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Restart of accelerated first order methods with linear convergence under a
quadratic functional growth condition

Teodoro Alamo, Pablo Krupa, Daniel Limon

Abstract—Accelerated first order methods, also called fast
gradient methods, are popular optimization methods in the field
of convex optimization. However, they are prone to suffer from
oscillatory behaviour that slows their convergence when medium
to high accuracy is desired. In order to address this, restart
schemes have been proposed in the literature, which seek to
improve the practical convergence by suppressing the oscillatory
behaviour. This paper presents a restart scheme for accelerated
first order methods for which we show linear convergence under
the satisfaction of a quadratic functional growth condition, thus
encompassing a broad class of non-necessarily strongly convex
optimization problems. Moreover, the worst-case convergence
rate is comparable to the one obtained using a (generally non-
implementable) optimal fixed-rate restart strategy. We compare
the proposed algorithm with other restart schemes by applying
them to a model predictive control case study.

Index Terms—Convex Optimization, Accelerated First Order
Methods, Restart Schemes, Linear Convergence.

I. INTRODUCTION

In the field of convex optimization, first order methods
(FOM) are a widespread class of optimization algorithms
which only require evaluations of the objective function and
its gradient [1], [2]. Some examples of these methods include:
gradient descent [1], ISTA [3] and ADMM [4]. A subclass
of FOM are the accelerated first order methods (AFOM),
which are characterised by providing a convergence rate
O(1/k2) in terms of the objective function value [5]. Some
noteworthy examples are: Nesterov’s fast gradient method [5],
FISTA [3], accelerated ADMM [6], [7], fast Douglas-Rachford
splitting [8], and fast AMA (FAMA) [9, §5].

The use of AFMOs in the field of control is a heavily
researched topic, especially in the field of model predictive
control (MPC), as evidenced by the following examples: [10],
which employs FAMA on a condensed MPC optimization
problem; [11] and [12], which consider Nesterov’s fast gradi-
ent method; [13], where the infinite horizon constrained LQR
problem is solved using an accelerated dual proximal method;
[14], which uses the accelerated dual gradient-projection algo-
rithm; [15] and [16], which use the fast gradient method along
with the augmented Lagrangian method; and [17], where the
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FISTA algorithm is employed. AFOMs are also used in other
areas closely related to the field of control, such as to find
the solution of Lasso problems [18], which are employed, for
instance, in sparse system identification [19].

A drawback of AFOMs is that they often suffer from
oscillating behaviour that slows them down [20]. In order
to mitigate this, restart schemes have been proposed in the
literature, which have been shown to improve the convergence
in a practical setting by suppressing the oscillatory behaviour.
In a restart scheme, the AFOM is stopped when a certain
criterion is met and then restarted using the last value provided
by the algorithm as the new initial condition.

Several restart schemes have been proposed in the liter-
ature, including the following, where there are three main
aspects to consider: (i) if they are generally implementable
in practice, (ii) if they guarantee linear convergence, and (iii),
if so, under what assumptions. In [20] the authors propose
two simple heuristic schemes (the functional and gradient
restarts) that work well in practice but lack, for the most part,
linear convergence guarantees. The results of this article were
extended in [21], but the conditions for linear convergence are
still restrictive. In [22, §5.2.2], the authors propose a restart
scheme, that extends the scheme from [23, §5.1], for opti-
mization problems satisfying a quadratic functional growth
(QFG) condition [22, Definition 4], which can be viewed as a
relaxation of strong convexity. This scheme, which guarantees
linear convergence, restarts the AFOM after a fixed number of
iterations, resulting in a very simple implementation. However,
its drawback is that it requires knowledge of parameters of the
optimization problem that are generally hard to obtain, such as
the parameter that characterizes the QFG condition. A restart
scheme for FISTA that also guarantees linear convergence
for optimization problems satisfying the QFG condition is
presented in [24]. The scheme requires an initial estimation
of the QFG parameter, thus not requiring its exact value.
However, we find that it is rather sensitive to this initial guess.
Finally, the authors proposed in [25] and [26] two restart
schemes with linear convergence for optimization problems
satisfying the QFG condition that do not require knowledge
of hard to obtain parameters of the optimization problem nor
estimations of them, including the QFG parameter. However,
both schemes are specific to FISTA.

This article presents a novel restart scheme for AFOMs
that exhibits linear convergence for optimization problems
satisfying a QFG condition, thus encompassing a broad class
of non-necessarily strongly convex problems. Furthermore, it
does not require hard-to-attain information of the objective
function, such as the QFG parameter. We provide a theoretical
upper bound on the number of iterations needed to achieve
a desired accuracy and show that the obtained convergence
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rate is comparable to the one that could be obtained using the
restart scheme from [22, §5.2.2], which is optimal for the class
of AFOMs and optimization problems under consideration.

This paper extends the preliminary results presented for
FISTA in the conference paper [25] by providing a restart
scheme that is applicable to a broad class of AFOM algorithms
and with an improved worst-case convergence rate.

