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This paper presents a control law for the trajectory

tracking of mobile robots under slip conditions and

subject to both system constraints and varying

dynamics. First, a control law is obtained based on a

Lyapunov function to guarantee closed-loop asymptotic

stability, resulting in a set of feedback gains, one for

each extreme model realization. On-line computation is

devoted to determine an adaptive feedback control law

for the current realization of the state as a convex

combination of the gains previously obtained. Simula-

tions comparing the proposed control law with other

strategies under slip conditions are provided. They

show the satisfactory behavior of the proposed control

strategy.

Keywords: Adaptive control, autonomous mobile

robot, linear matrix inequalities, slip

1. Introduction

Mobile robot control systems must deal with both

state and input constraints, i.e. physical limitations of

actuators, non-holonomic constraints, narrow work-

space, etc. Furthermore, mobile robots constitute

non-holonomic systems, which cannot by stabilized

by smooth static state feedback laws [8]. These systems

fail in the Brockett’s Condition for the existence of

a continuously differentiable control law, as the

dimension of the state space is three and the number

of control signals is only two [6]. In order to solve this

problem, discontinuous feedback control laws [4] and

adaptive continuous feedback control laws have been

commonly used [9, 20, 26].

On the other hand, mobile robots operating on off-

road conditions present some phenomena as slip or

sliding which cause that rolling of a wheel is not per-

fect [31]. Thereby, the guidance and the controllability

of the mobile robot is considerably influenced by the

condition of terrain [13]. For that reason, one key

issue is to design motion controllers that compensate

slip effects. For example, a study for four generic

wheeled mobile robots in the presence of wheel skid-

ding and slipping from a control perspective is

developed in [30]. Disturbances due to skidding and

slipping are categorically classified as input-additive,

input-multiplicative, and/or matched/unmatched per-

turbations. A linear feedback control law for a

Tracked Mobile Robot (TMR) is presented in [13],

where gains are adapted according to the longitudinal

slip measured in real-time. In [10, 21], the problem is

addressed for an Ackermann-type agricultural vehicle

in which adaptive and predictive control techniques

are used to face the lateral slip effects. The work

presented in [22] proposes a control for a TMR based

on a kinematic approach using the different values of

the instantaneous rotation center (IRC) of the tracks.
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The IRC position depends on the track–soil interac-

tions.

This paper focuses on the synthesis of an adaptive

control law, which guarantees asymptotic stability for

a linear, time-varying, discrete-time system subject to

both constraints and varying dynamics. The con-

straints are imposed supposing that the mobile robot

operates in narrow spaces as the actuators are phys-

ically saturated. The objective is to determine an

adaptive control law and a Lyapunov function guar-

anteeing the asymptotic stability of the closed-loop

system. We formulate the problem in terms of Linear

Matrix Inequalities (LMI) optimization problem

[5, 17], in order to obtain a positive definite matrix P

determining the Lyapunov function, and a set of

feedback gains composing the control law. This

problem is solved off-line for each extreme realiza-

tions of the system dynamics. Afterwards, an on-line

adaptive feedback control law is used depending on

the current system realization. This adaptive control

law is obtained as a convex combination of the pre-

viously determined gains.

It is important to remark that the control law pre-

sented here tries to compensate the slip effect, con-

sidering the slip in the control design. An interesting

alternative is to include a velocity/acceleration limiter

that would prevent the robot’s wheel from slip [16, 25].

However, as discussed in [31], this solution could

become unsuitable in practice. The reason is that off-

road terrains are intrinsically loose, producing a non-

controllable slip, that is, the robot will slip although

velocity and acceleration are limited.

LMI-based solutions have been satisfactorily

applied in other mobile robotics problems. For

instance, backing control of simulated mobile robots

with multiple trailers by fuzzy modelling and control

is presented in [29]. LMI are used to solve the problem

of finding stable feedback gains and a common

Lyapunov function. In [1], a feedback path controller

for an articulated mining vehicle based on LMI

techniques to guarantee stability of the closed-loop

system is proposed. In [32], a robust tracking problem

of wheeled mobile robots subject to non-holonomic

constraints and input constraints is discussed. In the

framework of LMI, the suggested tracking scheme is

formulated as an on-line controller, which is obtained

solving a constrained H1 control law. The work [23]

shows a method for motion planning of mobile

robots. The free configuration space is decomposed

into Delaunay triangles, and an optimum channel

from initial to goal configurations is found by solving

an LMI system.

The paper is organized as follows: a modification of

the standard kinematic model including slip effects,

and the trajectory tracking error model, is presented in

Section 2. Section 3 is devoted to obtain the adaptive

control law using the LMI-based approach to guar-

antee stability under input and state constraints.

Simulations of the proposed control law with other

control strategies are detailed in Section 4. Finally,

conclusions and future trends are summarized in

Section 5.

