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Abstract

This paper presents a new approach to guaranteed state estimation for nonlinear discrete-time systems with a bounded description of noise
and parameters. The sets of states that are consistent with the evolution of the system, the measured outputs and bounded noise and parameters
are represented by zonotopes. DC programming and intersection operations are used to obtain a tight bound. An example is given to illustrate
the proposed algorithm.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The purpose of this paper is to present a new state estima-
tor for uncertain discrete-time nonlinear dynamic systems. The
Kalman filter theory provides an estimation of the state of a
given process based on output measurements. This estimation
is optimal with respect to the error variance. A different alter-
native is to consider a norm-bounded uncertainty. This hypoth-
esis is used by the set-membership approach (Calafiore, 2005;
Garulli, Tesi, & Vicino, 1999; Milanese, Norton, Piet-Lahanier,
& Walter, 1996) and it is adopted in this paper. This strategy
builds a compact set that bounds the states of the system that
are consistent with the measured output and the norm-bounded
uncertainty.

In the set-membership approach, several geometric figures
have been used to bound the consistent state set. The applica-
tion of ellipsoidal sets to the state estimation problem has been
introduced in pioneering works (Schweppe, 1968) and by dif-
ferent authors. See, for example, Kurzhanski and Valyi (1996),
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Savkin and Petersen (1998), El Ghaoui and Calafiore (2001)
and Durieu, Walter, and Polyak (2001).

The use of polyhedrons was proposed by Kuntsevich and
Lychak (1985) to obtain an increased estimation accuracy.
In Kieffer, Jaulin, and Walter (2002), a guaranteed recursive
nonlinear estimator based on an interval branch-and-bound
algorithm is given. To improve the exponential complexity, con-
sistency techniques are considered in Jaulin (2002). The com-
plexity of these representations grows considerably with the
number of observations and the order of the system. An alterna-
tive approach based on parallelotopes was presented in Chisci,
Garulli, and Zappa (1996), Chisci, Garulli, Vicino, and Zappa
(1998), where minimum-volume bounding parallelotopes are
used to estimate the state of a discrete-linear dynamic system.
Also, the state estimation problem for piecewise affine systems
is addressed in Rakovic and Mayne (2004) using polyhedrons.

A zonotope is a linear transformation of a unitary box
(Montgomery, 1989; Shephard, 1974). They have been used
in Puig, Cugueró, and Quevedo (2001) and Combastel (2003)
to build a worst-case state estimator. In Puig et al. (2001) the
measured output is used to estimate the state by means of a
gain K. In Combastel (2003), a singular value decomposition
is used to obtain the consistent region of the state space. Inter-
val arithmetic and zonotopes are combined in Alamo, Bravo,
and Camacho (2005) to obtain a guaranteed nonlinear state
estimator.
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In this paper, a new method for guaranteed state estimation in
the case of nonlinear discrete processes with bounded uncertain
parameters and noise is presented. The goal is to apply a DC
programming approach to the state estimation problem. Zono-
topes and DC programming are used by the proposed method
to obtain a guaranteed bound of the uncertain trajectory of the
nonlinear system each sample time. An example illustrates that
the proposed method improves the results obtained in Alamo
et al. (2005).

A DC function f : Rn → R is a function that can be
expressed as the difference of two convex functions, that is,
f (x) = g(x) − h(x) where g(x) and h(x) are convex func-
tions. The class of DC functions is close under a good number
of basic operations. For example, if f1(x) and f2(x) are DC
functions then f1(x) + f2(x), f1(x) − f2(x), f1(x) · f2(x),
max{f1(x), f2(x)} and min{f1(x), f2(x)} are DC functions
(Horst & Thoai, 1999; Tuy, 1995). It is also worth remarking
that any continuous piecewise affine function is a DC func-
tion. DC programming problems are mathematical program-
ming problems dealing with functions that can be represented
as a difference of two convex functions. Several techniques
have been developed using DC programming to solve noncon-
vex global optimization problems.

The paper is organized as follows: the problem formulation
and the general lines of the algorithm are presented in Section 2.
In Section 3, a brief introduction to DC programming is given.
New proposed methods to bound the evolution of the uncertain
system and the set of states consistent with the measurements
are presented in Sections 4 and 5. The full version of the set-
membership state estimation algorithm appears in Section 6.
Finally, an example is used to illustrate the new algorithm.

2. Problem formulation

In what follows, some preliminary notations are introduced.
An interval [a, b] is the set {x : a�x�b}. The unitary interval
is B=[−1, 1]. A box is an interval vector. A unitary box in Rm,
denoted as Bm, is a box composed by m unitary intervals. The
Minkowski sum of two sets X andY is defined by X⊕Y={x+y :
x ∈ X, y ∈ Y }. Given a vector p ∈ Rn and a matrix H ∈
Rn×m, the set

p ⊕ HBm = {p + Hz : z ∈ Bm}
is called a zonotope of order m. Note that this is the Minkowski
sum of the segments defined by the columns of matrix H. A
parallelotope is a zonotope with n=m. Given the parallelotope
P =p⊕HBn, where H ∈ Rn×n is invertible, P can be rewritten
as P = {x : ‖H−1x − H−1p‖∞ �1}.