The remainder of this article is structured as follows. In
Section II we formally present the class of optimization
problem and AFOM algorithms under consideration. Section
III describes the optimal fixed-rate restart strategy from [22]
and provides its iteration complexity for our class of AFOMs.
Section IV presents the novel implementable restart scheme
with linear convergence. In Section V we compare the pro-
posed scheme with some of the alternatives referenced above
by applying them to solve an MPC problem using the FAMA
algorithm from [10]. We draw conclusions in Section VI.

Notation: Given a norm ‖ · ‖, we denote by ‖ · ‖∗ its dual
norm: ‖x‖∗

.
= sup { xT z : ‖z‖ ≤ 1 }. The `1-norm is

denoted by ‖ ·‖1. Z+ denotes the set of non-negative integers.
The set of integer numbers from i to j is denoted with Zji ,
i.e. Zji

.
= {i, i+ 1, . . . , j − 1, j}. Euler’s number is denoted

by e, and the natural logarithm by ln(·). dxe denotes the
smallest integer greater than or equal to x, and bxc the largest
integer smaller than or equal to x. The set of proper closed
convex functions from Rn to (−∞,∞] is denoted by Γn.
Given f ∈ Γn, we denote by dom(f) its effective domain,
that is, dom(f)

.
= { x ∈ Rn : f(x) <∞ }. Further notation

is given in Notations 1 and 2 in the following section.

II. PROBLEM STATEMENT

In this paper we are concerned with finding the solution of
optimization problems given by

f∗ = min
x∈Rn

f(x), (1)

which we assume are solvable and where f ∈ Γn.
We use the following notation for the optimal set of (1), the

projection operation onto it, and the level sets of f .

Notation 1. Given the solvable problem (1):
(i) The optimal set is denoted by Ωf . That is,

Ωf = { x ∈ Rn : f(x) = f∗ }.

(ii) For every x ∈ Rn we denote x̄ the closest element to x
in the optimal set Ωf with respect to norm ‖ · ‖, i.e.

x̄ = arg min
z∈Ωf

‖x− z‖.

(iii) Given ρ ∈ [0,∞) we denote the level set

Vf (ρ) = { x ∈ Rn : f(x)− f∗ ≤ ρ }.

It is well known that if f ∈ Γn is strongly convex, then
there exists µ > 0 such that

f(x)− f∗ ≥ µ

2
‖x− x̄‖2, ∀x ∈ dom(f).

This inequality is called the quadratic functional growth (QFG)
condition and it is satisfied, at least locally, for a large class
of not necessarily strongly convex functions [22], [27], [28].

Let us consider a fixed point algorithm A that can be
applied to solve (1), i.e. given a initial point x0 ∈ dom(f),
algorithm A generates a sequence {xk} with k ≥ 0 such that
limk→∞ f(xk) = f∗. We use the following notation to refer
to the iterates provided by algorithm A.

Notation 2. Suppose that the fixed point algorithm A is
applied to solve problem (1) using as initial condition x0.
Given the integer k ≥ 1, we denote with A(x0, k) the vector
in Rn corresponding to iteration k of the algorithm.

The following assumption characterizes the class of opti-
mization problems and AFOM algorithms we consider.

Assumption 1. We assume that:
(i) For every ρ > 0, f ∈ Γn satisfies the QFG condition

f(x0)− f∗ ≥ µρ
2
‖x0 − x̄0‖2, ∀x0 ∈ Vf (ρ)

for some µρ > 0.
(ii) For every x0 ∈ dom(f), algorithm A satisfies,

f(A(x0, 1)) ≤ f(x0)− 1

2Lf
‖g(x0)‖2∗, (2)

f(A(x0, k))− f∗ ≤ af
(k + 1)2

‖x0 − x̄0‖2, ∀k ≥ 1, (3)

where af > 0, Lf > 0, and g(·) is a gradient operator
satisfying g(x) = 0⇔ x ∈ Ωf .

(iii) We denote nρ
.
= max

{
1

2
,

√
2af
µρ

}
.

The conditions listed in Assumption 1 are expressed in
very general terms to be able to account for a broad class of
optimization problems and AFOMs. Let us start by providing
some insight and examples of the conditions and terms listed
in the assumption. Assumption 1.(i) establishes a local QFG
condition on the objective function, which encompasses a
broad class of non-necessarily strongly convex function (see
[22, Fig. 1]). We refer the reader to [22], [27] and [28] for
examples of functions satisfying this condition, including the
case f(x) = h(Ex) + c>x + IX (x), where h : Rm → R, is
a smooth strictly convex function, E ∈ Rm×n and IX is the
indicator function of a polyhedral set X , which encompasses
a large family of optimization problems. Assumption 1.(ii)
is written in terms of the constants Lf and af , which will
depend both on the AFOM A being used and on the structure
of f , and in terms of an operator g : Rn → Rn, which
plays the role of the gradient operator of A. For instance,
in the FISTA algorithm applied to f = h + Ψ, where h
is an L-smooth differentiable convex function and Ψ is a
(possibly non-smooth) convex function, we have that Lf = L,
af = 2L and g is the composite gradient mapping operator
[25]. Condition (3) is satisfied by most AFOMs [1], [2],
including the ones we list in the introduction, although under
varying assumptions. Condition (2) is also satisfied by most
AFOMs because the first iteration is often the result of the
application of a proximal (or composite) gradient mapping
operator. If this is not the case, then it can be easily enforced
by taking this operator as the first step of the algorithm.

