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Abstract:
The growing use of air conditioning systems has become one of the main drivers of energy
consumption in buildings. Many efforts are being made to develop new designs and control
strategies to improve energy efficiency and minimise electricity consumption. In this work, a
model for a case study of multiple-chiller-based cooling system is presented, based on surrogate
models derived from information provided by manufacturers, and the study of the economic
performance index. Then, an economic predictive control strategy will aim to operate the system
optimizing the efficiency of the plant. Instead of the classical two-layer economic predictive
control structure, where the reference to be tracked by the controller is given by a real-time
optimizer, here we consider a single-layer control strategy where the gradients with respect to
the manipulated inputs of the economic performance index are included in the cost function of
the model predictive controller. The resulting optimization problem to be solved on line is a QP,
which considerably eases the optimization problem, while also avoiding discrepancies between
layers that could lead to loss of feasibility.
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1. INTRODUCTION

Recent studies of energy efficiency in developed regions
claim that up to a 40% of the total energy is consumed in
buildings. Pérez-Lombard et al. (2008) finds that heating,
ventilation and air conditioning (HVAC) systems consume
approximately 50% of this energy. Thus, it is not surpris-
ing the efforts made by researchers during last years to
improve the performance of this kind of systems.

In this work the main focus of attention will be multiple-
chiller-based cooling systems where the coordinated op-
eration and sequencing of the involved chiller units are
optimized. In Torzhkov et al. (2010) an approach for op-
timizing the sequencing of multiples chillers is presented
taking future predicted values as inputs to determine the
optimal choice of various set-points. In Hure et al. (2019)
the minimization of the system performance index in terms
electrical energy prices is performed by employing a suc-
cessive linear programming algorithm and the gradient
algorithm for finding the initial feasible point. In Deng
et al. (2014) the MPC problem that finds the chiller
system optimal scheduling is presented as a large-scale
mixed-integer nonlinear programming problem for whom
an heuristic algorithm to obtain sub-optimal solutions is
proposed.
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The objective of this work involves the design of an eco-
nomic model predictive control strategy that optimizes
the operation of the plant while meeting power demands.
A common approach to this problem is the design of a
two-layer control strategy based on a real-time optimizer
(RTO) that finds an economically optimal operating point
that is provided as set point to a model predictive control
that drives the system towards this point (Rawlings et al.,
2018). This approach might lead to possible loss of feasibil-
ity if the setpoints provided by the RTO are unreachable or
if the optimal operation point changes driven by variations
in the unitary costs or in the air conditioning demand.
Besides, this requires the solution of two optimization
problems, which makes its implementation in embedded
systems difficult. In this work, we propose a gradient-
based economic MPC aimed to the optimal operation of
the HVAC system in presence of possible variations of the
demand or parameters of the economic performance index.
Furthermore, this controller only requires the solution of
a quadratic programming problem provided the gradient
of the economic cost function, which facilitates its imple-
mentation.

2. MULTIPLE CHILLER COOLING SYSTEM

A water cooling system featuring a constant flow topology
and two chillers is studied. A general scheme of a double-
chiller cooling system is shown in Fig. 2.



Fig. 1. Double-chiller constant-flow cooling system.

The system is composed of two chiller units C1 and C2

each of them receiving a total water flow qC1 and qC2

from the water manifold moved by the pumps P1 and P2
located at the chiller units module output. From the water
manifold, a flow qo = q = qC1 + qC2 of water is driven to
the distribution network at a temperature Two, and then to
the secondary system, in this case, a series of seven rooms
whose temperatures are aimed to be controlled. The chiller
units module is in charge of refrigerating the recirculation
water coming from the fan coils located in each of the
rooms. These chiller units are controlled by their partial
load ratio PLR1 and PLR2, with PLRj ∈ [0, 1].

Fig. 2. Scheme of the water distribution network and the
secondary system with seven rooms.

The scheme of the distribution network and the secondary
system is detailed in Fig. 2. A series of fixed T-diverters
val1, ..., val7 splits the flow from the manifold through the
different rooms. In this case we assume that these flows
are equal. In each room i, a fan coil unit fi is used to
absorb heat from the room and give it to the water flow.
The fans of these fan coil units are assumed not to be
manipulable. Thus, the only way to control the total power
removed from the rooms is via three-way valves v1, ..., v7,
with vi ∈ [0, 1], which decide the percentage of water that
flows through the fan coils. The rest of the flow is bypassed.
Finally, flows coming from each of the rooms are mixed
together resulting in the recirculated flow qi = q whose
temperature is denoted as Twi.