Consider an uncertain nonlinear discrete-time system of the
form{

xk+1 = f(xk, wk),

yk = d(xk, vk),
(1)

where xk ∈ X ⊆ Rn with k�0 is the state of the system and
yk ∈ Rp is the measured output vector at sample time k. The
vector wk ∈ W ⊆ Rnw with k�0 represents the time-varying
process parameters and process perturbation vector and vk ∈

V ⊆ Rpv with k�0 is the measurement noise vector. It is
assumed that the uncertainties and the initial state are bounded
by zonotopes: wk ∈ W = cw ⊕ MwBrw , vk ∈ V = cv ⊕ MvBrv

and x0 ∈ X0 = p0 ⊕ H0Br , where cw ∈ Rnw , cv ∈ Rpv and
p0 ∈ Rn.

It will be assumed that f(·) and d(·) are continuous functions,
and that each component of f(·) and d(·) have DC representa-
tions, that is,

fi(x, w) = gi(x, w) − hi(x, w), i = 1, . . . , n,

di(x, w) = ai(x, w) − bi(x, w), i = 1, . . . , p,

where fi(·, ·), di(·, ·) represent the ith component of functions
f(x, w) and d(x, w), respectively, and where the functions
hi(x, w), gi(x, w), i = 1, . . . , n and ai(x, w), bi(x, w), i =
1, . . . , p are convex in (X, W) and (X, V ), respectively. This
is not a very restrictive assumption because every continuous
function can be approximated by a difference of two convex
functions (DC function) (Horst & Thoai, 1999) and every C2-
function is a DC function (Tuy, 1995). In Section 3 an example
is given.

Given a continuous function �(·) and a set X ⊂ Rn, �(X)

denotes the set {�(x) : x ∈ X}. With this notation, the consis-
tent state set and the exact uncertain set are defined as follows:

Definition 1 (Consistent state set). Given system (1) and a
measured output yk , the consistent state set at time k is defined
as Xyk

= {x ∈ Rn : yk ∈ d(x, V )}.

Definition 2 (Exact uncertain state set). Consider a system
given by Eq. (1). The exact uncertain state set Xk is equal to
the set of states that are consistent with the measured outputs
y1, y2, . . . , yk and the initial state set X0:

Xk = f(Xk−1, W) ∩ Xyk
, k�1.

The exact computation of these sets is a difficult task. In
order to reduce the complexity of the computations, these sets
are bounded by means of conservative outer bounds. Then, at
sample time k, the objective is to find an outer approximation
of the corresponding exact uncertain set Xk .

This paper presents a new set-membership state estimation
algorithm for nonlinear systems. Suppose that an outer bound
of the exact uncertain state set is available at time k − 1 (this
bound will be denoted as X̂k−1). Suppose also that a measured
output yk is obtained at sample time k. Under these assumptions,
this is the general outline of the algorithm:

Algorithm 1.
Step 1: Use DC programming to bound the uncertain trajec-

tory of the nonlinear system: X̄k ⊇ f(X̂k−1, W).
Step 2: Compute an outer bound of the consistent state set

Xyk
. Denote it as X̄yk

.
Step 3: Compute an outer bound of X̄k∩X̄yk

. Denote it as X̂k .

The proposed algorithm is similar to the Kalman filter: the
first step can be considered as a prediction step while the
second and third steps constitute a correction step. In the first
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step, zonotopes (Montgomery, 1989; Shephard, 1974) and DC
programming are used to obtain an outer bound of the evolution
of the system. This outer bound is improved using the informa-
tion provided by the new measurement and DC programming
(second and third steps). The full version of the algorithm is
detailed in Section 6.

3. DC programming

This section presents essential results about DC program-
ming. These concepts are required to introduce the proposed
state estimation algorithm. References Horst and Thoai (1999),
Tuy (1995, 1998) are excellent surveys about DC programming.

Definition 3. Let S be a convex polytope (bounded polyhedral
set) of Rn. A real-valued function f : S → R is called DC on
S, if there exists two convex functions g, h : S → R such that
f can be expressed in the form: f (x) = g(x) − h(x).