In conclusion, Assumption 1 is satisfied by a broad family
of AFOMs and optimization problems of interest in the field
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of control, including the AFOMs listed in the introduction and
optimization problems such as QPs, Lasso or those that arise
from many MPC formulations.

We now present a property on the iterates of A which serves
as the basis for the development and convergence analysis
of the optimization schemes of the following sections. An
equivalent result can be found in [22, Subsection 5.2.2].

Property 1. Suppose that Assumption 1 holds. Then, for every
x0 ∈ Vf (ρ),

f(A(x0, k))− f∗ ≤
(

nρ
k + 1

)2

(f(x0)− f∗), ∀k ≥ 1. (4)

Proof. Denote f0
.
= f(x0), fk

.
= f(A(x0, k)), ∀k ≥ 1. Then,

fk − f∗ ≤
af

(k + 1)2
‖x0 − x̄0‖2 ≤

2af
µρ(k + 1)2

(f0 − f∗)

≤
n2
ρ

(k + 1)2
(f0 − f∗). �

III. OPTIMAL FIXED-RATE RESTART SCHEME

This section describes the optimal fixed restart scheme
presented in [22, §5.2.2], in which A is restarted each time the
iteration counter attains an optimal fixed number of iterations.
We analyze, under Assumption 1, its iteration complexity.

A fixed-rate restart scheme takes the recursion

vj+1 = A(vj , n), j ≥ 0, (5)

where n ≥ 1 is a fixed integer, starting at a given v0 ∈ Vf (ρ).
Under Assumption 1, the sequence {f(vj)}j≥0 is non

increasing and converges monotonically to f∗ if n ≥ nρ (see
Property 1). Given an accuracy parameter ε > 0, the following
property states the number M of restarts required to satisfy
f(vM−1)− f(vM ) ≤ ε, and shows that the bound on the total
number of iterations of A is minimized if n is chosen equal
to denρe. See also [22, §5.2.2] for a similar result.

Property 2 (Optimal fixed-rate restart scheme). Let Assump-
tion 1 hold. Given v0 ∈ Vf (ρ) and an integer n satisfying
n > nρ, consider the recursion (5). Then, given ε > 0:

(i) The inequality f(vM−1) − f(vM ) ≤ ε is satisfied for
every M ≥ M̄ , where

M̄
.
= 1 +

1

2(lnn− lnnρ)
ln

(
1 +

f(v0)− f∗

ε

)
. (6)

(ii) If n = denρe, the total number of iterations of A required
to attain f(vj−1)− f(vj) ≤ ε is upper bounded by

N̄∗F
.
= denρe

⌈
1 +

1

2
ln

(
1 +

f(v0)− f∗

ε

)⌉
. (7)

In this case, we call recursion (5) the optimal fixed-rate
restart scheme.

Proof. See Appendix A.

One of the key properties of the optimal fixed-rate restart
scheme is that it recovers the linear optimal convergence
rate provided by Nesterov’s fast gradient method for strongly
convex functions [22], [29, §2.2]. That is, recalling that

Algorithm 1: Performance-based exit condition on A
Prototype: [z,m] = Ad(r, n)
Require : r ∈ dom(f), n ∈ R

1 x0 ← r, k ← 0
2 Initialize A with x0

3 repeat
4 k ← k + 1

5 xk ←

{
A(x0, k) if f(A(x0, k)) ≤ f(xk−1)

xk−1 otherwise
6 `←

⌊
k
2

⌋
7 until k ≥ n and f(x`)− f(xk) ≤ 1

3
(f(x0)− f(x`))

Output: z ← xk, m← k

Algorithm 2: Optimal Algorithm based on Ad
Prototype: [zout, jout] = A∗(z0)
Require : z0 ∈ dom(f), ε > 0

1 m0 ← 1, m−1 ← 1, j ← −1
2 repeat
3 j ← j + 1

4 sj ←


√
f(zj−1)− f(zj)

f(zj−2)− f(zj)
if j ≥ 2

0 otherwise
5 nj ← max{mj , 4sjmj−1}
6 [zj+1,mj+1]← Ad(zj , nj)
7 until f(zj)− f(zj+1) ≤ ε

Output: zout ← zj+1, jout ← j

nρ = max{1/2,
√

2af/µρ} we easily obtain from Property
2.(ii) that an ε accurate solution is obtained in

O
(
nρ ln

(
f(v0)− f∗

ε

))
(8)

iterations. However, we note that this scheme is often non-
implementable because the value of nρ is generally not
available. Nevertheless, (7) and (8) are of interest because
they provide the best theoretical convergence rate that can be
obtained with a fixed-rate restart strategy.

IV. PROPOSED RESTART SCHEME

In this section we propose a novel restart scheme that does
not require knowledge of nρ and that attains a convergence
rate similar to the one of the optimal fixed-rate restart strategy
described in Section III. We start by presenting Algorithm 1,
which implements a performance-based exit condition of al-
gorithm A. Algorithm 1 will then be used to derive the main
result of this article: Algorithm 2.

