
Oracle-Based Economic Predictive Control

J.M. Manzano1, J.M. Nadales1, D. Muñoz de la Peña1 and D. Limon1

Abstract— This paper deals with an economic predictive
controller for the optimal operation of a plant under the
assumption that the only available information of the system
is the economic cost function to be minimized. In order to
predict the evolution of the economic cost for a given input
trajectory, an oracle with a NARX structure is proposed.
Sufficient conditions to ensure the existence of such oracle are
given, and based on this oracle, a novel predictive controller is
proposed. The proposed controller is only based on input-output
data and no further information about the inner dynamics
of the plant is necessary. Under certain assumptions, it is
proven that the proposed oracle-based economic predictive
controller provides the same solution of a standard economic
MPC based on the model plant (in the ideal case of accurate
estimation), inheriting the properties of this class of controllers.
The proposed oracle-based economic predictive controller is
applied to a quadruple-tank process example.

I. INTRODUCTION

Often, control systems have to simultaneously consider
both performance and safety requirements. This objective
has been typically addressed by means of a hierarchical
structure where a real time optimization layer calculates the
equilibrium point that minimizes the operation cost, while a
control layer regulates the system to this equilibrium point.
Recently, in the model predictive control (MPC) framework,
this hierarchical control structure has been united in a single
layer, aimed to minimize the operation cost during the
transient, instead of a tracking cost, often designed to provide
robustness and stability properties. This is the so-called eco-
nomic MPC, whose properties have been studied in several
works [1], [2]. The main difference between economic MPC
and regulation MPC is that the former relaxes the architecture
of the optimization problem, being able to minimize an
economic cost function which is not necessarily positive
definite.

Economic predictive controllers are based on the availabil-
ity of a model of the plant in order to predict the evolution
of the states of the system, and based on this, the expected
economic cost to be minimized is calculated. However, there
may exist situations in which no measurements of the inner
variables of the plant are available, for example to maintain
privacy of operation. Consider for instance a data center in
which the operation cost accounts for the cost of the electric
consumption of the refrigeration system and the consumption
of the servers. In order to design a controller to optimize
the operation cost, sharing inner information of the state
of the servers could be limited due to security reasons,
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while sharing only the operation cost may not jeopardize
the security of the system.

In this paper we study the case in which the only available
measurement from the plant is the value of the economic
performance index, and the model of the plant is unknown.
Based on the historical data of the inputs and the signal
of the economic cost, we derive a data-based predictive
controller that ensures asymptotic stability of the plant and
its economically optimal operation.

The prediction of the behaviour of the plant is done by
means of an oracle that forecasts the economic performance
of the plant from a historical data set of the pairs inputs-
economic costs, using a nonlinear autoregressive exogenous
model (NARX) structure. Based on this oracle, an opti-
mization control problem is proposed in such a way that
the resulting controller inherits the properties of the ideal
economic MPC based on the process model.

The proposed controller has been applied in simulation
to an economic minimization problem of a quadruple-tank
process, using Gaussian processes to obtain the oracle.

The rest of the paper is structured as follows: section II
presents the problem formulation and the standard economic
MPC. Section III states the conditions under which it is
possible to define an oracle to predict the future evolution of
the economic cost. Section IV describes the proposed oracle-
based economic predictive controller applied and section V
presents the case study.

Notation

Given two column vectors v and w, (v, w) stands for
[vT , wT ]T . The set Iba stands for the set of integers from
a to b. A function α : R≥0 → R≥0 is a K-function if it is
strictly increasing and α(0) = 0. Besides, if a K-function is
such that lim

s→∞
α(s) =∞ then it is called a K∞-function.

II. PROBLEM FORMULATION

In this paper we consider that the system to be controlled is
a sampled continuous time system described by an unknown
discrete time model

x(k + 1) = f(x(k), u(k)), (1)

where x(k) ∈ Rn is the state of the plant and u(k) ∈ Rm is
the control input. It is assumed that the inputs are subject to
(hard) constraints u(k) ∈ U , where U ⊂ Rm is a compact
set.

The objective of the control system to be designed is
to guarantee that the closed-loop system is stable while
a certain economic cost function is minimized during the
transient. This cost function is said to be economic because



it measures the performance of the evolution of the system
according to a generic function that does not necessarily
penalize only the tracking error w.r.t. a given target. The
economic cost function to be considered in this paper is given
by an appropriate economic stage cost function of the form
L(x, u), where no assumption is made on its sign.