It is known that the set of DC functions defined on a com-
pact convex set of Rn is dense in the set of continuous func-
tions of this set (Horst & Thoai, 1999; Tuy, 1995). Therefore,
every continuous function on a compact convex set can be ap-
proximated by a DC function with any desired precision. More-
over, given a C2-function, it is always possible to obtain a
DC-representation. In effect, suppose that f : S → R satisfies
(�2/�x2)f (x) >−2�I, ∀x ∈ S with ��0. Recall now that a C2-
function is convex in S if and only if (�2/�x2)f (x)�0, ∀x ∈ S.
Bearing this in mind, it is easy to see that f (x) = g(x) − h(x),
with g(x) = f (x) + �x
x and h(x) = �x
x constitutes a DC
representation of f (x). A systematic method to obtain (by
means of interval arithmetic) an appropriate value of � for a
given C2-function can be found in Adjiman and Floudas (1996).
The following example illustrates this idea. Consider the func-
tion f (x) = x3 + x2 + 1 in the domain x ∈ [−1, 1]. Since
(�2/�x2)f (x)=6x+2, it results that (�2/�x2)f (x)�−4, ∀x ∈
[−1, 1]. Thus, f (x) + 2x2 satisfies (�2/�x2)(f (x) + 2x2)�0
for all x ∈ [−1, 1]. Defining g(x)=f (x)+2x2 and h(x)=2x2,
the equivalent function f (x) = g(x) − h(x) is a DC function
in x ∈ [−1, 1].

Definition 4. Programming problems dealing with DC func-
tions are called DC programming problems. A general form of
DC programming problem is given by

min
x∈S

f (x),

where f (x) = g(x) − h(x) and g(x) and h(x) are convex in S.

Note that it is not necessary to restrict S to the class of
polytopes. For a more general definition of DC programming,
see Pinter (1996). The following definitions are standard in the
convex optimization literature. See, for example, Rockafellar
(1970), Boyd and Vandenberghe (2004).

Definition 5. The subdifferential of a convex function g : S →
R at point x0 (also denominated the set of subgradients of g at
point x0) denoted �g(x0) is defined by

�g(x0) = {u0 ∈ Rn : g(x)�g(x0) + u

0 (x − x0), ∀x ∈ S}

If the function g is differentiable in S, the vector u0 can be
computed by the gradient of the function: u0 = (�/�x)g(x0).
This stems directly from the convexity of g.

Definition 6. Given a convex function g : S → R and a sub-
gradient u0 of g at point x0 ∈ S, a linear minorant of g is the
linear function:

ḡ(x) = g(x0) + u

0 (x − x0).

By definition, it is clear that g(x)� ḡ(x), ∀x ∈ S. In the
same way, given the convex function h : S → R, h̄(x) denotes
a linear minorant of h (obtained by means of the concept of
subgradient).

Denoting as vert(S) the set of vertices of S, and bearing in
mind that ḡ(x) − h(x) is a concave function and g(x) − h̄(x)

is a convex function, it is possible to obtain an approximated
solution of the DC programming problem by

min
x∈S

f (x)� min
x∈vert(S)

ḡ(x) − h(x),

max
x∈S

f (x)� max
x∈vert(S)

g(x) − h̄(x).

Therefore, in order to obtain lower and upper bounds for a
global solution, all the vertices of set S must be visited.

Using these ideas, DC programming can be used to
bound the range of a function. Next, a simple example
is provided. Consider the function f (x) = x2 − exp(x)

in the domain S = [0, 2]. Clearly, f (x) is a DC function
(g(x) = x2 and h(x) = exp(x)). The exact range of the
function is f (S) = [4 − exp(2), − exp(0)] = [−3.3891, −1].
The range obtained by interval arithmetic (Moore, 1966) is
f ([0, 2]) = [0, 2]2 − exp([0, 2]) = [−7.3891, 3.0000]. Us-
ing x0 = 1 to obtain the linear minorants of x2 and exp(x),
the approximated range obtained by DC programming is
[−4.3891, 0]. The overestimation is considerably reduced.
Therefore, the use of DC programming potentially improves
previous results based on interval arithmetics (Alamo et al.,
2005). The bounds obtained by DC functions are based on a
linear approximation of a convex function providing a second
order approximation (in a Taylor sense). That is, the error
diminishes quadratically with the distance to the linearization
point. We think that this property assures a good trade off
between overestimation and computational cost.

4. Bounding the evolution of the system

This section presents a new method to bound the evolution
of the nonlinear system (1). First, a linear approximation of the
functional form of the system is used to obtain an approximation
of the evolution of the system. Next, the proposed method takes
advantage of the DC structure of system (1) to bound the error
produced by the linear approximation in a guaranteed way.
Combining the linear approximation and the bounded error, an
outer bound of the evolution of the nonlinear system is obtained.
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Consider the function f(x, w) : Rn × Rnw → Rn, where
x ∈ X =p ⊕HBm and w ∈ W = cw ⊕MwBrw . As commented
before, it is assumed that each component of f(x, w) is a DC
function, that is fi(x, w)=gi(x, w)−hi(x, w) with i=1, . . . , n.
The functions gi(x, w) and hi(x, w) are convex functions
in (X, W).

