
Implementation of Fast Predictive Controllers on FPGA Platforms
based on Parallel Lipschitz Interpolation

J.M. Nadales, J.M Manzano, A. Barriga, D. Limon

Abstract— The implementation of nonlinear model predictive
controllers for systems operating at high frequencies constitutes
a significant challenge, mainly because of the complexity and
time consumption of the optimization problem involved. An
alternative that has been proposed is the employment of data-
driven techniques to offline learn the control law, and then
to implement it on a target embedded platform. Following
this trend, in this paper we propose the implementation of
predictive controllers on FPGA platforms making use of a
parallel version of the machine learning technique known as
Lipschitz interpolation. By doing this, computation time can
be enormously accelerated. The results are compared to those
obtained when the sequential algorithm runs on standard CPU
platforms, and when the system is controlled by solving the
optimization problem online, in terms of the error made and
computing time. This method is validated in a case study where
the nonlinear model predictive controller is employed to control
a self-balancing two-wheel robot.

I. INTRODUCTION

The fast development of computing systems and data
management techniques is favouring the application of data-
driven techniques to many fields. An area where machine
learning techniques, deep learning techniques, and artificial
intelligence methods in general are gaining popularity is
automatic control. One of the branches of the control field,
where many examples can be found in recent literature,
is predictive control [1]. This trend has been consolidated
during past years because of the necessity of implementing
controllers on embedded platforms for real-time system
operation, while satisfying constraints on its signals [2]. In
the case of predictive controllers, the use of data-driven tech-
niques is significantly useful, because they can be employed
to avoid having to solve the -often complex- optimization
problem involved, thus accelerating considerably the gener-
ation of new control actions.

Frequently, these data-driven methods require the evalua-
tion of massive amounts of data. The processing of these data
can be exceedingly time-consuming, making these methods
not applicable to systems operating at high frequencies, in
where real-time decision making is necessary. In that respect,
one of the main bottlenecks is the employment of inherently

This work was supported by the Agencia Estatal de Investigación (AEI)-
Spain under Grant PID2019-106212RB-C41/AEI/10.13039/501100011033
and by Ministerio de Economı́a y Competitividad of Spain under project
DPI2016-76493-C3-1-R.

J.M. Nadales and D. Limon are with the Department of Automatic Control
and System Engineering, University of Seville. J.M. Manzano is with the
Department of Engineering at Universidad Loyola Andalucı́a. A. Barriga
is with the Deparment of Electronics and Electromagnetism, University
of Seville. Emails: nadales@us.es, jmanzano@uloyola.es, barriga@us.es,
dlm@us.es

sequential processing platforms, which process data in a
recursive manner.

In this paper, we propose a fast implementation of pre-
dictive controllers on re-configurable embedded platforms,
making use of a parallel version of the learning method
known as Lipschitz interpolation (LI) [3]. New paradigms
such as Industry 4.0 require the implementation of real-
time control systems on low-cost and low-energy embed-
ded platforms. Often, these systems cannot compete with
traditional general purpose CPU-based systems in terms of
computing power, and thus new methodologies (mainly data-
based algorithms) must be developed in order to implement
advanced control methods for embedded applications. This
is the case of predictive controllers, where the model of
the system is called thousands of times to compute a single
control action.

An important task is to select the appropriate platform and
circuit topology. In this sense, re-configurable platforms as
field-programmable gate arrays (FPGAs) offer the possibility
to carry out the implementation of highly flexible parallel
circuits relatively easy to be parallelized, thus increasing
the applicability of the designed circuit. Several machine
learning techniques which seem to be gaining popularity
in the community are not suitable for being computed in
a parallel scheme (see for example Gaussian processes [4]).
In contrast, artificial neural networks present properties that
make them prone to be parallelized [5]. In line with this, in
this paper, we propose the employment of LI because of its
nice properties to be easily implemented on FPGAs. Among
others, some of the main reasons why this method is chosen
are:

• It is easily parallelizable.
• It is based on simple operations.
• It depends on a single hyperparameter.

Lipschitz interpolation is a supervised machine learning
technique used for the regression of unknown Lipschitz
functions, from which a data set of observations is available.
The objective is then to learn the ground truth function, being
able to estimate its value for unseen queries.