Given an initial condition x0 and a scalar n, which serves
as a lower bound on the number of iterations, Algorithm 1
generates a sequence {xk}k≥0 that satisfies (see step 5)

f(xk) = min{f(xk−1), f(A(x0, k))},∀k ≥ 1.

Therefore,
f(xk) = min

i=0,...,k
f(A(x0, i)). (9)
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The algorithm exits after k ≥ n iterations if the following
inequality is satisfied (see step 7):

f(x`)− f(xk) ≤ 1

3
(f(x0)− f(x`)) , (10)

where ` =
⌊
k
2

⌋
. The outputs of the algorithm are z ∈ Rn and

m ∈ Z, where z = xm and m ≥ n is the number of iterations
required to satisfy the exit condition (10).

Intuitively, exit condition (10) detects a degradation in the
performance of the iterations of A. Notice that at iteration m,
the reduction corresponding to the last half of the iterations
(from

⌊
m
2

⌋
to m) is no larger than one third of the reduction

achieved in the first half of the iterations (from 0 to
⌊
m
2

⌋
).

The constant 1/3 was chosen because it minimized the upper
bound on the maximum number of iterations that we show
below in Theorem 1.(iii).

The following property characterizes the number of itera-
tions required to attain the exit condition (10) of Algorithm 1.
This result is instrumental to prove the convergence results of
Algorithm 2.
Property 3. Suppose that Assumption 1 holds. Then, the
output [z,m] from the call [z,m] = Ad(r, n) of Algorithm
1 satisfies, for every r ∈ Vf (ρ):

(i) f(z) ≤ f(r)− 1

2Lf
‖g(r)‖2∗,

(ii) f(z)− f∗ ≤
(

nρ
m+ 1

)2

(f(r)− f∗),

(iii) n ∈ (0, d4nρe] =⇒ m ∈ [n, d4nρe].
Proof. See Appendix B.

We now introduce the main contribution of the article: Al-
gorithm 2. This algorithm makes successive calls to Algorithm
1 (see step 6) using a minimum number of iterations nj that is
determined by the past evolution of the iterates zj (see steps
4 and 5). The main properties of the iterates of Algorithm 2
are given in the following property and theorem.
Property 4. Suppose that Assumption 1 holds and consider
Algorithm 2 for a given initial condition z0 ∈ Vf (ρ) and
accuracy parameter ε > 0. Then:

(i) Property 3 can be applied to the iterates of Algorithm 2
(i.e., taking r ≡ zj , n ≡ nj z ≡ zj+1 and m ≡ mj+1).

(ii) The sequence {mj} produced is non-decreasing. In par-
ticular,

mj ≤ nj ≤ mj+1, ∀j ∈ Zjout0 . (11)

(iii) The sequence {sj} satisfies sj ∈ (0, 1], ∀j ∈ Zjout2 .

Proof. See Appendix C.

Theorem 1. Suppose that Assumption 1 holds and consider
Algorithm 2 for a given initial condition z0 ∈ Vf (ρ) and
accuracy parameter ε > 0. Then:

(i) The number of calls to Ad (step 6) is bounded. That is,
jout is finite.

(ii) The number of iterations of A at each call of Ad (step
6) is upper bounded by d4nρe. That is,

mj+1 ≤ d4nρe , ∀j ∈ Zjout0 . (12)

(iii) The total number of iterations of A performed by a call to
Algorithm 2, which we denote by NA, is upper-bounded
by NA ≤ N̄A, where

N̄A
.
=
e d4nρe

2

⌈
5 +

1

ln 15
ln

(
1 +

f(z0)− f∗

ε

)⌉
.

Proof. See Appendix C.

Remark 1. From Property 4.(i), we have that we can rear-
range Property 3.(i) to read as

‖g(zj)‖2∗ ≤ 2Lf (f(zj)− f(zj+1)).

Therefore, the exit condition f(zj) − f(zj+1) ≤ ε implies
‖g(zj)‖2∗ ≤ 2Lf ε. Since, as per Assumption 1.(ii), g(zj) serves
to characterize the optimality of zj , we conclude that the
exit condition of Algorithm 2 also serves to characterize the
optimality of zj+1. This means that the exit condition could
be replaced by ‖g(zj)‖∗ ≤ ε̃, where ε̃ > 0. In this case, the
upper bound on the number of iterations given in Theorem
1.(iii) would be the same but replacing ε with ε̃/(2Lf ).

Note that Theorem 1.(iii) shows that the proposed algorithm
attains the optimal linear convergence rate of the optimal fixed-
rate restart scheme, in the sense that an ε accurate solution is
obtained in (8) iterations. This is an important result, since
we recover the optimal convergence rate for our class of
optimization problems using AFOMs.

Comparing the upper bound provided in Theorem 1.(iii)
with the upper bound N̄∗F (7) of the optimal fixed-rate restart
scheme presented in Section III, we have

N̄A
N̄∗F

=

e d4nρe
⌈

5 + 1
ln 15 ln

(
1 +

f(z0)− f∗

ε

)⌉
2 denρe

⌈
1 + 1

2 ln

(
1 +

f(z0)− f∗

ε

)⌉ ,

from where we obtain that

lim
ε→0

N̄A
N̄∗F

=
e d4nρe
denρe ln 15

≤ e(4nρ + 1)

enρ ln 15

=
4

ln 15
+

1

nρ ln 15
≤ 3

2

(
1 +

1

4nρ

)
.

