity is shown to depend exponen-
tially on the band size and polynomially on the dimension of
the problem. These properties make the algorithm appropriate
for using it to solve the inner maximization of a min-max
optimization problem. Computational results demonstrate the
efficiency of the algorithm. A comparison with a branch and
bound algorithm is presented.
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APPENDIX

In the following some preliminary results needed to prove
that (4) holds are presented. These results are based on the
properties of the binary digits of a number.

Property 5: The L binary digits bL
i (j), j = 1, . . . , L of i,

i.e. i =
L∑

j=1

bL
i (j)2j−1 have the following properties:

(a) Given 0 ≤ i ≤ 2L − 1 (value of most significant bit),

bL
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
bL−1
i

0

]
if i ≤ 2L−1 − 1

[
bL−1
i−2L−1

1

]
otherwise

(b) Given 0 ≤ i ≤ 2L−1 − 1 (value of least significant bit),

bL
2i(j) = bL

2i+1(j), j = 2, . . . , L.

(c) Given 0 ≤ i ≤ 2L−1 − 1 (shift left bitwise operation),

bL−1
i (j) = bL

2i(j + 1), j = 1, . . . , L − 1.
These properties follow from the definition of bL

i (j).
Property 6: Consider the following enumeration of vertices

of the unit hypercube Bn,

ϑn
i =

⎡
⎢⎣

ϑn
i (1)
...

ϑn
i (n)

⎤
⎥⎦ with ϑn

i (j) =
{

1 if bn
i (j) = 0

−1 if bn
i (j) = 1 (5)

where bn
i (j), j = 1, . . . , n are the n binary digits of i. The

following statements hold:
(a) The vertices ϑL

i can be obtained from the vertices ϑL−1
i

as follows:

ϑL
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
ϑL−1

i

1

]
if i ≤ 2L−1 − 1

[
ϑL−1

i−2L−1

−1

]
otherwise

(b) sL−1(ϑL
2i) = sL−1(ϑL

2i+1) = ϑL−1
i .

Proof: Statement (a) stems directly from Property 5 (a)
and the definition of ϑL

i (j) given in (5). Taking into account
this definition, Property 5 (b) implies that given 0 ≤ i ≤
2L−1 − 1,

ϑL
2i(j) = ϑL

2i+1(j), j = 2, . . . , L.

Recalling the definition of suffix, it follows that sL−1(ϑL
2i) =

sL−1(ϑL
2i+1) and taking into account Property 5 (c) and

again (5), sL−1(ϑL
2i) = ϑL−1

i .
Equation (4) will be proved in a recursive way. Suppose

that sL−1(wk−1
i ) = ϑL−1

i . Then it is easy to see that:

sL(hk
i ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
sL−1(wk−1

i )
1

]
if i ≤ 2L−1 − 1

[
sL−1(wk−1

i−2L−1)
−1

]
otherwise

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
ϑL−1

i

1

]
if i ≤ 2L−1 − 1

[
ϑL−1

i−2L−1

−1

]
otherwise

= ϑL
i .

Note that the last equality is due to the properties of the
proposed enumeration of the vertices of a hyper-cube (see
Property 6). Thus, it is inferred that sL(hk

i ) = ϑL
i . Recall (see

Property 6) that sL−1(ϑL
2i) = sL−1(ϑL

2i+1) = ϑL−1
i . Summing

up, the following equality holds:

sL−1(hk
2i) = sL−1(hk

2i+1) = ϑL−1
i . (6)

Now from the definition of wk
i it is easy to see that:

sL−1(wk
i ) =

⎧⎨
⎩

sL−1(hk
2i) if F (

[
hk

2i

0̄N−k

]
) ≥ F (

[
hk

2i+1

0̄N−k

]
)

sL−1(hk
2i+1) otherwise

Taking into account equation (6) it results that

sL−1(wk
i ) = ϑL−1

i . (7)

For k = L the initial assumption sL−1(wL−1
i ) = ϑL−1

i is
verified by construction. Applying equation (7) recursively and
taking into account (6), equation (4) holds.
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