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Abstract

In general, min–max model predictive controllers have a high computational burden. In this work, an efficient implementation of this class
of controllers that can be applied to linear plants with additive uncertainties and quadratic cost functions is presented. The new approach relies
on the equivalence of the maximization problem with a network problem. If a given condition is satisfied, the computational burden of the
proposed implementation grows polynomially with the prediction horizon. In particular, the resulting optimization problem can be posed as
a quadratic programming problem with a number of constraints and variables that grows in a quadratic manner with the prediction horizon.
An alternative controller has been proposed for those systems that do not satisfy this condition. This alternative controller approximates the
original one with a given bound on the error.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Most control strategies are based on a mathematical model
of the system to be controlled. Using this model, the controller
evaluates the control input. This means that the efficiency of a
controller depends on how precisely the mathematical model
represents the real behavior of the system. This is even more
critical in the case of model predictive control (MPC) where
the control decision is taken on the base of the future predicted
evolution of the system which is obtained using the model.
Nominal MPC algorithms, do not take directly into account
possible model uncertainties and disturbances. Although the
feedback mechanism itself is able to partially compensate for
them, robust MPC controllers that cope with uncertainties in
an explicit way are of interest.

One approach used in MPC when uncertainties are present,
is to minimize the objective function for the worst possible
case. This strategy is known as min–max and was originally
proposed in [32] in the context of robust receding control. In
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robust MPC the problem was first tackled in [9]. In this pa-
per we consider bounded additive uncertainties, for polytopic
and linear fractional uncertainty see [16,31,18,6]. Min–max
MPC schemes can be classified into open-loop and feedback
min–max controllers (see [22]). Feedback min–max MPC ob-
tains a sequence of feedback control laws that minimize the
worst case cost while assuring robust constraint handling. It
requires the solution of a very high dimensional problem that
makes its practical implementation very hard (see [18,30,25]).
For cost functions based on ‖·‖∞ and ‖·‖1 norm, the explicit
solution has been obtained (see [6,14]). This result has not been
extended to quadratic cost functions.

We consider open-loop min–max MPC control. In this strat-
egy, a single control input sequence that minimizes the worst
case cost is obtained (see [9,8,3]). In order to introduce some
feedback in the predictions, a linear feedback stabilizing con-
trol law for the nominal plant is considered [5,2,20]. Based
on these ideas, several reduced complexity robust MPC con-
trol strategies have been proposed in the literature [24,17,23].
For quadratic cost functions, the open-loop min–max problem
results in an optimization problem with a very high com-
putational burden. This is due to the NP-Hard nature of the
maximization problem that arises when the worst case is
evaluated for a given future input trajectory. On-line and
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off-line algorithms for reducing the complexity of this problem
have been studied in [20,26,27,29].

In this work, the preliminary results of [1] are extended
following the ideas presented in [2], and an efficient way of
implementing a constrained min–max predictive controller is
proposed. The new approach relies on the equivalence of the
maximization problem with a min-cut network problem. Using
this equivalence, the min–max problem is solved using a single
quadratic programming (QP) problem. The size (i.e., number of
variables and constraints) of this problem is a quadratic func-
tion of the prediction horizon. Note that quadratic programming
solvers are nowadays a wide-spread technology with plenty of
commercial and non-commercial efficient software available.
A modified controller is proposed for those systems that do not
satisfy the required condition. This controller approximates the
original one with a given bound on the error.

This paper is organized as follows: Section 2 introduces
min–max model predictive control and defines the correspond-
ing optimization problem. Section 3 shows the computational
burden required to implement this controller. In Section 4 we
introduce network problems. In Section 5 the equivalence be-
tween the maximization problem and a network problem is
proved and the quadratic programming formulation based on
this equivalence is presented. Section 6 introduces the modi-
fied controller for those systems which do not satisfy the nec-
essary condition. The paper draws to a close with a section of
conclusions.