The objective of the method is to obtain an outer bound of
set f(X, W). A linear function

fL(x, w) = f(p, cw) + Gx(x − p) + Gw(w − cw)

is used to approximate the original function f(x, w). This func-
tion can be obtained by different ways, for example, when
f(x, w) is a differentiable function, matrices Gx and Gw can
be set equal to (�/�x)f(p, cw) and Gw = (�/�w)f(p, cw), re-
spectively. In the following subsection, function fL(x, w) and
the error produced by the linear approximation are stated in a
precise way.

4.1. Bounding the error term

In this subsection, a guaranteed bound of the error incurred
when approximating the nonlinear system by the linearization
fL(x, w) is provided. For this purpose, the following definition
is introduced.

Definition 7. The error set E is defined by

E = {e ∈ Rn : e = f(x, w) − fL(x, w), x ∈ X, w ∈ W },
where

fL(x, w) = f(p, cw) + Gx(x − p) + Gw(w − cw).

In what follows, a way to compute an outer bound Ē of the
error set E is presented. This bound is obtained using the DC
programming concepts presented in Section 3. Firstly, it will be
assumed that a parallelotope P = t ⊕ QBn ⊂ Rn that bounds
set X (X ⊆ P ) is available (this parallelotope can be obtained
by means of the result presented in Appendix A). Under this
assumption, consider now the following affine functions in x
and w:

ḡi (x, w) = gi(p, cw) + u

gi

[
x − p

w − cw

]
, i = 1, . . . , n,

h̄i (x, w) = hi(p, cw) + u

hi

[
x − p

w − cw

]
, i = 1, . . . , n,

where ugi
, uhi

are subgradients at (x, w) = (p, cw) of
gi(x, w) and hi(x, w), respectively. Due to the convexity
of gi(·, ·) and hi(·, ·) it results that ḡi (x, w)�gi(x, w) and
h̄i (x, w)�hi(x, w), ∀(x, w), i = 1, . . . , n. That is, they are
linear minorants.

Denote now with f L
i (x, w) the ith component of fL(x, w).

With this notation

fi(x, w) − f L
i (x, w) = gi(x, w) − hi(x, w) − f L

i (x, w)

�gi(x, w) − h̄i (x, w) − f L
i (x, w).

That is, gi(x, w) − h̄i (x, w) − f L
i (x, w) is a convex majorant

of fi(x, w) − f L
i (x, w). Denoting now as vert(P, W) the set

of vertices of (P, W) it is concluded that

max
(x,w)∈(X,W)

fi(x, w) − f L
i (x, w)

� max
(x,w)∈(X,W)

gi(x, w) − h̄i (x, w) − f L
i (x, w)

� max
(x,w)∈(P,W)

gi(x, w) − h̄i (x, w) − f L
i (x, w)

= max
(x,w)∈vert(P,W)

gi(x, w) − h̄i (x, w) − f L
i (x, w).

Reasoning along the same lines, it can be affirmed that

min
(x,w)∈(X,W)

fi(x, w) − f L
i (x, w)

� min
(x,w)∈vert(P,W)

ḡi(x, w) − hi(x, w) − f L
i (x, w).

What has preceded proves the following result:

Lemma 1. Suppose that the parallelotope P contains X and
define the parallelotope Ē as

Ē = {x ∈ Rn : �−
i �xi ��+

i , i = 1, . . . , n},
where

�+
i = max

(x,w)∈vert(P,W)
(gi(x, w) − h̄i (x, w) − f L

i (x, w)),

�−
i = min

(x,w)∈vert(P,W)
(ḡi(x, w) − hi(x, w) − f L

i (x, w)),

then, the parallelotope Ē is an outer bound of the set E, this
is: E ⊆ Ē.

Remark 1. Note that, in order to compute the parallelotope
Ē, it is necessary, in principle, to visit the 2n+rw vertices of
(P, W). Suppose that w enters in an additive way into the
model of the system, that is, f(x, w)= f̃(x)+Ew. In this case,
making Gw equal to E it results that fi(x, w)−f L

i (x, w) does
not depend on w and only 2n vertices have to be considered.
This is the complexity order associated to bound the evolution
of the uncertain system. Note that this complexity is affordable
for low order systems and provides a good trade off between
computational complexity and accuracy.

4.2. Initial guaranteed bound of the evolution of the system

Now, a theorem that provides a first operator to bound the
evolution of the system is given. This operator supposes a
known outer bound of the error set E (obtained by means of
Lemma 1).

Theorem 1. Consider the zonotopes X = p ⊕ HBm and W =
cw ⊕ MwBrw . Suppose that the parallelotope Ē = t̄ ⊕ Q̄Bn

satisfies E ⊆ Ē. Obtain now the zonotope Z=pz⊕HzBm+rw+n



220 T. Alamo et al. / Automatica 44 (2008) 216–224

where

• pz = f(p, cw) + t̄ ,
• Hz = [Gx HGw MwQ̄],

then, under these definitions

f(X, W) ⊆ Z.