3. SYSTEM DYNAMIC MODEL

In this section, models for the different parts of the
system are presented. The model of the chiller unit will

be discussed in detail to help understanding the problem
statement.

3.1 Chiller Units Economic Model

Modeling cooling machines is in general a challenging
task due to their internal complexity. Furthermore, in the
case of commercial chillers, their core architecture and
configuration are business-proprietary designs, and limited
information regarding the system performance is provided
by manufacturers.

Because of this difficulty, chiller system models using yield
curves based on performance parameters are commonly
found in the literature (Monfet and Zmeureanu, 2011).
In most cases, these parameters are the capacity of the
chiller unit CAP , defined as the maximum cooling power
that can be subtracted from the refrigerant fluid, and
the partial load ratio PLR, defined as the ratio between
the actual cooling power and the maximum (CAP ). The
total power consumed by the machine is given by the
electric consumption CE . In this work, a surrogate model
based on these parameters is proposed. The curves that
describe the behavior of these parameters are given by
normalized expressions used in commercial simulation
software handbooks (EnergyPlus, 2007), and they have
been adjusted using laboratory data from manufacturer
datasheets.

Rather than being a constant parameter, the maximum
chiller capacity CAP is a function that depends on the
external ambient air temperature Taa (◦C) and the chiller
output water flow temperature Two (◦C). Using this vari-
ables, the chiller CAP is given by

CAP = CAPN · f1(Taa, Two) , (1)

where CAPN is the so-called nominal capacity of the
chiller unit. This is a constant parameter provided by the
system manufacturer and represents the system capacity
under ideal conditions. The function

f1(Taa, Two) = c0 + c1Two + c2T
2
wo + c3Taa

+ c4T
2
aa + c5TaaTwo ,

(2)

is a modifying factor where the coefficients ci have been
obtained by normalizing a curve from datasheet informa-
tion provided by the manufacturer.

The partial load ratio is defined as

PLR =
cp · ρ · q · (Twi − Two)

CAP
, (3)

where cp = 4.186 kJ·kg−1·◦C−1 is the specific heat of
water, q the total input flow measured in kg·s−1 and Twi

the chiller input water flow temperature.

When working with two chillers, assuming that qC1 =
qC2 = q as it is customary, (1) and (3) can be combined
to obtain the following system of equations

PLR1 · f1(Taa, Two,1) =
1

2

cp · q
CAPN

(Twi − Two,1)

PLR2 · f1(Taa, Two,2) =
1

2

cp · q
CAPN

(Twi − Two,2)
(4)

where Two,j are the output water temperatures of chiller
unit j = 1, 2; and

Two = (Two,1 + Two,2)/2 . (5)



Taking into account that the inner control loops of the
chillers provide an over-damped behaviour of the output
water temperature Two of the closed-loop system, we
propose a Hammerstein model to describe the dynamics
of the chiller. This is composed by the static nonlinearity
described by (3) in series with a first-order system. In this
case we have considered a time constant of 2 minutes so
that the steady state is reached at around 10 minutes.

The electric consumption CE has also been identified using
manufacturer information. This model has the form

CE = CEN · f2(Taa, Two) · f3(PLR) . (6)

This expression depends on the chiller nominal consump-
tion CEN , associated to the machine dimensioning, and
two modifying factors described by

f2(Taa, Two) = p0 + p1Two + p2T
2
wo + p3Taa

+ p4T
2
aa + p5TaaTwo ,

(7)

f3(PLR) = k0 + k1PLR+ k2PLR
2 + k3PLR

3 . (8)
Again, coefficients pi and ki have been obtained by system
identification using manufacturers test training data. Fig-
ure 3 shows the electricity consumption CE as a function
of PLR and Two. Ambient air temperature Taa has been
kept constant at 35 ◦C in the plot. However, the model
exhibits that the higher Taa, the larger CE is, in a similar
way than Two.

Fig. 3. Electric consumption of the chiller.

Once the system behavior has been described by the
above-detailed expressions, the energy efficiency ratio
EER is used as standard measure of the system perfor-
mance (Leff and Teeters, 1978). This coefficient allows
finding operating points where the machine efficiency is
maximized. This EER can be defined as the effective cool-
ing power divided by the machine electricity consumption

EER =
PLR · CAP

CE
. (9)

Figure 4 shows the EER coefficient as a function of PLR
and Two.