2. Problem formulation

Consider the following discrete-time linear system with
bounded additive uncertainties:

xk+1 = Axk + Buk + Dwk , (1)

where xk ∈ Rnx is the state, uk ∈ Rnu is the control input, and
wk ∈ Rnw is the uncertainty that is supposed to be bounded by
the unit hypercube; that is

wk ∈ W = {w ∈ Rnw : ‖w‖∞ �1}.
Note that if W is an hyper-rectangle, it is always possible to
scale matrix D in order to bound w by means of the unit
hypercube.

The control input is given by uk = Kxk + vk , where K

is chosen in order to achieve some desired property for the
unconstrained nominal problem [5,2,20]. The MPC controller
computes the optimal sequence of control correction efforts vk .
Defining AK = (A + BK), the dynamics of the system can be
rewritten as:

xk+1 = AKxk + Bvk + Dwk .

The objective function is defined as

V (x, v, w) =
N−1∑
j=0

[xT
j Qxj + uT

j Ruj ] + xT
NPxN , (2)

with Q�0, P �0 and R > 0. Matrix P defines the ter-
minal cost function. The initial state is x0 = x, vector

v = [vT
0 , vT

1 , . . . , vT
N−1]T denotes the sequence of control cor-

rection efforts and w = [wT
0 , wT

1 , . . . , wT
N−1]T denotes the se-

quence of disturbances. Variables xj and uj with j �0 are the
predicted state and control input respectively and are given by

xj (x, v, w) = A
j
Kx +

j∑
i=1

Ai−1
K Bvj−i +

j∑
i=1

Ai−1
K Dwj−i ,

uj (x, v, w) = Kxj + vj . (3)

We consider linear constraints in state and input, xk ∈ X, uk ∈
U , where X and U are polyhedral sets. In order to achieve
stability, a terminal region constraint defined by a polyhedron,
xN ∈ �, is also taken into account. The min–max constrained
predictive controller is defined by the following optimization
problem (denoted P(x)):

J ∗(x) = min
v

max
w∈WN

V (x, v, w)

s.t. xj (x, v, w) ∈ X, ∀w ∈ WN ,

j = 0, . . . , N − 1,

xN(x, v, w) ∈ �, ∀w ∈ WN ,

uj (x, v, w) ∈ U, ∀w ∈ WN ,

j = 0, . . . , N − 1, (4)

where WN denotes the set of possible disturbance trajectories
w of length N .

WN = {w ∈ RNnw : ‖w‖∞ �1}.
The controller is implemented in a receding horizon scheme.
The optimization problem is solved at each sample instant for
the current state x. An optimal vector of control correction sig-
nals v∗ is obtained and the control input u0=Kx+v∗

0=KMPC(x)

is applied. In order to guarantee stability of the closed-loop
system, the terminal region � and the terminal cost function P

must be chosen properly. See [25] for a review on MPC sta-
bility issues. In [2], the conditions that must be satisfied to as-
sure robust convergence to a bounded set while assuring robust
constraint satisfaction were presented.

3. MPC computation

In this section, the optimization problem that characterizes
the proposed min–max MPC control strategy is presented. It is
shown that the resulting optimization problem can be posed as a
quadratic min–max problem subject to a set of linear constraints
that do not depend on the uncertainty.

Let us define the feasible set SF as the pairs (x, v) which
satisfy the constraints of problem (4). Taking into account (3),
when X, � and U are polyhedral regions defined by rx , ru and
r� linear constraints, respectively, the feasible set SF can be
expressed as

SF = {(x, v): Gxx + Gvv + Gww�m, ∀w ∈ WN }, (5)

where Gx , Gv , Gw and m are matrices of appropriate dimen-
sions with one row for each linear constraint of (4); that is,
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N(rx +ru)+r� rows. For the system described (i.e., linear sys-
tems with additive uncertainties) it is possible to eliminate the
uncertainty from the constraints while still assuring robustness.
As each linear constraint must be satisfied for all possible future
uncertainty realizations, it can be seen that SF is equivalent to

SF = {(x, v)|Gxx + Gvv�g},
where g is a vector that satisfies

eT
i g = eT

i m − max‖w‖∞ �1
eT
i Gww = eT

i m − ‖GT
wei‖1,

with ei the ith column of the identity matrix. Note that WN is
defined as ‖w‖∞ �1.