Proof. By Definition 7

f(X, W) ⊆ fL(X, W) ⊕ E ⊆ fL(X, W) ⊕ Ē

= f(p, cw) ⊕ GxHBm ⊕ GwMwBrw ⊕ Ē

= (f(p, cw) + t̄ ) ⊕ GxHBm ⊕ GwMwBrw ⊕ Q̄Bn

= pz ⊕ HzBm+rw+n = Z. �

4.3. Improving the obtained bound

Before introducing the main result of this subsection, the
following definition is enunciated:

Definition 8. Given matrix E ∈ Rn×n and the DC functions:
fi(x, w)=gi(x, w)−hi(x, w), i=1, . . . , n, functions gE

i (x, w),
hE

i (x, w), i = 1, . . . , n are defined as follows:

gE
i (x, w) =

n∑
j=1

g
j
i (x, w), hE

i (x, w) =
n∑

j=1

h
j
i (x, w),

where

g
j
i (x, w) =

{
Ei,j gj (x, w) if Ei,j �0,

−Ei,jhj (x, w) otherwise,

h
j
i (x, w) =

{
Ei,jhj (x, w) if Ei,j �0,

−Ei,j gj (x, w) otherwise.

Lemma 2. If Ei denotes the ith row of matrix E, then
Eif(x, w)=gE

i (x, w)−hE
i (x, w), i = 1, . . . , n. Moreover, the

functions gE
i (x, w) and hE

i (x, w) with i =1, . . . , n are convex.

Proof. It is easy to see that g
j
i (x, w) − h

j
i (x, w) = Ei,j

(gj (x, w) − hj (x, w)) = Ei,j fj (x, w). Therefore,

Eif(x, w) =
n∑

j=1

Ei,j fj (x, w)

=
n∑

j=1

g
j
i (x, w) − h

j
i (x, w)

= gE
i (x, w) − hE

i (x, w).

To finish the proof, note that by construction, g
j
i (x, w) and

h
j
i (x, w) are convex. Thus, gE

i (x, w) and hE
i (x, w) are also

convex. �

Now, a second bounding operator to improve the results ob-
tained by the operator presented in Theorem 1 is enunciated. So,
it is assumed that a zonotope Z such that f (X, W) ⊆ Z has been
computed.

This new theorem uses the operator presented in Appendix A
to bound the zonotope Z by a parallelotope P̂ .

Theorem 2. Suppose that f(X, W) is included in the zonotope:
Z = pz ⊕ HzBm+rw+n. Suppose also that the parallelotope
P̂ = {x : ‖Êx − q̂)‖∞ �1} is an outer approximation of Z
(Z ⊆ P̂ ) and the parallelotope P bounds the set X (X ⊆ P).
Under this assumption, obtain

ḡÊ
i (x, w) = gÊ

i (pz, cw) + û

gi

[
x − pz

w − cw

]
, i = 1, . . . , n,

h̄Ê
i (x, w) = hÊ

i (pz, cw) + û

hi

[
x − pz

w − cw

]
, i = 1, . . . , n,

where ûgi
, ûhi

are subgradients at (x, w)=(pz, cw) of gÊ
i (x, w)

and hÊ
i (x, w), respectively. Compute now

�+
i = max

x,w∈vert(P,W)
gÊ

i (x, w) − h̄Ê
i (x, w),

�−
i = min

x,w∈vert(P,W)
ḡÊ

i (x, w) − hÊ
i (x, w),

where i = 1, . . . , n. Then

f(X, W) ⊆ Z ∩ P̃ ,

where P̃ = {x : �−
i �Êx��+

i , i = 1, . . . , n}.

Proof. If Êi is the ith row of matrix Ê, then Êif (x, w) =
gÊ

i (x, w) − hÊ
i (x, w), where gÊ

i (x, w) and hÊ
i (x, w) are con-

vex functions by Lemma 2. Bearing in mind that ḡÊ
i (x, w) and

h̄Ê
i (x, w) are linear minorants of gÊ

i (x, w) and hÊ
i (x, w) it is

clear that: �−
i � ḡÊ

i (x, w)−hÊ
i (x, w)�Êif (x, w)�gÊ

i (x, w)−
h̄Ê

i (x, w)��+
i , ∀x, w ∈ X, W . Then it is inferred that

f(X, W) ⊆ P̃ . �

Remark 2. Note that the parallelotope P̃ obtained in Theorem
2 can be used to improve the bound Z obtained by Theorem 1.
Parallelotope P̃ is defined by the intersection of n strips. The
operation Z ∩ P̃ can be implemented by the intersection of Z
with n strips. A new efficient operator to bound the intersec-
tion of a zonotope and a strip has been presented by the au-
thors in Bravo, Alamo, and Camacho (2006). Given a strip and
a zonotope of order r, the operator allows one to obtain a new
zonotope, of order r, containing the intersection. The cited in-
tersection operator can be used in this paper to obtain bounds
of the intersection of a zonotope with a strip.