The rest of the paper is organized as follows. In Section II,
the mathematical fundamentals of the parallel LI algorithm
are explained in detail. In Section III, the FPGA-based
parallel system architecture that performs the interpolation
algorithm is presented. In Section IV, the way the embedded
controller is designed to optimize the FPGA resources is
presented and an example of design where a two-wheel robot
is controlled is shown. Section V concludes the article.

Fig. 1: Lipschitz interpolation.

II. PARALLEL LIPSCHITZ INTERPOLATION

This section briefly describes the standard Lipschitz inter-
polation algorithm, and introduces the details needed for its
parallelization.

Let f : W ⊂ Rnw → Y ⊂ Rny be the function to be
learned by the algorithm. Suppose a set of ND noisy samples
is known, grouped in

D = {(f̂(wi), wi) | wi ∈ W, f̂(·) ∈ Y, i = 1, ..., ND}, (1)

where f̂(·) are noisy observations of f(·). The sets W and
Y are assumed to be compact. The noise affecting the output
is assumed to belong to a compact set E ⊂ Rny . It is also
assumed that the function f(·) is Lipschitz continuous, i.e.,
∀w1, w2 ∈ W , there exists a Lipschitz constant L such that

‖f(w1)− f(w2)‖ ≤ L‖w1 − w2‖. (2)

With this, the output prediction of f for a new query point
(input) q ∈W is given by [6]:

f̂j(q;L,D) =
1

2
min

i=1,...,ND
(f̂i,j + L‖q − wi‖)

+
1

2
max

i=1,...,ND
(f̂i,j − L‖q − wi‖)

=
1

2
min

i=1,...,ND
ui +

1

2
max

i=1,...,ND
li, (3)

where f̂j is the j-th component of f̂, f̂i,j the j-th component
of the observed output value for the i-th sample point in D
and wi its corresponding input. The terms u and l are referred
to as the ceiling and floor terms, respectively, and the space
between them is called the enclosure. Any norm type can
be employed in the previous expression. The infinity norm
will be employed in this paper. The inference procedure is
illustrated in Fig. 1.

The true Lipschitz constant L in unknown. Many works
propose inference methods to estimate the value of L, based
on data [7]. In this work, we assume that the Lipschitz
constant has been previously calculated, as in [8].

One of the most interesting aspects of this method is
that if the ground truth function is Lipschitz continuous
and if the Lipschitz constant is known, the prediction error
is bounded, and decreases with the amount of data in the
training set D [7].

The algorithm consists in obtaining the ceiling and floor
functions for every point in D, computing the minimum
ceiling and maximum floor terms (particularized at every
new query point q), and then calculating the mean between
them. Given a new input q, the calculation of each ui and
li is independent for each point i. This is the reason why
this method is suitable to be parallelized, as it is possible to
compute simultaneously as many ceiling and floor terms.

Additionally, as it will be detailed in the following sec-
tions, avoiding the multiplication by L in (3) simplifies the
design of the system. This multiplication can be avoided by
a simple storage policy of the data set, storing f̃ = f̂/L
instead of f̂ , and taking into account that the obtained result
must be multiplied by L. Following this, the new parallel
algorithm can be expressed as

f̃j(q; D̄) = =
1

2
min

i=1,...,ND

(
f̃i,j + ‖q − wi‖∞

)
+

1

2
max

i=1,...,ND

(
f̃i,j − ‖q − wi‖∞

)
=

1

2

(
min

i=1,...,ND

⇒
ui + max

i=1,...,ND

⇒
li

)
, (4)

where f̃i,j = f̂i,j/L, D̄ is equal to D but with every output

divided by L, and the notation
⇒
ui and

⇒
li is employed to

express that all ceiling and floor terms are calculated using
the parallel strategy proposed in this work.

III. ARCHITECTURE

The FPGA architecture to implement the LI algorithm
is shown in Fig. 2. At a conceptual level, the system can
be divided into three different parts: (i) a cluster of block
random access memories (BRAMs), where training data
are stored, (ii) an arithmetical circuit where the processing
of the ceiling and floor terms is performed, and (iii) a
sequential finite state machine (FSM)–synchronized with a
clock signal–that controls all BRAMS in the system. The
only input of the system is the new query point q. Likewise,
the only output is the estimated value f̃.