Remark 1: There may exist a collection of variables of
the system yc(k) = h(x(k), u(k)) ∈ Rp which are subject
to (soft) constraints yc(k) ∈ Yc, being Yc ⊂ Rp a closed
set. To cope with this case, the stage cost function L(x, u)
can be used to take into account the constraints in the states
or outputs by adding a term to L that behaves as a barrier
function, penalizing the violations of the constraints. This
term can be thought of as a term that measures the economic
cost of not fulfilling the constraints.

Assumption 1: The model function f(x, u) and the eco-
nomic cost function L(x, u) are continuous.

According to the given economic cost function, the op-
timal equilibrium point in which the plant can be operated
is obtained from the solution of the following optimization
problem

(xs, us) = arg min
xs,us∈U,

L(x, u) (2a)

s.t. xs = f(xs, us). (2b)

The economically optimal operation of a system is a very
complex problem that has been thoroughly studied recently.
See for instance the excellent survey paper [1] and the
references in there. For the asymptotic stabilization of eco-
nomically optimal controllers, the dissipativity property plays
an important role. This has also been related to the turnpike
property previously used in optimal control [3]. In this work,
this condition is stated in the following assumption.

Assumption 2: The system f is strictly dissipative with
respect to the supply rate s(x, u) = L(x, u) − L(xs, us),
i.e. there exists a storage function λ : Rn → R and a K∞
function ρ such that

λ(f(x, u, d))− λ(x) ≤
−ρ(‖x− xs‖) + L(x, u)− L(xs, us). (3)

It is also assumed that the storage function is bounded
below for any admissible trajectory of the system.

Using the results in [1], an asymptotically stabilizing
economic MPC can be designed for this system derived from
the optimization problem PN (x(k)) given by:

min
û

N−1∑
j=0

L(x̂(j|k), û(j)) (4a)

s.t. x̂(0|k) = x(k) (4b)
x̂(j + 1|k) = f(x̂(j|k), û(j)), j ∈ IN0

(4c)
û(i) ∈ U (4d)
x̂(N |k) = xs. (4e)

Assumption 3: It is assumed that the optimal solution of
the problem PN (x(k)) is unique.

The control law u(k) = κeco(x(k)) is derived from the
solution of (4) applied in a receding horizon manner, i.e.
u(k) = u∗(0;x(k)).

This control law requires prior knowledge of the model
of the plant, f , and the measurement of the state at each
sampling time (x(k)). However, there exists scenarios where
obtaining this information may not be available. For instance,
there may exist systems for which an accurate model to be
used in the predictions is not available, or the available model
is too complex to be used in a predictive controller. Instead,
historical input-output data from the plant may be the only
available information that can be used for the derivation of
the model. In addition, the state may not be accessible, so
the only signal that can be used for feedback is the measured
economic cost.

The main objective of this work is to design a controller
that stabilizes the plant and minimizes its economic perfor-
mance under the assumption that the model of the plant is
not known and that the only output signal of the plant that is
measured is the value of the economic cost at each sampling
time

y(k) = L(x(k), u(k)) ∈ R. (5)

Using a data base of past inputs and economic cost trajec-
tories, a function used to predict the evolution of the output
will be obtained. This function is called an oracle, since it
forecasts the economic performance of the plant. Once that
this oracle is obtained, a suitable predictive controller will
be designed.

It will be demonstrated that under some standard condi-
tions, it is possible to solve the problem inheriting the closed-
loop properties of the economic MPC based on the model
of the system.

III. THE ORACLE

In this section the oracle, that is, the procedure to calculate
the predictions, is presented, and the conditions on the system
that allow its determination are given. The oracle to be used
in this work has the form of a nonlinear auto-regressive
model with exogenous signals (NARX), which has been
extensively used in nonlinear systems identification [4].

The structure of the oracle is given by the following
nonlinear differential equation

ŷ(k) = O(z(k), u(k)), (6)

where ŷ(k) is the estimated output at sampling time k and
z(k) is the state vector, given by the following collection of
past inputs and outputs

z(k) = (y(k − 1), · · · , y(k − na),

u(k − 1), · · · , u(k − nb)). (7)

Hence, the dimension of the state vector z is nz = na +
m · nb, and the oracle is a function O : Rnz × Rm → R,
since the output is a real number.

Notice that the output considered at time instant k, y(k), is
the value of the economic cost function at that time instant,
which in general depends on the value of the input at the



same time instant u(k), leading to an inner feed-forward
structure. This implies that the state vector z(k) can only
depend on the sequence of past outputs up to k − 1, i.e.
y(k− 1), · · · , y(k−na). Then, the state feedback controller
to be designed with the form u(k) = κMPC(z(k)) is such that
the current control action u(k) depends on the information
of the plant available up to k − 1, given the set-up defined
by (6) and (7).