The next section boards the computation of a strip that
bounds the set of states that are consistent with a given mea-
surement.

5. Bound on the consistent state set

In this section, a bound of the consistent state set is provided.
Given a measure yk ∈ Rp, the consistent state set was defined
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in Section 2 as

Xyk
= {x ∈ Rn : yk ∈ d(x, V )},

where V =cv ⊕MvBpv . Define now sets Xyk
(i), i=1, . . . , p as

the region of the state space consistent with the ith component
of output yk:

Xyk
(i) = {x ∈ Rn : yk(i) ∈ di(x, V )},

where di(x, v) denotes the ith component of d(x, v) ∈ Rp.
With this definition it is clear that

Xyk
⊆

p⋂
i=1

Xyk
(i).

In the following it will be shown how to bound Xyk
(i) by means

of a strip in the state space. If xk belongs to the zonotope X̄k

then the ith component of the measured output yk can be used
to obtain a sharper bound of the state as xk ∈ X̄k ∩ Xyk

(i).
The following property shows that it is possible to bound X̄k ∩
Xyk

(i) by means of the intersection of X̄k and a strip in the
state space.

Property 1. Given the zonotope X̄k , the measured output yk(i),
and vector ci ∈ Rn, obtain a parallelotope P such that X̄k ⊆
P , and the scalars si, �i ∈ R such that

si = �+
i + �−

i

2
, �i = �+

i − si ,

�+
i = max

x,v∈vert(P,V )
c

i x − (āi(x, v) − bi(x, v)),

�−
i = min

x,v∈vert(P,V )
c

i x − (ai(x, v) − b̄i (x, v)).

Then, defining the strip X̄yk
(i) = {x : |c


i x − yk(i) − si |��i},
it results that

X̄k ∩ Xyk
(i) ⊆ X̄k ∩ X̄yk

(i).

Note that the convex functions ai(x, v) and bi(x, v) with
i = 1, . . . , p are the ith components of a(x, v) and b(x, v) and
the functions āi (x, v) and b̄i (x, v) are their linear minorants.

Proof. If x ∈ X̄k ∩ Xyk
(i) then there exists v ∈ V such that

yk(i) = di(x, v). Multiplying the equality by −1 and adding
c

i x:

c

i x − yk(i) = c


i x − di(x, v) ⊆ [�−
i , �+

i ] = [si − �i , si + �i].
Therefore, |c


i x − yk(i) − si |��i for every x ∈ X̄k ∩ Xyk
(i).

�

Note that if di(·, ·) is differentiable, an appropriate choice
of ci is ci = (�/�x)di(pk, cv). If not, vector ci , along with
a constant �i could be obtained in such a way that c


i x +
�i constitutes an affine approximation of function di(·, ·) in
(P, V ).

In the next section, a detailed version of the new state esti-
mation algorithm is presented.

6. Guaranteed state estimation algorithm

Suppose that an outer bound of the exact uncertain state set
is available at time k − 1 (this bound will be denoted X̂k−1).
Suppose also that a measured output yk is obtained at sample
time k. Under these assumptions the following algorithm esti-
mates an outer bound of the exact uncertain state set.

Algorithm 2.
Step 1: Using Theorem 1, compute a zonotope X̄k such that

f (X̂k−1, W) ⊆ X̄k .
Step 2: Using Theorem 2, obtain a parallelotope P̃ such that

f (X̂k−1, W) ⊆ P̃ .
Step 3: Using Property 1, compute an outer bound of the

consistent state set Xyk
. Denote it as X̄yk

.
Step 4: Compute a zonotope X̂k ⊇ X̄k ∩ (P̃ ∩ X̄yk

) (see
Remark 2).

The algorithm starts (first and second steps) computing the
sets X̄k and P̃ . These sets are outer bounds of the evolution of
the system and they are computed using DC programming. An
outer bound of the set of states that are consistent with the new
measurement yk is obtained in step 3 using DC programming.
Finally, an intersection operator of zonotope and strip (Bravo
et al., 2006) is used in step 4 to obtain the outer bound X̂k .

7. Example

A nonlinear estimation example is presented here. Given the
functions

f1(x1, x2) = −0.7x2 + 0.1x2
2 + 0.1x1x2 + 0.1 exp(x1),

f2(x1, x2) = x1 + x2 − 0.1x2
1 + 0.2x1x2.