To perform the calculation of the ceiling and floor func-
tions associated to each data point i stored in the BRAMs
(ui and li, respectively), a total of K enclosure calculation
arithmetic units (ECAUs) are allocated in parallel. The total
number of ECAUs that can be placed depends on the resource
availability of the selected platform. The total number of
BRAMs feeding the ECAUs is also equal to K. Because a
total number of ND data must be processed, each BRAM
stores a total of n =

⌈
ND
K

⌉
. Inside each ECAU, different

arithmetical operations are employed to calculate the ceiling
and floor terms, such as the difference between the query
point and the stored input data, the calculation of the infinity
norm, and the addition and subtraction with the stored
output data. The employment of the infinity norm is justified
because it simplifies the internal structure of these blocks.
After performing the calculus of all ceiling and floor terms,
a tree of comparators finds the maximum among all floor

Fig. 2: Parallel Lipschitz interpolation module global architecture.

terms and the minimum among all ceiling terms. The number
of comparison blocks required is upper-bounded by K.

In case the number ECAUs that can be placed in parallel
(K) is lower than the total number of data to be processed
(ND), a sequential strategy is followed. The outputs of
the comparison stage are stored in another BRAM, whose
depth n is equal to the number of iterations required to
process all data. The results of processing all batches of
data are compared again so that the minimum ceiling and
maximum floor terms among all partial results are obtained.
The minimum ceiling and maximum floor terms are finally
transmitted to an output ALU, where the average among
them is calculated.

The sequential procedure detailed above requires the im-
plementation of a sequential finite state machine. This system
is designed as an asynchronous Moore state machine whose
outputs are the address (addr) signals of all BRAMs. This
machine is sensitive to the clock signal, clk. Every time a
positive edge of this signal is detected, the address signal is
incremented. This is repeated until all data in the BRAMs
are processed. The write and enable signals are accordingly
controlled.

The time it takes to calculate a single output is nθ, where θ
is the clock cycle period. This time increases with ND, in
case K < ND, and is equal to θ in case n = 1, i.e., if
K ≥ ND. In general, nθ is various orders of magnitude
lower than the time it takes to compute a single action when
the standard LI algorithm is employed running on a CPU,
which grows linearly with ND [9].

IV. EMBEDDED CONTROLLER DESIGN

In this section, we describe the process of designing
an embedded controller based on parallel LI following an
strategy based on resource optimization, on FPGA platforms,
illustrating the contribution with a case study.

A. Parallel Lipschitz interpolation controller

The problem addressed in this paper consists in the design
of a control law for real-time operation of a discrete-
time nonlinear plant, whose set of manipulable inputs is
denoted u ∈ Rnu , and whose states are denoted x ∈ Rnx .

Moreover, it is our objective to inherit the well-known
properties of model predictive control laws, namely, the abil-
ity to satisfy hard constraints during the operation (i.e. u ∈ U
and x ∈ X), while driving the system to a given reference
equilibrium point (xs, us) in an efficient way, i.e., minimiz-
ing costs.

However, model predictive controllers require real-time
solving of an optimization problem, which is not always
feasible at high frequencies. These are the cases considered
in this paper: those in which the applicability of an MPC is
not possible due to computation time requirements. Instead,
we propose to compute the control law online based on a
parallel Lipschitz interpolation algorithm, making use of a
historical data set obtained from an existing control law.
The data set necessary to learn the control law is generated
offline by solving the optimization problem. This can be
done, for instance, by selecting a collection of suitable
states of the plant and calculating numerically the output
of the control law. A practical method consists in selecting
a collection of initial states and simulating the closed-loop
trajectories, obtaining a set of states and control inputs form
these trajectories. The data set should be analyzed, filtered
and enhanced in an iterative procedure until the desired level
of accuracy is obtained.

Therefore, the objective ground truth function f described
in Section II is composed of inputs w(k) equal to states of the
system –x(k)– and outputs f(w(k)) equal to control actions
–u(k)– such that the parallel LI algorithm is implemented
as

u(k) = κLI(x(k)) = f̃(x(k); D̄). (5)

Fig. 3: Scheme of the two-wheel robot, reproduced from
[10]. The length of the robot L should not be confused with
the Lipschitz constant previously employed.