3.2 Installation Model

The total cooling power demand of the building QB can
be calculated as a function of the input and output flow
temperatures of the distribution network

Fig. 4. Energy efficiency ratio.

QB =

7∑
i=1

Qi = cp · q · (Twi − Two) . (10)

The cooling power given to each room Qi depends on the
positions of the valves vi and the model of the fan coils.
First, the model of the fan coil has been obtained using the
same method of curve adjusting from manufacturer data,
following the function

Qi = f4(Two, vi ·
q

7
) , (11)

where Two is the water temperature at the input of the fan
coil assuming negligible heat losses, and vi · q/7 is the flow
going through the fan coil. The function f4 is

f4(T, q) = d00 + d10T + d01q + d20T
2

+ d11Tq + d02q
2 + d30T

3

+ d21T
2q + d12Tq

2 + d03q
3 .

(12)

The output water of each room fan coil is finally mixed into
the total flow qi, and its temperature Twi can be calculated
as

Twi =
1

7

7∑
i=1

(viTfco,i + (1− vi)Two) , (13)

where Tfco,i is the water temperature at the output of each
fan coil, which is given by the expression

Tfco,i = Two +
Qi

cp vi q/7
. (14)

3.3 Building Model

Modeling the thermodynamics of a building is a very
complex problem with many approaches. There are many
simulation software packages with a large number of pre-
defined libraries like EnergyPlus or TRNSYS. In this work
a resistance-capacitance modeling library for MATLAB
introduced by Sturzenegger et al. (2014) has been the
chosen option. This toolbox for building modeling was
specially developed for its use in model predictive control
applications. A total of seven rooms have been included in
the model. The temperature of each room Tr,i depends
on a wide variety of factors considered in the toolbox,
and each of the rooms has its own unique configuration,
so that no two of them are alike. The control of this



temperatures is done by the heat flow Qi that goes into the
fan coil. The building model is also subject to the ambient
air temperature Taa, which acts as a disturbance to the
system.

4. OPTIMAL OPERATION STRATEGY

Figure 4 shows that the PLR that achieves the maximum
EER for any Two is between 0.4 and 0.6. In this range, the
cooling power to electric consumption ratio of the chiller
is at its highest. However, the PLR also determines how
much cooling power is delivered to the rooms, which makes
it dependant on the cooling power demand of the building.
In addition, Fig. 3 shows that electric consumption always
increases when PRL does. All of this implies that to
minimize power consumption, PRL has to be as low
as possible while satisfying the cooling power demand.
However, this problem has a new caveat when using
multiple chiller units. Since the objective of this work
is to find a controller that operates the system in the
most efficient possible way, this energy problem has to be
defined first so that it can be optimized.

The optimal value of the partial load ratios PLR of each of
the chillers and the positions vi of each of the valves can be
calculated by solving the following optimization problem

P(Qi) = min
PLRi,vi

C∗
E(Taa, vi, PLR1, PLR2) (15a)

s.t. (4), (5), (10), (11), (13), (14) (15b)

where C∗
E = CE,1 + CE,2 is the sum of the electric

consumption of two chiller units with the same model (6)
for both.

Figure 5 shows the total cost of chiller operation according
to the power demand for both cases when a single chiller
unit and two chiller units are working. The electric con-
sumption for the case of one chiller saturates near 70 kW,
which corresponds to the maximum capacity point for a
single chiller where PLR1 = 1. With 2 chillers, demands
higher than 100 kW can be satisfied. It can be seen that
there is an intersection between the cost of the two cases.
This point around 42 kW is Q×

B . Below this demand, it
is more efficient to work with one chiller instead of two.
On the other hand, for demands higher than Q×

B , it is
more efficient to work with two chillers, even before the
point when the single working chiller unit saturates. For

Fig. 5. Optimal energy consumption.

example, if QB < Q×
B , then the operating point of chillers

module is {PLR1, PLR2} = {PLRop, 0}. Otherwise, if
QB > Q×

B , this operating point is {PLR1, PLR2} =
{PLRop, PLRop}. With 0 < PLRop < 1.

Now, we are ready to present the function that will
serve as economic performance index to be optimized.
This cost function ponders the economic cost in terms of
energy consumption and a comfort term measured as the
difference between the temperature of each room T and
its corresponding reference signal Tref

feco(PLRi, vi, α, Tref , Taa) =

= C∗
E(Taa, vi, PLR1, PLR2) + α‖Tr − Tref‖2 ,

(16)

where α is the weighting factor that indicates how much
importance we give to the comfort term.