The system is described by the expression

x1(k + 1) = f1(x1(k), x2(k)) + w1(k),

x2(k + 1) = f2(x1(k), x2(k)) + w2(k),

where |w1(k)|�0.1 and |w2(k)|�0.1. The measurements are

yk = x1(k) + x2(k) + v(k).

The error is bounded by |v(k)|�0.2, k�0. The initial state
belongs to the box 3IB2 where I is the identity matrix. The
signal to be estimated is zk = [1 0]xk . Knowing that for each
n × n matrix Q, there exist two positive semidefinite n × n

matrices A, B such that x
Qx=x
Ax−x
Bx (Horst & Thoai,
1999) and considering that 0.1 exp(x1) is a convex term, it is
easy to obtain a DC representation of the considered system.

Fig. 1 presents with a solid line, the evolution of the volume
of the guaranteed bound of the state obtained with the new pro-
posed method. The dashed line shows the volume obtained with
the method presented in Alamo et al. (2005). In this case, inter-
val arithmetic is used to bound the evolution of the systems. The
new proposed method improves the estimations obtained with
the results of Alamo et al. (2005). Fig. 2 compares the obtained
bounds on x1 with the one corresponding to the exact uncertain
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Fig. 1. Evolution of the volume of the guaranteed bound of the state.
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Fig. 2. Solid lines represent the guaranteed bounds of the state x1 obtained
by the presented algorithm. Dotted lines represent the bounds of x1 obtained
from the exact uncertain sets.

state sets. Note that the exact uncertain state sets are obtained
from the min and max values resulting from the uncertain evo-
lution of a sufficiently dense cloud of points. Fig. 3 shows a
succession of sets X̄k and how the proposed algorithm reduces
their volumes by intersection, obtaining sets X̂k . Fig. 4 shows
a succession of sets X̂k obtained by the proposed algorithm.

8. Conclusions

A new approach to guaranteed state estimation for non-linear
discrete-time systems with a bounded description of noise and
parameters has been proposed. The algorithm bounds the set
of all the states that are consistent with the measured output
and the given noise and parameters. The evolution of the sys-
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Fig. 3. Dotted lines show the sets X̄1, X̄2 and X̄3. Solid lines represent the
sets X̂0, X̂1, X̂2 and X̂3. Dark clouds of points show the exact uncertain
sets X0,X1,X2 and X3. Sets f (X0, W), f (X1, W) and f (X2, W) are
displayed as a light gray clouds of points.
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Fig. 4. Solid lines represent the sets X̂0, X̂1, . . . , X̂15. Clouds of points
show the exact uncertain sets X0,X1, . . . ,X15. Thin arrows represent the
actual evolution of the system.

tem is captured by zonotopes and DC programming is used
to compute these zonotopes. The obtained measurements are
used to intersect the computed zonotopes with strips of consis-
tent states. Finally, an example has been provided to clarify the
algorithm.
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Appendix A. Bounding a zonotope with a parallelotope

Lemma 3. Consider the zonotope Z = p ⊕ MBm with
M ∈ Rn×m, where n�m and rank(M) = n. Consider
also the singular value decomposition M = U�V 
, where
� = diag{�1, �2, . . . , �n}. Denote now D the diagonal matrix
with components Dii = ‖�iVi‖1, i = 1, . . . , n, where Vi is the
ith column of matrix V . Under these assumptions it results
that Z ⊆ P = p ⊕ UDBn.

Proof.

MBm = U�V 
Bm

= U [�1V1 �2V2 . . . �nVn]
Bm ⊆ UDBn.

Note that the last inclusion relies on the fact that �iV


i Bm ⊆

‖�iVi‖1B1 = DiiB1, where ‖ · ‖1 denotes the vectorial norm
equal to the sum of the absolute values of the components of a
given vector. �

As it will be justified in what follows, the assumption n�m

and rank(M)=n is not restrictive. Consider the zonotope Z̃(	)=
p ⊕ [M 	I ]Bm+n = p ⊕ M̃Bm+n. It is clear that Z = Z̃(0)

and Z ⊆ Z̃(	), ∀	. Moreover, M̃ satisfies the assumptions of
the lemma for every 	 �= 0. Therefore, using Lemma 3, it is
possible to obtain for a given 	 �= 0 a parallelotope P̃ (	) such
that Z ⊆ Z̃(	) ⊆ P̃ (	). Choosing 	 such that it is different
from zero but arbitrarily small, an appropriate parallelotope that
bounds Z can be obtained.
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Raković, S. V., & Mayne, D. Q. (2004). State estimation for piecewise affine,
discrete time systems with bounded disturbances. In 43rd IEEE conference
on decision and control. Atlantis, Paradise Island, Bahamas, submitted for
publication.

Rockafellar, R. (1970). Convex analysis. Princeton University.
Savkin, A., & Petersen, I. (1998). Robust state estimation and model validation

for discrete-time uncertain system with a deterministic description of noise
and uncertainty. Automatica, 34(2), 271–274.