We conclude that the worst case complexity of (the im-
plementable) Algorithm 2 is comparable to the (generally)
non implementable optimal fixed-rate restart scheme (approx-
imately 50% more iterations of A when ε tends to zero).

V. NUMERICAL RESULTS

We compare Algorithm 2 with other restart schemes of
the literature by applying them to the FAMA algorithm for
MPC from [10], where we consider the MPC formulation [30,
Eq. (2)] but without its terminal constraint (2f). This MPC
formulation can be posed as [10, Problem 2.1], which can
therefore be solved using the FAMA algorithm [10, Alg. 1].
As stated in [10, §3.2], this algorithm is equivalent to applying
FISTA to the dual problem of [10, Problem 2.1]. Therefore,
the dual objective function value D(λ) (see [10, §3.2]) and
its gradient ∇D(λ), where λ are the dual variables, satisfy
Assumption 1, with λk ≡ xk, D ≡ f , ∇D ≡ g, Lf is equal to
the expression ρ(C)/σf described in [10, §2] and af = 2Lf .
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We consider the system described in [30, §3], which consists
of three objects connected by springs where external forces
can be applied to the two outer-most objects. We use the
exact same setup as in [30, §3] with the exception of the cost
function matrix T , which we take as the solution of the discrete
algebraic Ricatti equation, as is often the case in MPC, and
the state constraints, which we do not enforce. We perform
the preconditioning procedure described in [10, §4] on the
resulting MPC optimization problem.

We solve the MPC’s optimization problem for 1000 ran-
domly generated system states, where the positions of each
object is obtained from a uniform distribution on the interval
[0, 4] dm and the velocities from a uniform distribution on
the interval [−0.5, 0.5] m/s. We solve each problem using the
FAMA algorithm [10, Alg. 1] with different restart schemes:

(i) Functional: The heuristic restart scheme proposed in [20]
that uses restart condition D(λk+1) ≤ D(λk).

(ii) Gradient: The heuristic restart scheme proposed in [20]
that uses restart condition 〈∇D(λk), λk − λk+1〉 ≥ 0.

(iii) Optimal: The restart scheme proposed in [22, §5.2.2],
which is typically non-implementable. To include it for
comparison with the proposed scheme, we implement it
using the method described at the end of the referenced
subsection that requires knowing D(λ∗), which we com-
pute using FAMA with a very small exit tolerance.

(iv) GLCR: The restart FISTA algorithm with linear conver-
gence proposed in [25, Alg. 2].

(v) GBRF: The gradient-based restart FISTA algorithm pro-
posed in [26, Alg. 2].

(vi) Adaptive: The adaptive scheme for FISTA from [24]. We
take the initial guess of the QFG parameter as 10−5.

We also use the proposed restart scheme (Algorithm 2) and
the non-restarted FAMA.

Table I shows the average, median, maximum and minimum
number of iterations of each scheme for the 1000 tests. The
results of the table are obtained by terminating FAMA when
the iterate uk of the primal problem (see [10, Alg. 1]) satisfies
‖uk − u∗‖2/‖u∗‖2 ≤ 10−5, where ‖ · ‖2 stands for the
standard Euclidean norm and the optimal solution u∗ of the
primal problem is obtained using the quadprog solver from
Matlab. We use this exit condition to provide a fair comparison
between the different approaches. Figure 1 shows the evolution
of ‖uk−u∗‖2/‖u∗‖2 for each restart scheme when taking the
system state as the origin. The results indicate that the restart
schemes tend to reduce the number of iterations required to
obtain a solution of the MPC’s optimization problem when
compared with the non-restarted variant, although this is not
always the case.

Additional numerical results can be found in [31, §3.3],
where the above restart schemes are applied to solve random
QP and Lasso problems with varying condition numbers.

VI. CONCLUSIONS

We propose a restart scheme applicable to a broad class
of AFOMs that does not require knowledge of hard-to-obtain
parameters of the optimization problem and still retains a
linear convergence rate similar to the optimal one for opti-
mization problems satisfying a QFG condition, i.e., its worst

TABLE I: Comparison between restart schemes.

Scheme Avg. Iter. Med. Iter. Max. Iter. Min. Iter

No restart 6262.7 5124.5 26659 48

Alg. 2 1115.9 1080.5 2902 23

GLCR 1103.0 1070.5 2963 29

GBRF 2184.0 2132.5 5991 48

Optimal 2135.3 2095.0 5893 53

Functional 845.2 801.0 4134 26

Gradient 835.5 801.5 2147 26

Adaptive 1858.1 1842.5 3827 48
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Fig. 1: Evolution of distance to optimality for each scheme.

case complexity is similar to the best one that can be obtained
if the parameters characterizing the convergence of the AFOM
were known. The scheme is based on a performance-based exit
condition that detects the degradation of the convergence of
the AFOM and which we show is attained in a finite number
of iterations. The numerical results indicate that the proposed
algorithm is comparable, in practical terms, with other restart
schemes of the literature. In our numerical results we find
that the application of restart schemes may be desirable in
many situations, since the non-restarted variant can require an
excessive number or iterations.