2. Trajectory Tracking Based on Kinematic

Model with Slip

In this section, we present a modified formulation of

the well-known kinematic model of a differential-

drive wheeled mobile robot [7, 28]. For that purpose,

this kinematic model has been extended with a para-

meter, which weighs the slip factor of the terrain [13].

In this case, we suppose that the mobile robot will

operate at low velocities, and we only consider lon-

gitudinal slip. As stated in [15, 19, 27], lateral slip is

zero for straight line motions and it can be neglected

when the vehicle turns ‘‘on the spot’’ or at low velo-

cities. However, longitudinal slip is an unavoidable

effect of pneumatic tire compression/reaction to soil

shearing due to the own characteristics of wheeled/

tracked locomotion [13, 30, 31].

Furthermore, the trajectory-tracking or posture-

tracking problem is also described and the error state

space system is obtained using the modified kinematic

model.

2.1. Kinematic Model under slip conditions

When wheel slip is not considered, the linear velocity

of the wheels is [28]

vrðtÞ ¼ ��rðtÞ;

vlðtÞ ¼ ��lðtÞ;
ð1Þ

where t 2 R is the continuous time, � is the wheel (or

track), rolling radius, and vr=�r and vl=�l are the

linear/angular velocities of the right and left wheels

respectively.

As commented above, (longitudinal) slip can be

considered as a penalizing factor of the wheel velocity

[13, 31]

vslipr ðtÞ ¼ ��rðtÞ ð1� irðtÞÞ;

v
slip
l ðtÞ ¼ ��lðtÞ ð1� ilðtÞÞ;

ð2Þ

where ir and il are the terms representing the (longit-

udinal) slip component of each wheel on a terrain. As
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shown in [13], slip can be estimated in real-time using

the appropriate sensors.

Using this knowledge in the classical kinematic

model of a differential-drive robot [28], we obtain

_xðtÞ ¼
vrðtÞð1� irðtÞÞ þ vlðtÞð1� ilðtÞÞ

2
cos �ðtÞ;

_yðtÞ ¼
vrðtÞð1� irðtÞÞ þ vlðtÞð1� ilðtÞÞ

2
sin �ðtÞ;

_�ðtÞ ¼
vrðtÞð1� irðtÞÞ � vlðtÞð1� ilðtÞÞ

b
;

ð3Þ

where ½x y ��T represents the location (position and

orientation) of the mobile robot, and b is the distance

between the wheels’ centers.

2.2. Trajectory tracking error model

Trajectory tracking problem can be seen as a problem

in which a robot must follow a virtual mobile robot

representing the desired positions and velocities, as

shown in Fig. 1. Hence, the objective is to find a

feedback control law [8, 12]

�ðtÞ ¼ ðvrðtÞ; vlðtÞÞ ¼ fðpðtÞ; prefðtÞ; vrefr ðtÞ; vrefl ðtÞÞ;

ð4Þ

such that

lim
t!1

eðtÞ ¼ lim
t!1

½prefðtÞ � pðtÞ� ¼ 0; ð5Þ

where the location of the real mobile robot is denoted

as p ¼ ½x y ��T, pref ¼ ½xref yref �ref�T and,

vrefr ; v
ref
l are the reference trajectory and linear velo-

cities, respectively.

As stated in (5), the control objective is to steer the

error, between the desired location and the real loca-

tion of the mobile robot, close to zero (regulation

problem). To express this error with respect to the real

robot frame, the following change is considered

exðtÞ

eyðtÞ

e�ðtÞ

2
64

3
75 ¼

cos �ðtÞ sin �ðtÞ 0

� sin �ðtÞ cos �ðtÞ 0

0 0 1

2
64

3
75

�

xrefðtÞ � xðtÞ

yrefðtÞ � yðtÞ

�refðtÞ � �ðtÞ

2
64

3
75;

ð6Þ

where ex is the longitudinal error, ey is the lateral

error, and e� is the orientation error. These errors are

graphically presented in Fig. 1 where the virtual robot

is represented in dotted lines and the real robot in solid

ones.

To determine the error along the time, the equation

(6) is differentiated producing [13]

_exðtÞ ¼ �ðtÞeyðtÞ þ cos e�ðtÞ
vrefr ðtÞ þ v

ref
l ðtÞ

2

�
vrðtÞ þ vlðtÞ

2
þ
vrðtÞirðtÞ þ vlðtÞilðtÞ

2

_eyðtÞ ¼ ��ðtÞexðtÞ þ sin e�ðtÞ
vrefr ðtÞ þ v

ref
l ðtÞ

2

_e�ðtÞ ¼
vrefr ðtÞ � v

ref
l ðtÞ

b
�
vrðtÞ � vlðtÞ

b

 !