The cost function, V (x, v, w), is a quadratic convex function
of x, v and w. Taking into account (3), matrices Hx , Hv and
Hw can be found such that

V (x, v, w) = ‖Hxx + Hvv + Hww‖2
2.

We conclude that P(x) can be rewritten as

J ∗(x) = min
v

max‖w‖∞ �1
‖Hxx + Hvv + Hww‖2

2

s.t Gvv + Gxx�g. (6)

The objective function of the minimization problem is a con-
vex function on v because it is defined as the point-wise maxi-
mum of a convex function. This implies that P(x) is a convex
optimization problem. It is well known that convex optimiza-
tion problems can be solved efficiently if it is possible to eval-
uate the objective function and a subgradient. Cutting plane
methods, the ellipsoid algorithm, bundle methods and gradi-
ent methods can be applied to solve problem (4) given a way
to evaluate the objective function (see [7,15,12] and the refer-
ences therein). However, this optimization problem is of high
complexity. Defining the max function as

V ∗(x, v) = max‖w‖∞ �1
wTMw + qT(x, v)w (7)

with

M = HT
wHw �0, q(x, v) = 2HT

w(Hxx + Hvv),

the min–max problem P(x) can be posed as

J ∗(x) = min
v

V (x, v, 0) + V ∗(x, v)

s.t. Gvv + Gxx�g, (8)

with V (x, v, 0) = ‖Hxx + Hvv‖2
2.

This optimization problem is of high complexity because
the evaluation of the max function is an NP-Hard problem.
The maximum of a convex function is found in the bound-
ary of the feasible region, thus the maximum will be attained
at least at one of the vertices of the polyhedron WN (see
[4, Theorem 3.4.6]). Without any prior knowledge, to evaluate
V ∗(x, v), all the vertices have to be explored and 2Nnw evalua-
tions of a quadratic function are required. This implies that the
complexity of evaluating the max function grows exponentially
with the prediction horizon (∼ 2Nnw), rendering the computa-
tion of the optimal control sequence v∗ a very difficult task.

In this work, we present an efficient way of solving the
min–max problem for systems in which all the elements of
matrix M are non-negative. This implementation is based on
the well known equivalence of quadratic maximization prob-
lems with min-cut problems. Taking advantage of this equiva-
lence, V ∗(x, v) can be evaluated using a linear programming
(LP) minimization problem and hence, the min–max problem
is solved using a single QP problem. It is also proposed an ap-
proximate formulation of the problem that can be applied to
any system.

4. Network flow problems

In this section, network maximum flow and minimum cut
problems are presented. These optimization problems are of
interest for robust MPC because there exists a direct relation
between them and problem (7) (see [28,19]). Network flow
problems are classic optimization problems and there are effi-
cient optimization algorithms to solve them (see for example
[11,10]). Based on this relation, the min–max problem P(x)

can be solved by means of a single quadratic programming
(QP) problem.

A network is an information structure made of nodes and arcs
that interconnect them. They can be represented as graphs. We
consider transport networks, where each arc is characterized
by a capacity that defines the maximum flow that can be trans-
ported through it. Transport networks are defined byG=[N, C]
where N represents the nodes n0, . . . , nn+1 and C represents
the arcs connecting these nodes. For any two nodes ni and nj ,
cij is the capacity of the arc between both of them. The node
n0 is denoted as the source. The node nn+1 is denoted as the
sink. The rest of the nodes are denoted as interior nodes. The
capacities of the arcs that arrive to or depart from the source
(c0,i or ci,0) are denoted as source capacities. The capacities of
the arcs that arrive to or depart from the sink (cn+1,i or ci,n+1)
are denoted as sink capacities. The rest of the capacities are
denoted as interior capacities. Fig. 1 presents a network where
the arcs with null capacity are not shown.