APPENDIX

A. Proof of Property 2

Suppose that the integer M is such that the inequality
f(vM−1)− f(vM ) > ε is satisfied. From Property 1 we have

f(vj+1)− f∗ ≤
(nρ
n

)2

(f(vj)− f∗), ∀j ≥ 0.

Using this inequality in a recursive manner we obtain

ε < f(vM−1)− f(vM ) ≤ f(vM−1)− f∗

≤
(nρ
n

)2(M−1)

(f(v0)− f∗).

This leads to

M < 1 +
1

2(lnn− lnnρ)
ln

(
f(v0)− f∗

ε

)
< M̄. (13)

Thus, we conclude that if M does not satisfy (13), then
f(vM−1)− f(vM ) ≤ ε. This proves the first claim.

Given ε > 0, v0 ∈ Vf (ρ) and n > nρ, denote S ≥ 0 the
smallest number of restarts required to satisfy the condition
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f(vS−1) − f(vS) ≤ ε. We infer from the first claim of the
property that

S ≤
⌈

1 +
1

2(lnn− lnnρ)
ln

(
1 +

f(v0)− f∗

ε

)⌉
.

Since each restart requires n iterations of A, we conclude that
NF (n), the total number of iterations of A, is equal to nS.
Thus,

NF (n)≤n
⌈

1+
1

2(lnn− lnnρ)
ln

(
1+

f(v0)− f∗

ε

)⌉
. (14)

Simple calculus yields that the value that minimizes n
lnn−lnnρ

is n∗ = enρ. Since n has to be a positive integer, we choose
the fixed restart rate given by n = denρe. Introducing this
value in the bound (14) we finally obtain

NF (denρe) ≤ denρe
⌈

1 +
1

2
ln

(
1 +

f(v0)− f∗

ε

)⌉
. �

B. Proof of Property 3

From (9) and Assumption 1 we have

f(z) = f(xm)
(9)
= min
i=0,...,m

f(A(x0, i))

≤ f(A(x0, 1))
(2)
≤ f(x0)− 1

2Lf
‖g(x0)‖2∗.

The first claim now follows directly from x0 = r. In view of
Property 1 we have, for every k ∈ Zm1 ,

f(xk)−f∗
(9)
≤ f(A(x0, k))−f∗

(4)
≤
( nρ
k+1

)2

(f(x0)−f∗). (15)

The second claim now follows from xm = z and x0 = r.
The inequality n ≤ m is trivially satisfied from step 7. Thus,
in order to conclude the proof we show that inequality (10)
is satisfied for k̂ = d4nρe and ˆ̀ =

⌊
d4nρe

2

⌋
≥ b2nρc ≥ 1

(where this last inequality follows from Assumption 1.(iii),
which states that nρ ≥ 1/2).

f(xˆ̀)− f∗
(15)
≤
(

nρ
ˆ̀+ 1

)2

(f(x0)− f∗)

≤
(
nρ
2nρ

)2

(f(x0)− f∗) =
1

4
(f(x0)− f∗).

This implies f(xˆ̀) ≤ 1
4f(x0) + 3

4f
∗ ≤ 1

4f(x0) + 3
4f(xk̂).

Thus,

f(xˆ̀)− f(xk̂) ≤ 1

4
(f(x0)− f(xk̂))

=
1

4
(f(x0)− f(xˆ̀)) +

1

4
(f(xˆ̀)− f(xk̂)).

We conclude that f(xˆ̀)− f(xk̂) ≤ 1

3
(f(x0)− f(xˆ̀)). �

C. Proofs for Algorithm 2

Proof of Property 4. Since z0 ∈ dom(f), we have that z0 ∈
Vf (ρ) for some ρ > 0. Additionally, each zj is obtained from a
call to Algorithm 1 (step 6). As such, in view of Property 3.(i),
we have that the iterates zj satisfy zj ∈ Vf (ρ), ∀j ∈ Zjout0 .
Therefore, Property 3 can be applied to each call to Ad, thus

proving claim (i). That is, for every j ≥ 0, the iterates of
Algorithm 2 satisfy:

f(zj+1) ≤ f(zj)−
1

2Lf
‖g(zj)‖2∗, (16a)

f(zj+1)− f∗ ≤
(

nρ
mj+1 + 1

)2

(f(zj)− f∗), (16b)

nj ∈ (0, d4nρe]⇒ mj+1 ∈ [nj , d4nρe]. (16c)

Next, due to step 5 we have mj ≤ nj , j ∈ Zjout0 . Moreover,
from (16c), we have that nj ≤ mj+1, ∀j ∈ Zjout0 , which
proves claim (ii).

Finally, we prove claim (iii). From the exit condition (step
7), we have

f(zj−1)− f(zj) > ε, ∀j ∈ Zjout1 . (17)

Additionally, from (16a) we have f(zj−2) ≥ f(zj−1),
∀j ∈ Zjout2 . Thus,

f(zj−2)− f(zj) ≥ f(zj−1)− f(zj)
(17)
> ε > 0, ∀j ∈ Zjout2 .