þ
vrðtÞirðtÞ � vlðtÞilðtÞ

b
; ð7Þ

where �ðtÞ ¼
vrðtÞ � vlðtÞ

b
�
vrðtÞirðtÞ � vlðtÞilðtÞ

b

� �
.

In order to linearize the previous equation around

the reference trajectory, a first-order Taylor expansion

has been used. Furthermore, we have defined the

following virtual control signals to eliminate some of

the non-linear terms,

u1ðtÞ ¼
�1þ irðtÞ

2
vrðtÞ þ

�1þ ilðtÞ

2
vlðtÞ þ

vrefr ðtÞ

2
þ
v
ref
l ðtÞ

2
;

ð8Þ

u2ðtÞ ¼
�1þ irðtÞ

b
vrðtÞ þ

1� ilðtÞ

b
vlðtÞ þ

vrefr ðtÞ

b
�
v
ref
l ðtÞ

b
:

ð9Þ
Fig. 1. Graphical representation of the trajectory tracking
problem.
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Afterwards, equation (7) becomes

_exðtÞ

_eyðtÞ

_e�ðtÞ

2
64

3
75 ¼

0 �rðtÞ 0

��rðtÞ 0
vrefr ðtÞ þ v

ref
l ðtÞ

2
0 0 0

2
664

3
775

exðtÞ

eyðtÞ

e�ðtÞ

2
64

3
75

þ

1 0

0 0

0 1

2
64

3
75 u1ðtÞ

u2ðtÞ

� �
;

ð10Þ

where

�rðtÞ ¼
vrefr ðtÞ � v

ref
l ðtÞ

b
�
vrefr ðtÞirðtÞ � v

ref
l ðtÞilðtÞ

b

 !
.

Remark 1: Notice that the mismatch between the line-

arized model and the nonlinear system grows for values

of e� far from 0. It will be shown that, in practice, after

the transient, e� remains very close to zero. Then, the

problem could be present at the first instants, due to the

initial condition. For that reason, we assume that, in

practice, the real robot and the reference virtual robot

start close. In that case, the linearization is successful.

Equation (10) is expressed in state space repres-

entation as a linear, time-varying, continuous-time

system

_eðtÞ ¼ A�;cðtÞeðtÞ þ BcuðtÞ; ð11Þ

where e ¼ ½ex ey e��
T
is the state, u ¼ ½u1 u2�

T
is

the (virtual) control input, and � is the parameter,

characterized in Remark 2. Matrices A�;c and Bc are

defined as

A�;cðtÞ ¼

0 �rðtÞ 0

��rðtÞ 0
vrefr ðtÞ þ v

ref
l ðtÞ

2
0 0 0

2
664

3
775;

Bc ¼

1 0

0 0

0 1

2
64

3
75:

ð12Þ

Then, the trajectory tracking error model (11) is dis-

cretized, obtaining the following linear, time-varying,

discrete-time system

eðkþ 1Þ ¼ A�ðkÞeðkÞ þ BduðkÞ ð13Þ

where k 2 Z
þ is the discrete sample, and matrices A�

and Bd are now defined as

A�ðkÞ ¼

1 Tm�rðkÞ 0

�Tm�rðkÞ 1 Tm

vrefr ðkÞ þ v
ref
l ðkÞ

2
0 0 1

2
664

3
775;

Bd ¼

Tm 0

0 0

0 Tm

2
64

3
75;

ð14Þ

Tm being the sampling period.

Assumption 1: Assume that slip factors and reference

robot wheel velocities are known at each time and

bounded, i.e. ir 2 ½imr ; i
M
r �, il 2 ½iml ; i

M
l �, vrefr 2 ½vref;mr ;

vref;Mr �, and v
ref
l 2 ½vref;ml ; vref;Ml �.

Remark 2: From Assumption 1, we can define a time-

varying vector of parameters

�ðkÞ ¼ ½vrefr ðkÞ v
ref
l ðkÞ irðkÞ ilðkÞ�

T 2 R
4, and a

bounding set � � R
4, such that �ðkÞ 2 �; 8k 2 R. For

any admissible realization of parameter � 2 �, a

dynamic matrix denoted as A� is determined. Notice

that, from Assumption 2, it follows that A� 2 Awhere A

is a polytope in R
3�3.

Note that the model is composed by a family of

linear systems (defined by matrix A�), each of them

is controllable provided that 0 � ir; il < 1 and

vrefr ; v
ref
l > 0.

For sake of notational simplicity, we omit to

express the dependence of A�ðkÞ on k, employing A�

to refer to it.