The conditions under which a system can be described as
a NARX have been widely studied during the last 30 years.
One of the first results on this topic was given by Sontag [5],
relating the existence of this model to the observability
property of the system. Later, Chen and Billings [6] proved
that local NARX models can be obtained if the system is
locally observable. A comprehensive study of this problem,
for local and global estimators, was presented by Levin and
Narendra [7].

In [7, Theorem 3] it was proven that if the linearised model
at the equilibrium point (xs, us) is observable, then the
dynamics of the system can be locally described by a NARX
model. When a global NARX model is required, the strong
observability property must be ensured, from the linearised
system, for instance. However, in [7, Theorem 6] the authors
proved that only generic observability is necessary, which is
a property that almost every system enjoys in practice. From
this result, the conditions required to ensure the existence of
the oracle can be derived:

Theorem 1: Consider that Assumption 1 holds and con-
sider also that the economic cost function is such that for all
x̃ where the gradient ∇xL(x̃, u) = 0, the Hessian matrix
∇xxL(x̃, u) is non singular. Then an oracle (6) can be
determined as valid for almost every input sequence. Besides,
the oracle function is continuous and the horizons can be
taken as na = nb = 2n, where n is the minimum number of
the states of the system.

Once that the existence of the oracle has been demon-
strated, the procedure to derive the oracle can be obtained
using the estimation and learning theory methods. There
exists a number of methods capable of approximating the real
function (the so-called ground truth function) from possibly
noisy sampled data, such as support vector machines, neural
networks or direct weight optimization [8]. More recently,
other methods such as Gaussian processes [9] or Lipschitz
interpolation [10], [11] have gained a lot of attention thanks
to their capability to provide estimations of the prediction
error.

The model order n may not be known a priori 1. Depend-
ing on the estimation method chosen, the model function
will have certain structure. The parameters of this estimator,
including the memory horizons na and nb, are calculated
from a data base of historical inputs and outputs, namely the
training data set. In addition, a different collection of data
points is used for validation of the proposed estimator. This
cross-validation methodology allows one to derive the best

1Later, in Theorem 2, it will be proven that no assumption on n is
required.

structure of the estimator, as well as the best horizons na
and nb, from the real data.

IV. ORACLE-BASED ECONOMIC PREDICTIVE CONTROL

In this section, the proposed oracle-based predictive con-
troller is presented and its stability and optimality properties
are studied under the assumption of perfect estimation.

Assuming that an oracle is available, the system can be
posed as a state-space prediction model as follows

ẑ(j + 1|k) = F̂ (ẑ(j|k), û(j)) (8)
ŷ(j|k) = O(ẑ(j|k), û(j)), (9)

where the predicted state ẑ(j|k) ∈ Rnz is given by

ẑ(j|k) = (ŷ(j − 1|k), · · · , ŷ(k), · · · , y(k + j − na),

û(j − 1), · · · , û(0), · · · , u(j − nb))

for j ≥ 1. It includes past measurements y and u if na ≥ j
or nb ≥ j respectively, and only estimated values ŷ or û
otherwise.

Thus, the prediction model is

F̂ (ẑ(j|k), û(j)) = (O(ẑ(j|k), û(j)),

ŷ(j − 1|k), · · · , ŷ(1|k),

y(k), · · · , y(k + j − na + 1),

û(j), · · · , û(j − nb + 1)).

From the current value of the regressors z(k), the control
law is derived from the solution of the following optimization
problem PO(z(k))

min
û

VN =

N−1∑
j=0

ŷ(j|k) (10a)

s.t. ẑ(0|k) = z(k) (10b)

ẑ(j + 1|k) = F̂ (ẑ(j|k), û(j)), j ∈ INp−1
0

(10c)
ŷ(j|k) = O(z(j|k), u(j)) (10d)
û(j) ∈ U (10e)

û(j) = us, j ∈ INp−2
N (10f)

ŷ(j|k) = ys, j ∈ INp−1
N . (10g)

where Np = N + max(na, nb).
In order to obtain a controller that provides, under certain

assumptions, the same control action as the ideal model-
based MPC (equations (4)), a suitable terminal constraint has
to be considered. In (10), the terminal constraint is defined
by (10f) and (10g). Note that these constraints require that
both the input and the output maintain certain value for a
given time period, defined by the memory horizons of the
NARX model. The values us and ys have to be calculated
offline, following a procedure similar to the one used to
define the optimal steady state of the model-based economic
formulation (xs in equation (2)). To this end, the following



optimization problem, based on the oracle, has to be solved:

(us, ys) = arg min
u,y

y (11a)

s.t. y = O(z, u) (11b)
z = (y, . . . , y, u, . . . , u). (11c)

The control law is then given by

u(k) = κeco(z(k)) = û∗(0).