Therefore, from step 4, taking j ≥ 2, we have

0 < sj =

√
f(zj−1)− f(zj)

f(zj−2)− f(zj)
≤ 1, ∀j ∈ Zjout2 . �

The proof of the following lemma relies upon some tech-
nical results on the iterates of Algorithm 2, namely Lemmas
2 and 3, which we include in Appendix D.

Lemma 1. Consider Algorithm 2 with the initial condition
z0 ∈ Vf (ρ), and ε > 0. Suppose that Assumption 1 is satisfied
and that jout ≥ D, where

D
.
=

⌈
5 +

1

ln 15
ln

(
1 +

f(z0)− f∗

ε

)⌉
.

Then, m`+1 ≤
1√
15
m`+1+D, ∀` ∈ Zjout−D0 .

Proof. The proof is obtained by reductio ad absurdum. If there
is ` ∈ Zjout−D0 such that m`+1 > 1√

15
m`+1+D, then we

obtain from Lemma 3.(iv) (see Appendix D) that

D < 5 +
1

ln 15
ln

(
1 +

f(z0)− f∗

ε

)
,

which contradicts the definition of D. �

Proof of Theorem 1. Let T ∈ Z be such that

f(zj)− f(zj+1) > ε, ∀j ∈ ZT0 , (18)

is satisfied. Then, defining dj
.
= f(zj)− f(zj+1), we have

f(z0)−f(zT+1) =

T∑
j=0

dj ≥ (T+1)

(
min

j=0,...,T
dj

)
> (T+1)ε.

Thus, T + 1 <
f(z0)− f(zT+1)

ε
≤ f(z0)− f∗

ε
≤ ρ

ε
, from

where we infer that the largest integer T satisfying (18) is
bounded. Consequently, the exit condition of Algorithm 2 (see
step 7) is satisfied within a finite number of iterations, thus
proving claim (i).
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To prove claim (ii), we start by noting that both m1 and
m2 are no larger than d4nρe. Indeed, from step 4 we have
that s0 = s1 = 0, which, in virtue of step 5, implies that
n0 = m0 = 1 and n1 = m1. Since n0 = 1 is no larger than
d4nρe we have from (16c) that m1 is also upper-bounded by
d4nρe. Moreover, since n1 = m1 ≤ d4nρe, we obtain by the
same reasoning that m2 ≤ d4nρe. We now prove that if j ≥ 2
and mj ≤ d4nρe, then mj+1 ≤ d4nρe. From step 4 we have

s2
j =

f(zj−1)− f(zj)

f(zj−2)− f(zj)
= 1− f(zj−2)− f(zj−1)

f(zj−2)− f(zj)

≤ 1− f(zj−2)− f(zj−1)

f(zj−2)− f∗

=
f(zj−1)− f∗

f(zj−2)− f∗
(16b)
≤
(

nρ
mj−1 + 1

)2

.

Thus, we have sjmj−1 ≤ nρ. Therefore,

nj = max{mj , 4sjmj−1} ≤ max{d4nρe , 4nρ} = d4nρe ,

which, along with (16c), leads to mj+1 ≤ d4nρe, thus proving
the claim.

Finally, to prove claim (iii), we start by noting that the
computation of each zj+1 is obtained from mj+1 iterations
of A. Thus,

NA =

jout∑
j=0

mj+1

(12)
≤ (1 + jout) d4nρe . (19)

Let us denote

D
.
=

⌈
5 +

1

ln 15
ln

(
1 +

f(z0)− f∗

ε

)⌉
.

Consider first the case jout < D. Since both jout and D are
integers we infer from this inequality that 1 + jout ≤ D. This,
along with (19), implies that NA ≤ d4nρeD ≤ N̄A.

Suppose now that jout ≥ D. We first recall that Property
4.(ii) states that the sequence {mj+1}j≥0 is non-decreasing.
We now rewrite jout as jout = d+ tD, where d ∈ ZD−1

0 and
t is a non-negative integer. Thus,

NA =

jout∑
j=0

mj+1 =

d∑
j=0

mj+1 +

tD∑
j=1

md+j+1

≤ Dmd+1 +D

t∑
i=1

md+1+iD = D

t∑
i=0

md+1+iD.

From Lemma 1 we have

md+1+iD ≤
md+1+(i+1)D√

15
, ∀i ∈ Zt−1

0 .

Thus, NA ≤ D
t∑
i=0

md+1+tD

(
1√
15

)t−i
.

Using now m1+d+tD ≤ m̄ = d4nρe (see (12)) we obtain

NA
Dm̄

≤
t∑
i=0

(
1√
15

)t−i
=

t∑
j=0

(
1√
15

)j
≤
∞∑
j=0

(
1√
15

)j
=

√
15√

15− 1
≤ e

2
.

Thus, NA ≤
e

2
m̄D =

e

2
d4nρeD. �

D. Technical results on the iterates of Algorithm 2

Lemma 2. The function ϕ(s) : R→ R, defined as

ϕ(s)
.
=

(
1

s2
− 1

)
·max

{
1, (4s)4

}
,

satisfies ϕ(s) ≥ 15, ∀s ∈ (0,

√
15

4
].