B. Case study

To illustrate the procedure, we propose a case study in
which the controller is employed to self-balance a two-wheel
robot. The platform where the controller is implemented
and all tests here shown are performed is a Xilinx 7-series
FPGA (XC7Z010-1CLG400C). The model of the system is
extensively described in [10]. The state of the system is
composed of the tilt angle φ (rad), its angular velocity φ̇ (rad
s−1) and the velocity of the angle between the wheel spin
and the vertical axis –θ̇ (rad s−1). The control action to be
applied to the controlled system is the angular acceleration
on the wheel – θ̈ (rad s−2). The sampling time is 40 ms,
which, as it will be shown later on, forbids the application
of a linear MPC in real-time, and hence motivates the use
of FPGA platforms to learn a control law.

C. Control design

The following steps describe the control system design:
1) Predictive control law: The first step is to design

offline a model predictive controller [11] that stabilizes the
system and meets performance requirements. The proposed
MPC problem formulation is as follows

min
u

N−1∑
i=0

‖x̂(i|k)− xs‖2Q + ‖û(i)− us‖2R

+‖x̂(N |k)− xs‖2P (6a)
s.t. x̂(0|k) = x(k) (6b)

x̂(i+ 1|k) = g(x̂(i|k), û(i)) (6c)
û(i) ∈ U, i ∈ 0, . . . , N − 1 (6d)
x̂(N |k) = xs, (6e)

where N is the prediction horizon, x̂(i | k) is the estimated
state at time i given current state is k, xs is the reference
state to be tracked, u = {ûi ∈ U | i ∈ 0, ..., N − 1}
is the decision variable, g(·, ·) is the model of the system,
matrices Q≥0⊂ Rnw×nw and R>0⊂ Rny×ny are the tuning
parameters of the problem and P≥0⊂ Rnw×nw defines the
terminal cost for stability purposes, which is obtained solving

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

-10

-5

0

0 0.5 1 1.5 2 2.5 3

-100

-50

0

50

Fig. 4: Closed-loop simulation of the robot controlled by an
MPC.

a LQR problem. The values to which matrices Q, R and P
have been set are

Q = P = diag([10, 1, 10]), R = 0.1.

To obtain the training data set for the learning method,
several closed-loop simulations of this predictive controller
have been performed. In these simulations, the robot starts
from a random initial state x(0) and it is balanced in the
vertical position (i.e., xs = [0 0 0]). The system is exposed
to random sensors’ noise and impulsive disturbances on the
state to excite the system. One of these simulations is shown
in Fig. 4.

Each control action is calculated in approximately 70 ms
in Matlab (using Matlab fmincon solver), running the sim-
ulation on an Intel®CoreTM i7-6700HQ CPU @ 2.60GHz
12GB RAM, while the time required by the system is 40 ms.
Its implementation in an embedded system is likely to take
much more time.

2) Learning the control law: It is hence necessary to
learn the control law on the FPGA, using parallel Lipschitz
interpolation. Thus, we aim to learn the mapping between the
robot’s state and the control action to be applied as following:

û(k) = θ̈ = κMPC(x(k)). (7)

In this case, the number of inputs of the function to be
learnt is nw = 3, i.e., the number of states. The number of
outputs is ny = 1, i.e., the number of manipulable inputs.
The collected data set is composed of ND = 14000 points.
This set is employed to learn the control law using Lipschitz
interpolation. The Lipschitz constant is estimated as in [7],
yielding L = 4.67. Then, the control to be applied to the
system as a function of the estimated state of the system is

û(k) = Lf̃(x̂(k); D̄). (8)

A closed-loop simulation of the system controlled apply-
ing the control law implemented using LI is shown in Fig. 5.
It can be seen how the system is stabilized to the vertical

0 1 2 3 4

-0.2

0

0.2

-10

-5

0

5

0 1 2 3 4

-40

-20

0

20

40

Fig. 5: Closed-loop simulation of the robot controlled by the
LI controller, sequentially running on the CPU.

position. The time it takes to compute the control action
is around 0.3 ms. Note that this approach will suffice to
implement a controller on the real robot, but that will not
be the case for other plants in which larger data sets are
needed, or with more inputs or states.

An analysis on how the computational time increases with
the cardinality of D, with the dimensionality of U or X for
standard LI algorithms may be found in [9]. In addition, note
that this case study considers a simple mechanical robot.
For example, in the case of AC/DC power converters, a
typical switching frequency could be close to 150 kHz [12],
i.e., each control action must be generated every 6.66 µs.
Hence, the control actions must be computed various orders
of magnitude faster than with the current approach. It is in
these cases where the parallel LI presented in this paper finds
application, as it is shown next.