In the maximum flow problem, the unknown is the flow
distribution of the network. A flow distribution F =[fij ] defines

n1

n2

n3

n4

n5

n6

source sink

source

capacities sink

capacities

interior

capacities

Fig. 1. Example of a network.
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Fig. 2. (a) Example of a cut. (b) Capacity of a cut.

the flow that is transported through a given network. The entry
fij denotes the flow from node ni to node nj . It has to be lower
than the arc capacity cij . A feasible flow distribution must also
satisfy the flow conservation law. This law states that the flow
transported through a network enters only through the source
and leaves only from the sink. In this way; for any interior
node, the total flow that enters the node must be equal to the
total flow that leaves the node. The total flow leaving the source
must be equal to the total flow entering the sink. This quantity
defines the flow that passes through the network. The max-flow
problem is formulated as finding the maximum flow that can
be transported from source to sink through a given network.

The max-flow problem can be posed as an LP problem as
follows:

F∗
N = max

F

n+1∑
i=0

f0,i −
n+1∑
i=0

fi,0

s.t. 0�fij �cij , ∀i, j ,

n+1∑
i=0

fij =
n+1∑
i=0

fji, 1�j �n,

n+1∑
i=0

f0,i −
n+1∑
i=0

fi,0 =
n+1∑
i=0

fi,n+1 −
n+1∑
i=0

fn+1,i .

(9)

All the capacities are assumed to be positive. The constraints
of the problem model the constraint on the maximum flow that
can be transported through an arc and the flow conservation
law. A flow by definition must be positive or zero. The dual of
this problem is finding the minimum cut of the network which
can be described as follows:

Let n0 and nn+1 be source and sink respectively for G. A
cut separating n0 and nn+1 can be then defined as any node
partition (S, S̄) where n0 ∈ S and nn+1 ∈ S̄, S ∪ S̄ = N, and
S ∩ S̄ = ∅. Fig. 2(a) shows an example of a cut for the given
network. The capacity of (S, S̄) is defined as

CN(S, S̄) =
∑
ni∈S

∑
nj ∈S̄

cij ,

that is, the capacity of all the arcs that connect a node of S

with a node of S̄. As the flow conservation law must hold for
a feasible flow distribution, any capacity of a cut of a network
is an upper bound of the maximum flow. This is a well-known
result and follows from the duality of both problems, see [14,13]
and Fig. 2(b). The minimum cut separating source and sink is
defined as the cut with minimum capacity.

In the minimum cut problem, the unknown is a cut. All cuts
can be represented by a binary vector [�0, . . . , �n+1]T where
�i = −1 if ni ∈ S and �i = 1 if ni ∈ S̄. By definition, �0 = −1
and �n+1 = 1. The capacity of a cut is given by the following
expression:

CN(�) =
n+1∑
i=0

n+1∑
j=0

cij

1 − �i

2

1 + �j

2
.

The min-cut problem is formulated as follows:

C∗
N = min

�i∈{−1,1}
CN(�)

s.t. �0 = −1, �n+1 = 1. (10)

Duality of the min-cut and max-flow problems implies that:

F∗
N = C∗

N.

This is a well-known result in network theory. When all the
capacities are non-negative, these problems can be solved effi-
ciently and algorithms are given [14,13]. However, if there are
positive and negative capacities, both problems are known to
be NP-Hard. In the following section, it is proved that network
flow problems are equivalent to the maximization problem (7),
and that if a given condition holds, the equivalent networks as-
sociated have all the capacities non-negative. In this case, it
is possible to solve problem (7) by means of the solution of
problem (9).

5. Equivalence of network and min–max problems

In this section, the maximization problem (7) is shown to
be equivalent to a min-cut network problem. This is a well
known result due to Picard and Ratliff in 1974 (see [28,19]).
However, to the best knowledge of the authors, this result
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has not been applied in the context of min-max MPC. Us-
ing this equivalence, V ∗(x, v) can be evaluated solving an LP
problem.