Proof. We have that

ϕ(s) =

{
44(s2 − s4) if s > 1

4 ,
1

s2
− 1 if s ≤ 1

4 .

It is clear that ϕ(·) is monotonically decreasing in (0, 1
4 ]. Thus,

min
s∈(0,

√
15
4 ]

ϕ(s) = min
s∈[ 14 ,

√
15
4 ]

ϕ(s) = min
s∈[ 14 ,

√
15
4 ]

44(s2 − s4).

We notice that the derivative of s2− s4 is 2s(1− 2s2), which
vanishes only once in the interval of interest (at s = 1√

2
).

From here we infer that s2 − s4 is increasing in [ 1
4 ,

1√
2
) and

decreasing in ( 1√
2
,
√

15
4 ]. Thus, the minimum is attained at the

extremes of the interval [ 1
4 ,
√

15
4 ]. That is, we conclude that

min
s∈(0,

√
15
4 ]

ϕ(s) = min{ϕ(
1

4
), ϕ(

√
15

4
)} = min{15, 15} = 15.

�

Lemma 3 (Technical results on the iterates of Alg. 2).
Consider Algorithm 2 with the initial condition z0 ∈ Vf (ρ),
and ε > 0. Suppose that Assumption 1 is satisfied and
that jout ≥ 2. Suppose also that there is T ∈ Zjout2 and

` ∈ Zjout−T0 such that m`+1 >
1√
15
m`+1+T . Then:

(i) sj ∈
(

0,
√

15
4

]
, ∀j ∈ Z`+T`+2 .

(ii)
`+T∑
j=`+2

ln
(
max {1, (4sj)4}

)
< 4 ln 15.

(iii)
`+T∑
j=`+2

ln (
1

s2
j

− 1) ≤ ln

(
1 +

f(z0)− f∗

ε

)
.

(iv) T < 5 +
1

ln 15
ln

(
1 +

f(z0)− f∗

ε

)
.

Proof. Denote fj = f(zj), j ∈ Zjout+1
0 . From j ≥ 2 and step

4 of Algorithm 2 we have

s2
j =

fj−1 − fj
fj−2 − fj

, j ∈ Zjout2 .

The inequality sj > 0, ∀j ∈ Z`+T`+2 follows from Property
4.(iii). In order to prove the first claim it remains to prove the
inequality sj ≤

√
15
4 , ∀j ∈ Z`+T`+2 . We proceed by reductio ad

absurdum. Suppose that there is j ∈ Z`+T`+2 such that sj >
√

15
4 .

In this case,

mj+1

(11)
≥ nj = max{mj , 4sjmj−1} ≥ 4sjmj−1 >

√
15mj−1,

which along the non-decreasing nature of the sequence {mj}
(Property 4.(ii)) leads to

m`+1+T ≥ mj+1 >
√

15mj−1 ≥
√

15m`+1,

contradicting the assumption of the property, proving claim (i).
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From the non-decreasing nature of the sequence {mj}
(Property 4.(ii)) we have, for every j ∈ Z`+T`+2 ,

mj+1

(11)
≥ nj = max {mj , 4sjmj−1} ≥ mj−1 ·max {1, 4sj}.

Equivalently, ln (max {1, 4sj}) ≤ ln
mj+1

mj−1
, ∀j ∈ Z`+T`+2 . This

implies
`+T∑
j=`+2

ln (max {1, 4sj}) ≤
`+T∑
j=`+2

ln
mj+1

mj−1

= ln
m`+Tm`+1+T

m`+1m`+2
≤ ln

m2
`+1+T

m2
`+1

= 2 ln
m`+1+T

m`+1

< 2 ln
√

15 = ln 15. (20)

The second claim is obtained multiplying the last inequality
by 4. To prove the third claim we notice that

`+T∏
j=`+2

(
1

s2
j

− 1) =

`+T∏
j=`+2

fj−2 − fj−1

fj−1 − fj
=

f` − f`+1

f`+T−1 − f`+T
.

Since ` + T ≤ jout we have f`+T−1 − f`+T > ε > 0. Using
this inequality we obtain

`+T∏
j=`+2

(
1

s2
j

− 1) <
f` − f`+1

ε

(16a)
≤ f0 − f`+1

ε
≤ f0 − f∗

ε
,

from where the third claim directly follows. In order to prove
the last claim of the property we sum the inequalities given
by the second and third claims to obtain

`+T∑
j=`+2

ln

((
1

s2
j

− 1

)
·max

{
1, (4sj)

4
})

< ln

(
1 +

f0 − f∗

ε

)
+ 4 ln 15. (21)

From the first claim we have sj ∈
(

0,
√

15
4

]
, ∀j ∈ Z`+T`+2 .

Thus, the left term of (21) can be lower bounded by means of
the following inequality (Lemma 2)

15 ≤
(

1

s2
− 1

)
·max

{
1, (4s)4

}
, ∀s ∈

(
0,
√

15
4

]
.

That is,
`+T∑
j=`+2

ln 15 < ln

(
1 +

f0 − f∗

ε

)
+ 4 ln 15.

Equivalently, (T−1) ln 15 < ln

(
1+

f0 − f∗

ε

)
+ 4 ln 15. �
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