Schweppe, F. (1968). Recursive state estimation: Unknown but bounded errors
and system inputs. IEEE Transactions on Automatic Control, 13, 22–28.

Shephard, G. (1974). Combinatorial properties of associated zonotopes.
Canadian Journal of Mathematics, 26, 302–321.

Tuy, H. (1995). DC optimization: Theory, methods and algorithms. Handbook
of global optimization (pp. 149–216). Dordrecht: Kluwer Academic
Publishers.

Tuy, H. (1998). Convex analisis and global optimization. Dordrecht: Kluwer
Academic Publisher.

Teodoro Alamo was born in Spain in 1968.
He received M.Eng. degree in Telecommuni-
cations Engineering from Polytechnic Univer-
sity of Madrid (Spain) in 1993 and Ph.D. in
Telecommunications Engineering from the Uni-
versity of Seville in 1998. From 1993 to 2000,
he was an Assistant Professor of the Department
of System Engineering and Automatic Control.
Since 2001, he has been an Associate Profes-
sor in the same department. He has stayed as
a Researcher in the Ecole Nationale Supérieure
des Télécommunications (Telecom Paris) from

1991 to 1993 and he has participated in several European Projects. He is the
author or coauthor of more than 100 publications including book chapters,
journal papers, conference proceedings and educational books. He has car-
ried out reviews for various conferences and technical journals. His current
research interests include model predictive control, robust control, identifica-
tion, control of constrained systems, invariant sets and convex optimization.

José Manuel Bravo was born in Huelva (Spain),
in 1972. He received M.Eng. and Ph.D. degrees
in Computer Science from the University of
Seville (Spain) in 1997 and 2004, respectively.
Since 1998 he has been an Assistant Professor
in the Departamento de Ingeniería electrónica,
Sistemas Informáticos y Automática at the Uni-
versity of Huelva. He is the author or coauthor of
more than 30 publications including book chap-
ters, journal papers, conference proceedings and
educational books. He has participated in sev-
eral research projects and his current research

interests include model predictive control, guaranteed state estimation, iden-
tification, invariant sets and control of constrained nonlinear systems.



224 T. Alamo et al. / Automatica 44 (2008) 216–224

Manuel Joaquín Redondo González was born
in Huelva, Spain. He received M.Eng. degree in
Industrial Organization from the University of
Seville. Since 1986, he is the Professor in the
Department of Electronic Engineering, Comput-
ers Science and Automatic Control at the Uni-
versity of Huelva. He is the author or coauthor
of more than 10 publications including book
chapters, journal papers, conference proceedings
and educational books. His current research in-
terests include model predictive control, guar-
anteed state estimation, identification, invariant
sets and control of constrained nonlinear sys-
tems.

Eduardo F. Camacho is a Dr. Electrical En-
gineer from the University of Seville where he
is now a professor in the Department of Sys-
tem Engineering and Automatic Control. He has
written the books “Model Predictive Control in
the Process industry” (1995), “Advanced Con-
trol of Solar Plants” (1997) and “Model Pre-
dictive Control” (1999), (2004, second edition)
published by Springer-Verlag and “Control e
Instrumentaciòn de Procesos Químicos” pub-
lished by Ed. Síntesis. He has authored and co-
authored more than 150 technical papers in in-
ternational journals and conference proceedings.

He has served on various IFAC technical committees and was a member
of the Board of Governors of the IEEE/CSS appointed by the President
for 2001. At present he is the Chair of the IEEE/CSS International Affairs
Committee, Vice President of the European Control Association and Chair
of the IFAC Publication Committee. He has carried out review and editorial
work for various conferences and technical journals. At present he is one
of the editors of the IFAC journal, Control Engineering Practice, and an
associate editor of the European Journal of Control. He was Publication Chair
for the IFAC World Congress B’02 and he has been the General Chair of the
joint 44th IEEE Conference on Decision and Control and European Control
Conference ECC 2005. He was also one of the experts of the panel that
help in producing the FUTMAN (Future of Manufacturing) for the European
Commission. He is currently the President of the European Union Control
Association (EUCA).
He has acted as evaluator of projects at the national and European level.
He was appointed as the Manager of the Advanced Production Technology
Program of the Spanish National R&D Program for four years. He was one
of the Spanish representatives on the Program Committee of the Growth
Research Program and is now acting as expert for the Program Committee
of the NMP research priority of the European Union.


	A set-membership state estimation algorithm based on DC programming62626262
	Introduction
	Problem formulation
	DC programming
	Bounding the evolution of the system
	Bounding the error term
	Initial guaranteed bound of the evolution of the system
	Improving the obtained bound

	Bound on the consistent state set
	Guaranteed state estimation algorithm
	Example
	Conclusions
	Acknowledgements
	Appendix A. Bounding a zonotope with a parallelotope
	References