Theorem 1. Given a quadratic function defined by M �0, and
vector q, finding a network G=[N, C] and a constant e which
satisfy:

max‖w‖∞ �1
wTMw + qTw = e − C∗

N,

is always possible. Moreover, if all the elements of M are non-
negative, then it is possible to find a network in which all the
capacities are non-negative.

Proof. A cut can be represented by a binary vector [�0, . . . ,

�n+1]T where �i = −1 if ni ∈ S and �i = 1 if ni ∈ S̄. By
definition, �0 = −1 and �n+1 = 1. The capacity of a cut is
given by

4CN(�) =
n+1∑
i=0

n+1∑
j=0

cij (1 − �i )(1 + �j ).

Let us define w=[w1 . . . wn]T, where wi=�i for all i=1, . . . , n,
and �=[−1wT1]T. Taking into account that �0 =−1, �n+1 =1
and �i = wi the following equalities hold:

4CN

⎛
⎜⎜⎝
⎡
⎢⎢⎣

−1

w

1

⎤
⎥⎥⎦
⎞
⎟⎟⎠

= 4c0,n+1 + 2
n∑

j=1

c0,j (1 + wj) + 2
n∑

i=1

ci,n+1(1 − wi)

+
n∑

i=1

n∑
j=1

cij (1 − wi)(1 + wj)

= 4c0,n+1 + 2
n∑

i=1

(c0,i (1 + wi) + ci,n+1(1 − wi))

+
n∑

i=1

n∑
j=1

cij (1 − wi)(1 + wj)

= 4c0,n+1 + 2
n∑

i=1

(c0,i + ci,n+1) + 2
n∑

i=1

(c0,i − ci,n+1)wi

+
n∑

i=1

n∑
j=1

cij −
n∑

i=1

n∑
j=1

cijwi +
n∑

i=1

n∑
j=1

cijwj

−
n∑

i=1

n∑
j=1

cijwiwj .

Thus,

4CN

⎛
⎜⎜⎝
⎡
⎢⎢⎣

−1

w

1

⎤
⎥⎥⎦
⎞
⎟⎟⎠=4c0,n+1+

n∑
i=1

n∑
j=1

cij+2
n∑

i=1

(c0,i+ci,n+1)

+
n∑

i=1

(2(c0,i−ci,n+1)+
n∑

j=1

(cji−cij ))wi

−
n∑

i=1

n∑
j=1

cijwiwj , (11)

and so

wTMw + qTw =
n∑

i=1

n∑
j=1

Mijwiwj

+
n∑

i=1

qiwi = e − CN

⎛
⎜⎜⎝
⎡
⎢⎢⎣

−1

w

1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ ,

if the following equalities are satisfied:

4Mij = cij , i, j = 1, . . . , n, (12a)

2qi = ci,n+1 − c0,i , i = 1, . . . , n, (12b)

4e = 4c0,n+1 +
n∑

i=1

n∑
j=1

cij + 2
n∑

i=1

(c0,i + ci,n+1). (12c)

Note that in these equations it has been taken into account that
M is a symmetric matrix. This implies that cji − cij = 0 for
i, j = 1, . . . , n. In order to show that if all the elements of M

are non-negative, it is always possible to find a network such
that all the capacities are non-negative and (12) is satisfied,
consider the following choice of capacities:

cij = 4Mij , i, j = 1, . . . , n,

c0,i = max{0, −2qi}, i = 1, . . . , n,

ci,n+1 = max{0, 2qi}, i = 1, . . . , n,

ci,0 = cn+1,i = 0, i = 1, . . . , n,

c0,n+1 = cn+1,0 = c0,0 = cn+1,n+1 = 0,

e = 1

4

n∑
i=1

n∑
j=1

cij + 1

2

n∑
i=1

(c0,i + ci,n+1). (13)