Remark 3: Note that, according to (8) and (9), the

control signals (velocities) are obtained through

vrðkÞ ¼
vrefr ðkÞ � u1ðkÞ �

b

2
u2ðkÞ

1� irðkÞ
; ð15Þ

vlðkÞ ¼
�v

ref
l ðkÞ þ u1ðkÞ �

b

2
u2ðkÞ

�1þ ilðkÞ
; ð16Þ

where vr 2 ½vmr ; v
M
r � and vl 2 ½vml ; v

M
l �.

As commented above, states and inputs of the system

are subject to constraints, that is

eðkÞ 2 E; uðkÞ 2 U; ð17Þ

where E � R
3 and U � R

2 are polytopes and contain

the origin.
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Remark 4: Note that, equations (15) and (16) lead to

bounds on the space of u, obtained from the constraints

on vr; vl; ir; il; v
ref
r ; v

ref
l .

3. Adaptive Control Using Linear Matrix

Inequalities

LMI are known as an efficient tool for solving convex

optimization problems. LMI have an extensive

application in the field of automatic control involving

robust and optimal control [5, 14, 17, 24].

A linear matrix inequality is a matrix inequality of

the form [5]

FðxÞ ¼ F0 þ
Xm
i¼1

xiFi > 0; ð18Þ

where x 2 R
m is the decision variable and the sym-

metric matrices Fi ¼ FT
i 2 R

n�n, i ¼ 0; . . . ;m, are

given. The inequality FðxÞ > 0 means that FðxÞ is

positive-definite. For a complete description of LMI,

see [5] and the references therein.

Now, we pose the trajectory tracking control

problem in terms of an LMI optimization problem, in

order to obtain a positive definite matrix P deter-

mining a Lyapunov function and a set of feedback

gains which provide the control law. This problem is

solved off-line considering all the extreme realizations

of the parameter. Afterwards, an adaptive feedback

control law is obtained on-line depending on the

current realization of the parameter �, which is

obtained as a convex combination of the extremal

feedback gains.

The control scheme implemented in this paper is

summarized in Fig. 2. The adaptive controller uses

an estimation of the slip and the reference to

determine the feedback gain guaranteeing asymp-

totic stability.

The control strategy is designed to satisfy different

specifications, in particular, it is required to provide:

	 Input and state constraints fulfillment: this

requirement is guaranteed through the determina-

tion of an invariant set [2], i.e. a set in the state space

in which the system state can be confined by the

control law. An ellipsoidal invariant set is computed

ensuring constraints satisfaction and providing a

feasibility region for the controller.

	 Asymptotic stability: it is achieved by means of a

quadratic Lyapunov function, i.e. a positive definite

function decreasing along the trajectories of the

closed-loop system.

	 Performance: the quadratic Lyapunov function

provides an upper bound on the cost-to-go as close

as possible to the optimal LQR cost. We recall that,

with cost-to-go, we consider the sum of the stage

cost, from the present to the infinite time. Our

solution provides a cost-to-go function which is an

overbound of the optimal LQR one. The objective of

the optimization problem is to minimize such over-

bounding function, to make the cost-to-go as close as

possible to the optimal one, i.e. the LQR cost.

	 Adaptivity: the control has to fulfill the specifica-

tions for any of the admissible realization of the

parameter in the bounded set �. For that reason, a

feedback gain is designed for any extremal realiza-

tion of the linear system, such that the quadratic

function is a common Lyapunov function. The set

of controllers induces a time-varying feedback gain.

	 Performance region: we define a target set of the

state space where the performance is considered.

The objective is that the controller obtained solving

LMI has higher performance inside this set, which is

the region of the state space in which the system is

confined in practice.

	 Fast real-time implementation: once the feedback

gains have been calculated for each extremal para-

meter realization, it is sufficient to solve on-line a

linear programming problem to obtain the stabil-

izing control law. This fact supposes that the pre-

sented control strategy fits very well to mobile

robotic applications, where small sampling rates are

employed.

Given a linear, time-varying, discrete-time system in

the form (13) and subject to the constraints (17), we

look for a matrix P > 0 and a set of parameter-

dependent controllers KðAj
�Þ, one for each vertex �j of

�, such that for all e 2 "ðPÞ the system is asymptotically

stable, and the input and state constraints are fulfilled.

Note that, in order to assure the stated specifica-

tions, it is required that the state evolves inside

an invariant set "ðPÞ, i.e., e 2 "ðPÞ ¼ fe 2 R
3
:

eTPe � 1g. In our case, invariance is assured by the

fact that the ellipsoid is a level set of a LyapunovFig. 2. Control scheme for the adaptive control strategy.

148 R. Gonzalez et al.



function. This region has the property that if the initial

state belongs to it, all the following states are con-

tained in that set for any possible realization of the

parameter [2].