In the following theorem it is stated that this controller,
under some ideal assumptions, is equivalent to the model-
based economic MPC, and hence it renders the controlled
system asymptotically stable and minimizes the economic
performance.

Theorem 2: Assume that the oracle provides an exact es-
timation of the value of the economic cost function, and that
the initial state is such that x(0) is feasible for PN (x(k)), so
the corresponding state vector z(0) is feasible for PO(z(k)).
Then, the evolution of the system controlled by the economic
control law derived from PO(z(k)) is equal to the one
resulting from the control law derived from PN (x(k)).

Proof: Assume that both PN (x(k)) and PO(z(k))
begin with the same feasible solution, where z(0) is the
regression equivalence of x(0). Provided that no estima-
tion error implies that y(k) = L(x(k), u(k)) = ŷ(k) =
O(z(k), u(k)), the only fact that could make both problems
(and solutions) differ is the difference between the equality
terminal constraints. It must be proven that (i) the optimal
solution of PN (x(k)) is a solution of PO(z(k)) and (ii) the
opposite.

(i) The terminal constraint in PO(z(k)) (equations (10f)
and (10g)) consists in maintaining u = us while forcing
y to equal ys from N to Np = N + max(na, nb). Hence,
if the optimal solution of PN (x(k)) is x(N) = xs, then
y(N) = ys, and since u(j) = us, j ∈ INp

N , then z(Np) = zs,
which is a feasible solution of PO(z(k)). This implies that
the solution of PN (x(k)) is suboptimal for PO(z(k)), so
V ∗N ≥ V ∗O.

(ii) On the other hand, in order to prove the opposite,
it is considered without loss of generality that the state of
the oracle-based system, z, contains, at least, the last 2n
measurements of the output y and the input u. 2

Under the assumptions of Theorem 1, from [7, Thm 5]
it can be stated that there exists a continuous and bijective
function Φ such that for every state x(j−2n|k) and sequence
of inputs u = (u(j − 2n), · · · , u(j − 1)) , the state of the
oracle z(j|k) satisfies that x(j − 2n|k) = Φ(z(j|k)), since
the sequence u is part of the vector z(k).

Assume that z(j|k) = z(j+1|k) = zs. Then x(j−2n|k) =
Φ(z(j|k)) must be equal to x(j−2n+1|k) = Φ(z(j+1|k)),
which implies that x(j − 2n|k) = f(x(j − 2n|k), us) =
xs. And hence if the optimal solution of PO(z(k)) leads to
z(Np) = zs, then x(N) = x(Np − 2n) = Φ(z(Np)) = xs,
which is a suboptimal solution of PN (x(k)), so V ∗O ≥ V ∗N .

2See that if na < 2n the oracle can be extended to n̂a = 2n, with some
of its components not affecting the output.

Fig. 1: Quadruple-tank process scheme, reproduced
from [13]

Then, it is straight forward that V ∗N = V ∗O, so the solution
is the same for both problems, provided that Assumption 3
holds.

Remark 2: This theorem only states a hypothetical result
since it is unlikely that the oracle provides an exact esti-
mation of the evolution of the economic cost function. The
estimation error would add mismatches between the real
plant and the prediction model that might induce undesired
closed-loop behaviour. This would require a robust design
of the proposed controller, by means of the input-to-state
stability theory, [12].

Note that a common requirement for robust MPC designs
is to guarantee nominal stability of the controller, which is
indeed the contribution of this paper. The next step would
be to prove the bounded effect of the estimation error on the
predicted trajectory. This topic is the subject of future work
to be done in this research line.

V. CASE STUDY

The system taken into consideration is the quadruple-tank
process described in [13]. Figure 1 represents the system’s
scheme. It consists of four tanks, where the two on top
discharge on the inferior ones. They are filled with two
pumps, which send two flows represented by qa and qb.
These flows enter the three-ways valves, which divide each
flow into two branches, determined by the fraction γa and
γb. Thus, qaγa goes into the tank number one, qa(1 − γa)
into tank four, qbγb into the tank number two and qb(1−γb)
into tank number three. Tank number three discharges into
tank number one, and the fourth one into the second one, as
represented in Figure 1.