This particular choice of the capacities and the scalar e,
guarantees that the constraints of (12) are satisfied and that
all the capacities are non-negative. Taking into account that
M �0, the maximum is attained at least at one of the ver-
tices of the polyhedron ‖w‖∞ �1 (see [4, Theorem 3.4.6]).
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This implies that the following equalities hold:

max‖w‖∞ �1
wTMw + qTw = max

wi∈{−1,1} wTMw + qTw

= max
wi∈{−1,1} e − CN

⎛
⎜⎝
⎡
⎢⎣

−1

w

1

⎤
⎥⎦
⎞
⎟⎠

= e − min
wi∈{−1,1}CN

⎛
⎜⎝
⎡
⎢⎣

−1

w

1

⎤
⎥⎦
⎞
⎟⎠

= e − C∗
N. �

Given M and q, there exists an infinite number of capacity
distributions C and scalars e such that (12) is satisfied. That is,
there is an infinite number of networks such that Theorem 1
holds and that the corresponding solution to the minimum cut
network problem provides the solution to the max problem.

Taking into account duality, for a given network with non-
negative capacities F∗

N = C∗
N. This implies that C∗

N can be
evaluated solving (9). It follows that:

max‖w‖∞ �1
wTMw + qTw

= min
C.e.F

e −
(

n+1∑
i=0

f0,i −
n+1∑
i=o

fi,0

)

s.t. 4Mij = cij , i, j = 1, . . . , n,

2qi = ci,n+1 − c0,i ,

i = 1, . . . , n,

4e = 4c0,n+1 +
n∑

i=1

n∑
j=1

cij

+ 2
n∑

i=1

(c0,i + ci,n+1),

0�fij �cij , ∀i, j ,

n+1∑
i=0

fij =
n+1∑
i=0

fji, 1�j �n,

n+1∑
i=0

f0,i −
n+1∑
i=0

fi,0

=
n+1∑
i=0

fi,n+1 −
n+1∑
i=0

fn+1,i .

(14)

In this problem, the number of nodes is fixed by the dimension
of the uncertainty vector w, while the capacities of the network
are free variables that must satisfy a set of linear constraints.
These constraints are defined by (12). A variable e is also added
to the optimization problem. For a feasible set of constraints,
Theorem 1 holds and V ∗(x, v) = e − C∗

N.

Solving the quadratic maximization problem using a LP
problem is a huge advantage. Linear programming is a mature
field and there are plenty of efficient solvers available. In Table 1
the computation time for different problems is shown. The
results have been obtained from the solution of 200 hundred
random problems. Entry Tmm is the mean time to evaluate
all the vertices, while Tmf is the mean time of evaluating
problem (14) using GLPK [21]. It can be seen that there is a
large difference that grows in an exponential manner with the
prediction horizon.

Note that because of duality, any feasible solution of the LP
problem gives a higher value than the maximum of the quadratic
function, so to evaluate this maximum, a minimization has to be
done. This change of sense of the optimization problem allows
one to solve the min-max problem, as a single minimization
problem, in particular, a QP problem. This formulation is de-
tailed in the following subsection.

5.1. Quadratic formulation

In this paper, the min–max problem is solved using a single
quadratic programming (QP) problem. The size (i.e., number of
variables and constraints) of this problem is a quadratic function
of the prediction horizon. Note that quadratic programming
solvers are nowadays a wide-spread technology. The main idea
is to solve (7) and (8) in a single optimization problem. Taking
into account (14), it can be seen that because the maximization
is solved minimizing a linear cost function subject to linear
constraints, problems (7) and (8) can be solved simultaneously
with a single quadratic problem. Taking into account (14) and
the definition of V (x, v, 0) it follows that P(x) is equivalent to
the following QP problem:

J ∗(x) = min
v,C,e,F

‖Hxx + Hvv‖2
2 + e −

(
n+1∑
i=0

f0,i −
n+1∑
i=0

fi,0

)

s.t. Gvv + Gxx�g,

4Mij = cij , i, j = 1, . . . , n,

2qi = ci,n+1 − c0,i , i = 1, . . . , n,

4e = 4c0,n+1 +
n∑

i=1

n∑
j=1

cij

+ 2
n∑

i=1

(c0,i + ci,n+1),

0�fij �cij , ∀i, j ,

n+1∑
i=0

fij =
n+1∑
i=0

fji, 1�j �n,

n+1∑
i=0

f0,i−
n+1∑
i=0

fi,0=
n+1∑
i=0

fi,n+1−
n+1∑
i=0

fn+1,i .