Remark 5: In the following, all the conditions required

are imposed only at the extremal values of the polytopic

set �, i.e. at the N� vertices of �. In our case, N� ¼ 24,

as shown in Assumption 1, matrix A� is determined by

the admissible realization of four variables

ðvrefr ; v
ref
l ; ir; ilÞ. Fulfillment of such conditions at the

vertices yields the satisfaction at any point in �, as

stated in Property 1, that will be presented in Section

III-E.

In the following section, we detail the design of the

control strategy used in this work to assure previous

specifications, regarding adaptivity and constraints

fulfillment.

3.1. Stability and Performance

When dealing with the problem of determining

asymptotically stable controllers, one classical way to

proceed is to look for a Lyapunov function deter-

mined by a positive definite matrix P > 0, i.e.

VðeÞ ¼ eTPe, such thatVðeðkþ 1ÞÞ � VðeðkÞÞ < 0, for

all e 6¼ 0 [5, 17]. In general, invariant ellipsoid and

Lyapunov function are both determined byP. We add

a further degree of freedom introducing a scaling

factor in the definition of the Lyapunov function

VðeÞ ¼ eT�Pe; � 2 R
þ.

The value of variable � is minimized in the optim-

ization problem (see (40)). It is shown in Remark 6

that the value of � provides an upper bound of the

cost-to-go valid within the performance region.

Hence, conceptually, minimizing � implies maximiz-

ing the performance in the region of interest (defined

in Section III-D).

As explained previously, the LMI to be solved is

formulated as

eTððAj
� þ BdKðA

j
�ÞÞ

T�PðAj
� þ BdKðA

j
�ÞÞÞe� eTð�PÞe

� �eTðQþ KðAj
�Þ

T
RKðAj

�ÞÞe; 8e 2 R
3;

ð19Þ

for every vertex � j of �, with j ¼ 1; . . . ;N�, where

Q > 0, R > 0 are symmetric matrices weighting the

state and input signals. Notice that inequality (19)

gives a guaranteed cost function, for details see [17].

Denoting �A
j

� ¼ Aj
� þ BdKðA

j
�Þ, we get

eTðð �A
j

�Þ
T�Pð �A

j

�ÞÞe� eTð�PÞe �

� eTðQþ KðAj
�Þ

T
RKðAj

�ÞÞe; 8e 2 R
3;

ð20Þ

for all �j, with j ¼ 1; . . . ;N�. The previous inequality is

equivalent to the following LMI

ð �A
j

�Þ
T�Pð �A

j

�Þ � �P � �Q� KðAj
�Þ

T
RKðAj

�Þ;

ð21Þ

for all �j, with j ¼ 1; . . . ;N�. Using the Schur com-

plement [5], it results that the previous inequality is

equivalent to

P�
Q

�
� KðAj

�Þ
TR

�
KðAj

�Þ ð �A
j

�Þ
T

�A
j

� P�1

2
4

3
5 
 0; ð22Þ

for all �j. Rearranging the previous LMI, we obtain

P ð �A
j

�Þ
T

Q
1
2 KðAj

�Þ
T
R

1
2

�A
j

� P�1 0 0

Q
1
2 0 �I 0

R
1
2KðAj

�Þ 0 0 �I

2
6664

3
7775 
 0;

ð23Þ

for all �j. In order to remove the nonlinear terms on

P, the previous matrix inequality is pre- and post-

multiplied by

P�1 1 0 0

0 I 0 0

0 0 I 0

0 0 0 I

2
664

3
775: ð24Þ

Finally, substituting S ¼ P�1; Yj
� ¼ KðAj

�ÞP
�1, and

�A
j

� ¼ Aj
� þ BdKðA

j
�Þ, the linear matrix inequality to

solve is given by

S SðAj
�Þ

T þ ðYj
�Þ

T
BT
d SQ

1
2 ðYj

�Þ
T
R

1
2

ðAj
�ÞSþ BdðY

j
�Þ S 0 0

Q
1
2S 0 �I 0

R
1
2Yj

� 0 0 �I

2
6664

3
7775 
 0;

ð25Þ

for all �j. This LMI is imposed for each vertex of

the set �, and the solution of the optimization

problem determines a feedback gain for each vertex.

For that reason, we determine off-lineN� ¼ 24 control

gains.

3.2. Input Constraints

Physical limitations in the actuators of the mobile

robot impose constraints on the input variables. We

have to impose, in LMI form, that no point of the

invariant ellipsoid causes input constraint violations.
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Knowing that vr � vMr and vl � vMl , we find that such

restriction in terms of the virtual control inputs is1

vrefr � u1 �
b

2
u2

1� ir

0
B@

1
CA � vMr ; ð26Þ

we formulate the LMI for the case of vr, the case for vl
is obtained in a similar way.

Now, rearranging equation (26), we get

Cj
�uþ d j

� � vMr ; ð27Þ

for all �j, where Cj
� ¼

�1

1� ir

�b

2ð1� irÞ

� �
, d j

� ¼
vrefr

1� ir

and clearly, ir and vrefr are those related to the par-

ticular extremal realization � j of the parameter.