Using this performance index, the problem of designing a
real-time optimizer (RTO) that finds the optimal control
action to be applied to the system can be formulated as

uref = arg min
PLRi,vi

feco (17a)

s.t. (4), (5), (10), (11), (13), (14) (17b)

Notice that this is a parametric optimization problem that
depends on ambient air temperature Taa, the reference of
the temperature setpoint Tref , and the weighting factor α
of the comfort term. Since temperature of the ambient air
can vary and the reference of temperature or the comfort
weight can be freely chosen by the users, the optimal
operation point may be varying.

5. ECONOMIC CONTROL STRATEGY

A classical approach to solve the economic control problem
is the use of two-layer control structure. In the first
layer the optimal input signal reference is calculated by
a real time optimizer (RTO) where the economic cost
function is minimised according to some economic criteria.
In the second layer an advance control strategy like model
predictive control (MPC) is adopted to regulate the plant
to the optimal operation point provided by the RTO.
Although this control structure has widely been used,
discrepancies between the RTO and the MPC models or
changes in the cost function because of variations of the
reference signal or the economic strategy could lead to the
loss of feasibility, or to a set point that is not reachable.
Moreover, notice that two different optimization problems
must be solved at each sampling period which may be
computationally demanding.

To overcome these problems, this work proposes the design
of a single-layer control strategy where the functionality of
the RTO is integrated into the MPC layer by adding the
gradients of the economic performance index with respect
to the manipulated inputs to the MPC cost function as
explained in Alamo et al. (2014). Doing this, feasibility is
guaranteed despite changes in the economic cost function.
In addition, a single quadratic optimization problem has to
be solved at each sampling period. This problem can now
be solved using quadratic programming methods, making
it easier to implement this control strategy using em-
bedded systems like conventional industrial PLCs (Krupa
et al. (2018)).

The model of the plant to be controlled used by the MPC
controller is a discrete-time linearization of the nonlinear
model explained in Section 3. In the studied system, the
manipulated inputs are the partial load ratio of each chiller
unit PLRj and the position of each valve vi, and the
measured outputs are the temperatures of each room Tr,i



as well as the output flow temperature of the chiller units
module Tw,o. The state of the system has been obtained
by identification methods, so it does not match with any
physical variable. To consider the effects of disturbances, in
this case the external ambient air temperature Taa, which
is not measured, and following the strategy proposed in
Pannocchia and Rawlings (2003), the state of the system
has been augmented so that the new state is given by

x = [x d]
ᵀ
. (18)

where x ∈ Rnx is the state of the system and d ∈ Rny are
the disturbances on the outputs. The model of the system
can now be represented as

x(k + 1) =

[
A 0
0 I

]
x +

[
B
0

]
u (19a)

y(k) = [C I]x . (19b)

where x ∈ Rnx+nd is the new state of the system, u ∈
Rnu the manipulated inputs, and y ∈ Rny the measured
outputs.

At each sampling period the augmented state is estimated.
For that purpose a linear observer with gain K has been
designed by solving a LQR problem. The model of the
observer is given by

x̂(k+ 1) =

([
A 0
0 I

]
− L [C I]

)
x̂(k) +

([
B
0

]
L

)
u , (20)

where x̂ =
[
x̂ d̂
]ᵀ

and u = [u y]
ᵀ
. The state observer

determines the most probable current state of the system
x̂ from the applied inputs and the measured outputs.

The optimization problem formulation is based on Limon
and Alamo (2013),

min
x,u,xss,uss

N−1∑
k=0

(
||x(k)− xss||2Q + ||u(k)− uss||2R

)
+ ||x(N)− xss||2P + ||yss − yref + d̂||2T
+∇ufeco(u(−1)) (uss − uref ) (21a)

s.t. x(0) = x̂ (21b)

x(k + 1) = Ax(k) +B u(k), (21c)

y(k) = C x(k), k = 0 ... N − 1 (21d)

xss = Axss +B uss (21e)

yss = Cxss (21f)

y(k), yss ∈ Y, u(k), uss ∈ U (21g)

where xss ∈ Rnx, uss ∈ Rnu, and yss ∈ Rny are the
stationary values of the state, inputs and outputs of the
system respectively, yref ∈ Rny is the output reference,
and N is the prediction horizon of the finite optimization
problem. The cost function is composed of the regulation
terms weighted by matrices Q ∈ Rnx×nx and R ∈ Rnx×nu,
the terminal cost penalty weighted by P ∈ Rnx×nx that
ensures stability, the offset cost weighted by T ∈ Rny×ny

that makes the controller track the output reference, and
the gradients ∇ufeco(u(k)) of the economic performance
index feco(u(k)), whose term depends on uref , which is
given by the cooling demand of the building QB with
respect to the intersection point Q×

B in Fig. 5. See that
at each sampling time QB can be estimated thanks to the
fact that the temperatures Two and Twi are measured and
the flow q is known. The components in uref give a starting
point for the gradient term to find the optimal solution.