(15)

The size of this QP problem depends in a quadratic manner
with the prediction horizon. Eq. (13) states that cij = 4Mij ,
∀i, j = 1, . . . , n, ci,0 = cn+1,i = 0, ∀i = 1, . . . , n and c0,n+1 =
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Table 1
Mean computation time for evaluating a quadratic maximization problem of dimension n

n 1 3 5 7 9 11

Tmm (s) 0 0.0002 0.0003 0.0005 0.0023 0.0064
Tmf (s) 0.0013 0.0020 0.0027 0.0050 0.0063 0.0102

n 13 15 20 25 30 35

Tmm (s) 0.0335 0.2044 70.7810 – – –
Tmf (s) 0.0154 0.0256 0.0545 0.0813 0.0913 0.1931

cn+1,0 = c0,0 = cn+1,n+1 =0 provide a feasible set of capacities
that satisfies (12). Because the flow must be non-negative, for
this choice of capacities the flow variables satisfy fi,0=fn+1,i=
0, ∀i = 1, . . . , n and f0,n+1 = fn+1,0 = f0,0 = fn+1,n+1 = 0.
It follows that the number of variables needed to evaluate the
max function can be reduced to n2 + 4n + 1 where n is the
dimension of the future uncertainty vector (Nnw). Note that
being able to compute the whole min–max problem as a single
minimization problem broadens the class of systems to which
min–max MPC can be applied.

6. Generalization of the approach

The proposed implementation of the min–max MPC con-
troller can only be used if matrix M (which describes the
quadratic dependence of the value function V (x, v, w) with
respect to w) has only non-negative elements. This necessary
condition does not hold in general. This matrix depends on
the parameters of the system and the controller. One family
of systems where the necessary condition is not too restrictive
are SiSo systems. In this case, the elements of M are all non-
negative if the system has a constant sign impulse response
with respect to the additive uncertainty. In this paper, we pro-
pose a modification of the functional that allows us to use this
approach for any system while preserving the stability and ro-
bustness properties of the original controller. The new func-
tional will be denoted Ṽ (x, v, w) and differs from the original
one only in a quadratic term on w.

Ṽ (x, v, w) = V (x, v, w) + wTSw = V (x, v, 0)

+ wT(M + S)w + q(x, v)Tw.

The modified max function is denoted

Ṽ ∗(x, v) = max‖w‖∞ �1
wT(M + S)w + q(x, v)Tw.

The new min–max problem P(x) is stated as

J̃ ∗(x) = min
v

V (x, v, 0) + Ṽ ∗(x, v)

s.t. Gvv + Gxx�g. (16)

Note that the feasibility regions of P(x) and P̃ (x) are the
same because the two problems are subject to the same set
of constraints and so, robust constraint satisfaction of the
closed-loop system is guaranteed. In what follows, a pro-
cedure to obtain a matrix S which minimizes a bound on
the error is presented. In [2] it is proved that the modified

control law maintains the robustness and stability properties of
the original controller from a qualitative point of view. Using
this approach, it is possible to apply an approximate min–max
control law on any given system.

Theorem 2. (Alamo et al. [2], Theorem 2). Compute S�0 and
diagonal matrix T �0 that solve the following LMI problem:

min
S,T

trace T

s.t. 0�S�T

Mi,j + Si,j �0, ∀i, ∀j

Then making � = trace T it results that M̃ = M + S has non-
negative elements and:

V ∗(x, v)� Ṽ ∗(x, v)�V ∗(x, v) + �.

Proof. As S�0, it results that

wTMw�wT(M + S)w, ∀w.

This implies that V ∗(x, v)� Ṽ ∗(x, v). On the other hand, as
S�T , and T is a diagonal matrix it holds

wT(M + S)w�wT(M + T )w, ∀w.