Defining 	j� ¼ vMr � d j
� and substituting u ¼ KðAj

�Þ e,
previous inequality becomes

Cj
�KðA

j
�Þe � 	 j

�; 8e 2 "ðPÞ; ð28Þ

for all �j. Considering the following problem to

determine the maximum of a linear function with

ellipsoidal constraints, i.e.

a� ¼ max
e

Cj
�KðA

j
�Þe s:t: eTPe � 1;

ð29Þ

the solution to the previous maximization problem is

(see [5])

a� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

j
�KðA

j
�ÞP�1ðKðAj

�ÞÞ
TðCj

�Þ
T

q
: ð30Þ

Hence, a necessary and sufficient condition for (28) to

be fulfilled is that

Cj
�KðA

j
�ÞP

�1ðKðAj
�ÞÞ

TðC j
�Þ

T � ð	 j
�Þ

2; ð31Þ

for all � j. Notice that a quadratic term ð	j�Þ
2
,

depending on � j appears. In order to assure the con-

vexity properties of LMI, it should be substituted for

the upper bound �	 ¼ vMr �
vref;Mr

1� iMr
. Thus, it produces

Cj
�KðA

j
�ÞP

�1ðKðAj
�ÞÞ

TðCj
�Þ

T � ð�	Þ2; ð32Þ

for all �j. Then, applying the Schur complement, it

becomes

ð�	Þ2 Cj
�KðA

j
�Þ

ðKðAj
�ÞÞ

TðC� jÞT P

" #

 0; ð33Þ

for all �j. Finally, previous equation is pre- and post-

multiplied by

I 0

0 P�1

� �
; ð34Þ

and substituting S ¼ P�1 and Yj
� ¼ KðAj

�ÞP
�1, the

input constraints result in the following LMI form

ð�	Þ2 Cj
�Y

j
�

ðYj
�Þ

TðCj
�Þ

T
S

" #

 0; ð35Þ

for every vertex � j of �, with j ¼ 1; . . . ;N�.

3.3. State constraints

In addition, we have to impose that the invariant set is

contained in the admissible state space region. This

guarantees no state constraint violations, provided

that the initial state is confined in "ðPÞ. In this way,

state constraints are formulated as

jej � T; 8e 2 "ðPÞ; ð36Þ

where �j j denoted the element-wise absolute value and

T ¼ ½eMx eMy eM� �T.
Similarly to the case of input constraints, and sub-

stituting S ¼ P�1, it produces

hT1S h1 � ðeMx Þ2;

hT2S h2 � ðeMy Þ2;

hT3S h3 � ðeM� Þ2;

ð37Þ

where h1 ¼ ½1 0 0�T, h2 ¼ ½0 1 0�T, and h3 ¼ ½0 0 1�T.
Finally, due to symmetry of LMI, this equation is also

achieved for the lower bounds.

3.4. Performance Region

We establish a target region, denoted as �, which can

be considered as a performance region, in which the

system evolves mostly. The objective is that the con-

troller obtained solving LMI has higher performance

inside this set. We define  j
e 2 � as the j-th vertex of

�. The set � is the parallelotope in the state space

determined by the intervals of interest, i.e.

� ¼ fe :  m � e �  Mg, and we impose � � "ðPÞ.
In LMI form, it must be imposed that all the ver-

tices of � belong to the invariant ellipsoid, i.e.

1Notice that, in practice, the wheels can also move backward.
However, these negative velocities are rarely reached, as the
reference virtual robot always moves forward and for that reason
no lower bounds have to be added to the optimization problem.
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1� ð j
eÞ

T
Pð j

eÞ 
 0; ð38Þ

which is equivalent to

1 ð j
eÞ

T

 j
e S

� �

 0: ð39Þ

In conclusion, the off-line design process is aimed to

obtain a family of control gains fulfilling the LMI

constraints. These gains are obtained solving the fol-

lowing optimization problem.

min
S> 0; �;Y j

�8� j

�

s:t:

ð25Þ; ð35Þ; ð37Þ; 8� j;

ð39Þ; 8 j
e:

ð40Þ

Remark 6: We provide here an explanation of the

meaning of parameter �, whose minimization is the

objective of the proposed optimization problem. We will

show that the value of � is an upper bound of the cost-to-

go, at least within the performance region represented

by �.

First, we suppose that the performance region is

contained in the ellipsoidal invariant set, imposing

that every vertex of � is contained in the ellipsoid

through constraint (38).