The optimization problem (21) was solved by using Yalmip
optimization library (Löfberg, 2004) in MATLAB with a
quadprog method. Please feel free to contact the two first
authors in case any value is required to prove simulation
results.

6. SIMULATION RESULTS

We ran closed-loop simulations on the nonlinear system
presented in Section 2 using the MPC formulation de-
scribed in Section 3. The case example that will be pre-
sented aims to simulate the performance of the controller
on the 7-room building during a summer day. The system
will be subject to a varying ambient air temperature, and
the cooling demand will be increased during normal work-
ing hours by forcing smaller room temperature references.

Fig. 6. Temperatures in the system. (Top) Output wa-
ter temperature. (Middle) Ambient air temperature.
(Bottom) Room temperatures.

Figure 6 shows the relevant temperatures of the system.
The controller is turned on at t = 3.3 hours. We observe
a relatively stable output water temperature Two around
8 ◦C, with small down peaks that happen at big demand
changes. This temperature should be sufficiently low so
that the fan coils can extract the required heat from the
rooms, but it is soft-constrained at 5 ◦C to prevent freezing
effects. The room temperatures are plotted together with
the set-points. In the time between 6 and 10 hours, the
system undergoes a peak in cooling demand where all room
temperature references are decreased several degrees. The
transient response time varies for each room since they are
different. Nonetheless, tracking is satisfied for all of them.
Around 18 hours, the set-points change to reduce the
cooling demand, simulating a wind-down of the system.

Figure 7 shows the control inputs. Top and middle graphics
show the PLRj of the two chiller units, together with
the solution that would be calculated in the RTO (17).
It can be seen that this gradient-based MPC drives the



Fig. 7. Control inputs of the system. (Top) Partial load
ratio of first chiller. The dashed line is the solution of
the RTO (17). (Middle) Partial load ratio of second
chiller. (Bottom) Aperture of room valves.

system towards the solution of the RTO. There is some
offset due to the disturbances (Taa) and the uncertainty
of the prediction model, but the controller still tries to
converge to the reference. The controller is turned on at
t = 3.3 hours. At that moment, one chiller is turned
down, leaving the task of generating the cooling power
to the other machine. After the 6-hour mark, rooms start
to set lower temperature references one by one. The first
chiller steps up to satisfy this demand. However, when the
second room lowers the set-point, the demand overcomes
the threshold Q×

B that indicates that two chillers running
are now more cost-efficient than one. Therefore, the first
chiller turns down and the second chiller turns on and
goes to the same PLR point. It can be seen during this
time that signals PRLj have a soft wave form due to the
disturbance Taa. Both chillers work in parallel until 18
hours when the demand is still high, and valves are also
open wider during this time. Then, the system winds down,
and the second chiller turns down again to letting the other
chiller satisfy the small demand.

7. CONCLUSIONS

An economic control strategy for a multiple-chiller-based
cooling system was presented. First, an economic model
of the system is developed making use of technical infor-
mation provided by manufactures. The main contribution
of this paper is the implementation of a gradient-based
economic predictive control, where the gradient of the
economic performance index is added to the cost function
of the MPC. This not only makes the system converge
to the economically optimal operation point, but it also
simplifies the control strategy into a single optimization
problem, avoiding discrepancies between layers that could
lead to loss of feasibility.
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predictive control of building HVAC system employing
zone thermal energy requests. In 2019 22nd Interna-
tional Conference on Process Control (PC19), pages 13–
18. IEEE, 2019.

Pablo Krupa, Daniel Limon, and Teodoro Alamo. Im-
plementation of model predictive controllers in pro-
grammable logic controllers using IEC 61131-3 stan-
dard. In 2018 European Control Conference (ECC),
pages 1–6, 2018.

Harvey S Leff and William D Teeters. EER, COP, and
the second law efficiency for air conditioners. American
Journal of Physics, 46(1):19–22, 1978.

Daniel Limon and Teodoro Alamo. Tracking model pre-
dictive control. Encyclopedia of Systems and Control,
pages 1–12, 2013.
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