D. System configuration

To represent data, fixed-point representation is employed
because it optimizes area and energy consumption. The num-
ber of bits devoted to the integer part –ι– must be selected
so that overflow is avoided, while the number of bits of the
fractional part –ϕ– must be selected in such a way that the
representation error is acceptable and bounded. Additionally,
it must be considered that the larger the number of bits
employed to represent data, the more area resources that are
consumed, and thus fewer data can be processed in parallel
because the number of ECAUs that can be implemented
in parallel –K– is reduced. To reach a compromise, the
following optimization problem is proposed

minimize
ϕ,ι

CA(ϕ, ι) + αCE(ϕ, ι) (9a)

s.t. ρ(ϕ) ≤ ρmax (9b)
ι ≥ χ(ν, ν), (9c)

where CA(·, ·) : R2
≥0 → R≥0 and CE(·, ·) : R2

≥0 → R≥0 are
area and energy consumption functions, ϕ and ι are the num-
ber of bits employed to represent the fractional and integer
part, respectively, ρ(ϕ) is the maximum representation error

committed, ρmax is the maximum error we are willing to
allow and χ(ν, ν) the minimum number of bits of the integer
part that guarantees no overflow appears as a function of the
absolute minimum and maximum values any signal in the
circuit can take ν and ν, respectively. Before solving this
optimization problem, we need to define area and energy
consumption functions and find analytical expressions for
constraints (9b) and (9c).

Area and energy consumption functions depend on the
selected platform and the resource allocation algorithm. With
the right configuration, and avoiding the employment of
multiplications (which are generally carried using digital
signal processing (DSP) blocks) area and energy consump-
tion functions are linear with respect to the number of bits
employed to represent data (only lookup tables (LUTs) are
consumed). Additionally, solving the problem for the whole
system is equivalent to solving the problem considering area
and energy consumption for a single ECAU and a single
comparator. This is because the number of ECAUs and the
number of comparators both grow linearly with the number
of data processed in parallel. Note that the output ALU and
the FSM have not been considered in this analysis because
their contribution is not relevant.

The other step before solving the optimization problem
is to find overflow and error constraints. In this paper, the
core principles detailed in [13] have been applied to obtain
these constraints. Alternatively, a less conservative analysis
could have been performed via probabilistic simulation-based
analysis [14]. Supposing all input signals in the system are
scaled in the range [0,1]–and imposing that the maximum
error committed must be ρmax = 4 × 10−4, it has been
determined that the minimum number of bits devoted to
the integer and fractional parts that ensure that no overflow
appears and the maximum error is upper-bounded by ρmax
are ι = 3 and ϕ = 12.

Because of the design, area and energy consumption
functions are linear. Thus, the optimal values that minimize
area and energy consumption are exactly those given by
overflow and error constraints, i.e., ϕ∗ = 12 and ι∗ = 3.
Note that one extra bit must be added to take into account
the sign of each value so the total number of bits employed
to represent data is equal to 16. The final step in the design
process is to configure the FPGA architecture employing the
values ι = 3 and ϕ = 12 and determine how many data
can be processed in parallel, which result to be 256, i.e.,
K = 256. A summary of the resources employed by each of
the component is shown in Table I.

Component BRAM Tiles (140) LUTs (53200) Utilization
BRAM 1 0 0.71 %
COMP 0 8160 15.33 %
ECAU 0 44800 84.21 %

TABLE I: Resource utilization.

On the basis of the above, the LI controller is implemented
on the FPGA platform. Closed-loop simulation results of the
system controlled by the parallel LI controller are shown

Fig. 6: Closed-loop simulation of the robot controlled by the
parallel LI controller running on the FPGA.

Fig. 7: Computation time w.r.t the size of the training data
set.

in Fig. 6. The parallel LI controller stabilizes the system
toward the vertical position. In Fig. 8, the error made for
2500 new entries due to parallelization is represented. The
error between the standard LI control law and the proposed
parallel version is of the order of 1 × 10−5, which is less
than ρmax, and multiplied by L yields an error of at most
0.02.