Moreover, it can be proved that, from the con-

straint (19), the quadratic functionVðeÞ ¼ eT�Pe is an
upper bound of the cost-to-go function, see Property

1. Then, for every eð0Þ 2 "ðPÞ, the upper bound of the

cost-to-go is given by

Vðeð0ÞÞ ¼ eTð0Þ�Peð0Þ � �; ð41Þ

as eTð0ÞPeð0Þ � 1 by definition of the ellipsoid "ðPÞ.
This implies that also the value of � is an upper bound

of the cost-to-go valid for every point in the ellipsoid

"ðPÞ, and in particular in the region �. That is, the

cost-to-go of the resulting adaptive control law is

smaller or equal to �, for every initial condition in �.

Hence, minimizing the value of �, we minimize an

upper bound of the cost-to-go valid for every point in

the performance region.

Fig. 3 plots the invariant ellipsoid obtained solving

(40) using the LMI toolbox [11] andMPT toolbox [18]

both for Matlab1 Suite. The small box inside the

ellipsoid depicts the set�. As expected, the ellipsoid is

constrained by the performance region. Furthermore,

input and state constraints are also drawn, the values

of these constraints are also employed in the simula-

tions, see Table 1. Recall that, once the feedback law is

defined, the input constraints are projected into the

state space (see (28)). This can be noticed in the top

right cuts of the outer box in Fig. 3.

3.5. On-line Adaptive Control Strategy

Finally, in order to assure the performance and sta-

bility of the gain determined on-line (adaptive con-

troller), we have to compute a vector of coefficients


 2 R
N� such that A� is a convex combination of the

extreme matrices of the set A. For that purpose, we

can express

A� ¼
XN�

j¼1


jA
j
�;

XN�

j¼1


j ¼ 1; 
j 
 0; 8j ¼ 1; . . . ;N�;

ð42Þ

where A� is the current matrix (on-line).

Fig. 3. Ellipsoidal invariant set, input and state constraints, and
performance region.

Table 1. Input and state constraints, and performance
region for simulations

Max Min Units

Input
vr 2.5 0 [m/s]
vl 2.5 0 [m/s]

State
ex 1 � 1 [m]
ey 1 � 1 [m]
e� 0.52 � 0.52 [rad]

Performance region
 ex 0.3 � 0.3 [m]
 ey 0.3 � 0.3 [m]
 e� 0.17 � 0.17 [rad]
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The problem to determine 
 is a Linear Program-

ming (LP) feasibility problem with respect to
, that is,
we only need to find a feasible solution to equation

(42).

Then, the proposed adaptive feedback gain for the

current realization state is calculated as

KðAÞ ¼ 
1KðA
1
�Þ þ . . .þ 
N�

KðAN�
� Þ: ð43Þ

Finally, the resulting feedback control law is

uðkÞ ¼ KðA�ÞeðkÞ: ð44Þ

In the following property, we establish that adaptive

control law (44) assures the specifications given in

Section 3 for any A� 2 A.

Property 1: Suppose that Assumption 1 holds. Con-

sider the linear, time-varying, discrete-time system (13)

with constraints eðkÞ 2 E, uðkÞ 2 U. The adaptive

control law defined in (44), is such that, for each� 2 �:

	 The function VðeÞ ¼ eT�Pe is a local Lyapunov

function for the system inside "ðPÞ ¼ fe : eTPe �
1g ensuring stability.

	 The set "ðPÞ ¼ fe : eTPe � 1g is an invariant set for

the closed-loop system satisfying input and state

constraints.

	 The function VðeÞ is an upper bound of the cost-to-

go, and of the cost of the LQR, i.e.,

Vðeð0ÞÞ 
 min
u½0;1Þ

X1
k¼0

eTðkÞQeðkÞ þ uðkÞTRuðkÞ;

ð45Þ

where u½0;1Þ denotes the infinite sequence of uðkÞ for
k 2 Z

þ and 8e 2 "ðPÞ. The proof can be found in

Appendix A.

4. Simulations

This section analyzes the performance of the proposed

adaptive control law, and it provides a comparisonwith

existing time-varying control techniques. For this pur-

pose, the well-known linear, time-varying controller

described in [8] has been implemented. Furthermore, in

order to compare our new formulation with a controller

that compensates slip effect, the control law presented

in [13] has also been implemented.

Although, many different trajectories have been

tested, in this case, we show a reference trajectory,

which is not too typical in mobile robotics, but it has

been included in order to check the full velocity and

slip ranges. In order to make realistic simulations, we

have added a small random noise to the measurements

of the robot position and to the slips. The initial

location of the mobile robot is also different from the

desired one. The parameters of the controllers

developed in [8, 13] are set to � ¼ 1 and � ¼ 0:6 in

order to reach a soft overdamped closed-loop beha-

vior, see [8,13] for more details. The rest of parameters

are: Tm ¼ 0:1½s�, b ¼ 0:5½m� and the parameters for the

proposed adaptive control law are Q ¼
diagð½1 1 0:1�Þ and R ¼ 10I2. Reference velocities

are restricted to fvrefr ; v
ref
l 2 ½0:4; 1:5�½m=s�g and slip is

restricted to fir; il 2 ½10; 30�½%�g. The state and input

constraints are summarized in Table 1.