Taking into account that

max‖w‖∞ �1
wTT w = trace T = �,

it follows that, Ṽ ∗(x, v)�V ∗(x, v) + �. �

Using this approximation, in [2] is proved that � is a bound
on the error on the original optimization problem, i.e.

J ∗(x)� J̃ ∗(x)�J ∗(x) + �.

Note that a priori bounds on � cannot be provided. The bound
on the approximation error, depends on the parameters of the
system and the controller which characterize the elements of
matrix M .

7. An illustrative example

Let us consider the linear uncertain system:

xk+1 =
[1 1

0 1

]
xk +

[0

1

]
uk +

[1

0

]
wk ,
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Table 2
Comparison of the proposed implementation with the vertex exploration implementation for different prediction horizons

N 7 8 9 10 11 12

� 0 0 0.0275 0.0751 0.1953 0.2584
Tmm(s) 0.40 0.47 1.06 1.83 3.42 8.68
Tmf (s) 0.004 0.004 0.005 0.006 0.012 0.012
Error v 0 0 0.0002 0.0008 0.0004 0.0012
Error J ∗ % 0 0 0.01 0.04 0.09 0.17

N 13 14 15 20 25 30

� 0.3218 0.3818 0.4411 0.5279 0.7522 0.9765
Tmm(s) 16.84 51.98 140.23 – – –
Tmf (s) 0.012 0.012 0.012 0.0422 0.0984 0.1266
Error v 0.0014 0.0039 0.0027 – – –
Error J ∗% 0.23 0.24 0.25 – – –

where both the state and the control action are constrained,
namely ‖xk‖∞ �5 and |uk|�5. The uncertainty is bounded,
‖wk‖��, � = 1. The objective function is defined by matrices
Q = I and R = 1. The control gain matrix K = [−0.4221 −
1.2439] corresponds to an LQR control law. The terminal region
� is chosen as the maximal robust invariant set of the system
for K . The terminal cost function is defined by

P =
[4.0696 3.8641

3.8641 6.6199

]
.

In Table 2, the proposed approximate implementation (16) eval-
uated using a single QP problem, has been compared with the
original min–max controller evaluated using the Matlab func-
tion fmincon to minimize the max function, which is computed
evaluating all possible vertices. The comparison has been done
for different prediction horizons over a hundred different fea-
sible states. The results of Table 2 present the mean values
over these different experiments. As it is stated in Theorem 2,
the difference between the optimum value J ∗(x) and the one
obtained with the optimal solution of the modified problem is
bounded by �. Note that for N �8, there is no approximation
error. Entry “Error v” is the error |v∗

0(x)− ṽ∗
0(x)|. Entry “Error

J ∗” is the relative error in the cost function in percentage. En-
try “Tmm” is the mean time to evaluate all the vertices, while
entry “Tmf ” is the mean time of evaluating the modified ver-
sion of problem (15) defined by M +S using Cplex [16]. It can
be seen that the computation time of the vertex enumeration
algorithm grows in an exponential manner with the prediction
horizon. This is not the case for the quadratic formulation. In
this case, the size of the QP problem grows polynomially with
the prediction horizon.

8. Conclusions

In this paper, an efficient implementation of an MPC ro-
bust controller has been presented. If matrix M has only non-
negative elements, the computational burden is polynomial with
the control and prediction horizon, while the original problem
has an exponential complexity if the maximization is done by
means of an extensive vertex search. In fact, the resulting opti-
mization problem is a QP problem, which allows one to use the

efficient solvers available and even implement the controller
using the explicit solution of the QP problem. This QP problem
has a number of variables and constraints that grows, not ex-
ponentially, but in a quadratic manner with the prediction hori-
zon. A modified controller has been proposed for those systems
that do not satisfy the condition required to solve the problem
in polynomial time. This modified controller can be shown to
preserve stability. The proposed implementation broadens the
family of real plants to which a min–max MPC control can be
applied.
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