After checking the worst negative slack (WNS) remains
positive, a clock signal of 15 ns has been chosen. Thus,
new ceiling and floor terms can be computed every 15 ns.
Because the number of data that can be processed in parallel
is equal to K = 256, the total number of iterations required
to process all data is equal to n = 55. Then, a new control
action is generated every 825 ns. Fig. 7 shows the time it
takes to process a single new input as a function of the
number of data to be processed ND. It can be seen how the
parallel controller implemented on the FPGA is four orders
of magnitude faster than the sequential algorithm running
on CPUs, and six orders of magnitude faster than the model
predictive controller.

V. CONCLUSIONS

A novel architecture has been presented for the learning
and implementation of fast model predictive control laws on
FPGA platforms making use of the data-driven technique
known as Lipschitz Interpolation. An optimization problem
in where area and energy consumption are minimized is

Fig. 8: Prediction error for 2500 queries. (a) MPC law vs
standard LI (b) MPC law vs parallel prediction. (c) Standard
LI vs parallel predictions.

proposed to efficiently select the optimal number of bits
employed to represent data. Close-loop simulations were
performed showing the performance of the system when
it is controlled by the parallel LI algorithm. Open-loop
simulations performed on the board show how the parallel
algorithm running on the FPGA is four orders of magnitude
faster than sequential algorithm running on a conventional
CPU.

REFERENCES

[1] L. Yang, J. Lu, Y. Xu, D. Li, and Y. Xi, “Constrained robust model
predictive control embedded with a new data-driven technique,” IET
Control Theory & Applications, vol. 14, no. 16, pp. 2395–2405, 2020.

[2] S. Lucia, D. Navarro, Ó. Lucı́a, P. Zometa, and R. Findeisen,
“Optimized FPGA implementation of model predictive control for
embedded systems using high-level synthesis tool,” IEEE transactions
on industrial informatics, vol. 14, no. 1, pp. 137–145, 2017.

[3] G. Beliakov, “Interpolation of Lipschitz functions,” Journal of com-
putational and applied mathematics, vol. 196, no. 1, pp. 20–44, 2006.

[4] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer School on Machine Learning, pp. 63–71, Springer, 2003.

[5] A. R. Omondi and J. C. Rajapakse, FPGA implementations of neural
networks, vol. 365. Springer, 2006.

[6] J.-P. Calliess, Conservative decision-making and inference in uncertain
dynamical systems. PhD thesis, University of Oxford, 2014.

[7] J.-P. Calliess, S. J. Roberts, C. E. Rasmussen, and J. Maciejowski,
“Lazily adapted constant kinky inference for nonparametric regres-
sion and model-reference adaptive control,” Automatica, vol. 122,
p. 109216, 2020.

[8] M. Canale, L. Fagiano, and M. Signorile, “Nonlinear model predictive
control from data: a set membership approach,” International Journal
of Robust and Nonlinear Control, vol. 24, no. 1, pp. 123–139, 2014.

[9] J. M. Manzano, D. Limon, D. M. de la Peña, and J. Calliess, “Output
feedback MPC based on smoothed projected kinky inference,” IET
Control Theory & Applications, vol. 13, no. 6, pp. 795–805, 2019.

[10] C. Gonzalez, I. Alvarado, and D. M. La Peña, “Low cost two-wheels
self-balancing robot for control education,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 9174–9179, 2017.

[11] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory
and design. Nob Hill Pub., 2009.

[12] M. Alam, W. Eberle, D. S. Gautam, and C. Botting, “A soft-switching
bridgeless AC-DC power factor correction converter,” IEEE Transac-
tions on Power Electronics, vol. 32, no. 10, pp. 7716–7726, 2016.

[13] C. F. Fang, R. A. Rutenbar, and T. Chen, “Fast, accurate static analysis
for fixed-point finite-precision effects in DSP designs,” in ICCAD-
2003. International Conference on Computer Aided Design (IEEE Cat.
No. 03CH37486), pp. 275–282, IEEE, 2003.

[14] S. Omland, M. Hefter, K. Ritter, C. Brugger, C. De Schryver, N. Wehn,
and A. Kostiuk, “Exploiting mixed-precision arithmetics in a multi-
level monte carlo approach on FPGAs,” in FPGA Based Accelerators
for Financial Applications, pp. 191–220, Springer, 2015.