Fig. 4a shows the trajectories. It is possible to

observe that the control laws, which take into account

slip effect, have a better behavior than the controller

proposed in [8]. In Fig. 4b, we notice that the simulated

slip varies over the whole range previously defined.

The errors between the reference trajectory and

those steered by the compared controllers are plotted in

Fig. 5. As expected, the controller presented in this

Fig. 4. Simulated trajectories and Slip.
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work achieves the smallest error due to the adaptivity

of the control law for each reference inside the spe-

cifications. It is possible to note that although some

noise has been added to the slip and the robot posi-

tion, the adaptive control law obtains the smallest

error mainly in the lateral direction. Large lateral

errors could cause crashes with obstacles in its

workspace. In the proposed controller, it is assured

that lateral errors are always smaller than in the

other cases.

As explained above, longitudinal slip decreases the

linear velocity, which means that controllers must

increase this component of the velocity to compensate

this negative effect. For that reason, the velocities

displayed in Fig. 6a are greater than the references.

Finally, Fig. 6b shows the virtual control signals for

the three controllers. The adaptive controller presents

control signals, which are much smoother than the

other control laws.

5. Conclusions

This paper presents the synthesis of an adaptive con-

trol law guaranteeing asymptotic stability for mobile

robots under slip conditions subject to both con-

straints and varying dynamics. LMI are used to solve

this convex optimization problem. This problem is

solved off-line for each extreme system realization.

On-line computation is devoted to determine an

adaptive feedback control law for the current real-

ization of the system as a convex combination of the

extremal gains obtained off-line. Finally, a compar-

ative study with other control laws have been

addressed through simulations. These simulations

show the appropriate behavior of the proposed for-

mulation, state and input constraints are assured, and

longitudinal slip is compensated. In future, we are

planning to test this control strategy in a real mobile

robot.

Fig. 5. Errors along the simulations.

Fig. 6. Control and virtual signals along the simulations.
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Appendix

Proof of Property 1

In the following, we assume that 
 are obtained such

that A� is a convex combination of Aj
�, with �

j the N�

vertices of � as in (19) and KðA�Þ is determined as in

(43). The three statements of the property are proved.
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We start proving the third point, as the first one is a

direct consequence of it.

To prove the third point, we have to show that

inequality,

eTððA� þ BdKðA�ÞÞ
T�PðA� þ BdKðA�ÞÞÞe� eTð�PÞe

� �eTðQþ KðA�Þ
T
RKðA�ÞÞe; 8e 2 R3;

ð46Þ

is satisfied for any � 2 � if it is satisfied at the vertices

�j, with j ¼ 1; . . . ;N�. To simplify the notation, we

define

M� ¼

S SðA�Þ
T þ ðY�Þ

T
BT
d SQ

1
2 ðY�Þ

T
R
1
2

ðA�ÞSþ BdðY�Þ S 0 0

Q
1
2S 0 �I 0

R
1
2Y� 0 0 �I

2
66664

3
77775;

ð47Þ

where the dependence on the parameter � is explicit,

and note that M� ¼
PN�

i¼1 

jM�j . Since, as illustrated

in Subsection III-A, condition (46) is equivalent to

M� 
 0, and from (25) and the non-negativeness of 
,
we have that

M� ¼
XN�

i¼1


jM�j 
 0; ð48Þ

it means that (46) is fulfilled. To prove that VðeÞ is a
Lyapunov function for the closed-loop system

regardless of the realization of parameter �, we have

to show that for any � 2 � condition Vðeðkþ 1ÞÞ �
VðeðkÞÞ < 0 is satisfied, i.e.,

eTððA� þ BdKðA�ÞÞ
T�PðA� þ BdKðA�ÞÞÞ

e� eTð�PÞe < 0; 8e 2 R
3;

ð49Þ

as VðeÞ is positive definite. From Q > 0, R > 0 and

(46), the condition follows. Furthermore, since we

prove it for the entire space, VðeÞ is, in particular, a

Lyapunov function in the ellipsoid centered in the

origin. Finally, the set "ðPÞ is an invariant set, since it

is the level set of a Lyapunov function (see [3]), and it

fulfills the state constraints by construction. With

respect to the input constraints, we have that

C�KðA�Þe ¼
XN�

j¼1


jC�jKðA
j
�Þe �

XN�

i¼1


j�	 ¼ �	

8e 2 "ðPÞ;

ð50Þ

is satisfied by convexity of � and fulfillment of input

constraints at its vertices.&
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