There are two control inputs, the flows qa and qb (m3 s−1).
The heights of the tanks are denoted as hi, i ∈ I41 (m). The
dynamics of the plant are nonlinear, and are well modelled
by the following set of differential equations:



TABLE I: Parameters of the system

Param. Definition Value Units
A Area of the four tanks 0.03 m2

a1 Eq. area of the hole of tank 1 1.31× 10−4 m2

a2 Eq. area of the hole of tank 2 1.51× 10−4 m2

a3 Eq. area of the hole of tank 3 9.27× 10−5 m2

a4 Eq. area of the hole of tank 4 8.82× 10−5 m2

γa Fraction of three-ways valve a 0.3 -
γb Fraction of three-ways valve b 0.4 -
g Gravity acceleration 9.8 ms−2

c Unitary cost of pumping 1 -
p Unitary cost of storage 20 e

Vmin Minimum storable volume 0.012 m3

A1
dh1(t)

dt
= −a1

√
2gh1(t) + a3

√
2gh3(t) + γa

qa(t)

3600

A2
dh2(t)

dt
= −a2

√
2gh2(t) + a4

√
2gh4(t) + γb

qb(t)

3600

A3
dh3(t)

dt
= −a3

√
2gh3(t) + (1− γb)

qb(t)

3600

A4
dh4(t)

dt
= −a4

√
2gh4(t) + (1− γa)

qa(t)

3600
,

where Ai (m2) denotes the area of tank i and ai (m2) the
equivalent area of the hole of tank i.

The parameters of the model are given in Table I. Note
that the model is only used to carry out simulations, no
information is used to design the controller.

The constraints in the inputs are 1 ≤ qa ≤ 2.1 m3 s−1

and 1.2 ≤ qb ≤ 2.5 m3 s−1.The economic cost, that is, our
plant’s only measurable output is

y = q2a + cq2b +
pVmin

A1(h1 + h2)
, (12)

measured in euros, where c is the unitary cost of water
pumping, p is the unitary cost of storing water and Vmin
the minimum volume of liquid that can be stored.

A. Obtaining the data set

The workspace is bounded by qmin = [1 1.2](m3 s−1) and
qmax = [2.1 2.5](m3 s−1). First, the static characteristic is
estimated using a grid of steps in the inputs from qmin to qmax

with increments of 0.1 m3 s−1, and each step long enough to
reach a steady sate, since the system is stable. The result is
shown in Figure 2. In addition to obtaining the equilibrium
points of the system, this test is used to adjust the sampling
time, which is set to τ

5 =30 s, where τ stands for the mean
settling time of the sequence of steps applied.

After defining the static characteristic, a set of experiments
are carried out to obtain the data used to train the ora-
cle. The experiments are designed using the methodologies
presented in [14] to identify the dynamics of a system
within a workspace: a sequence of chirp signals covering the
workspace are applied to generate the raw data set containing
the trajectories of costs and flows, Draw.

In addition, several tests with random input signals are
carried out in order to obtain data sets for cross-validation.
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Fig. 2: Static characteristics
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Fig. 3: Economic MPC in which the prediction model is ideal

The values of all the signals are scaled between 0 and 1.
The regression state vector z(k) is constructed for different
values of na and nb. With these data sets, an oracle is built in
the form of a Gaussian process regression [9]. The chosen
covariance function (kernel) of the model is the squared-
exponential kernel.

Cross validation tests are used to estimate the prediction
error, which is minimized for na = 2 and nb = 3.

B. Control of the system

The solver chosen to solve the optimization problem is
Matlab’s fmincon. As stated in the previous section, the
solver needs an equilibrium point of the systems as reference,
(us, ys), which is obtained solving the optimization prob-
lem (11), which yields us = [1.76 1.81] and ys = 12.72e.

The stage cost is calculated as in (10a). The control
horizon is set to N = 5. Hard constraints in the inputs and
the equality terminal constraint are also considered.

Two different controllers are applied to the system, yield-
ing the results presented below. The initial state is set to
h = [0.55 0.65 0.50 0.75]m. In Figure 3, the model used
for prediction is the ideal one, defined by the set of ODEs
of the model. The oracle-based MPC is applied in Figure 4.
Note that the data-based control problem is able to perform
as well as the economic MPC.

Unlike in Theorem 2, there exists some prediction error
between the real system and the oracle-based one, as one
can appreciate in the results. Considering this difference, in
order to compare the performance between both sets, one
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Fig. 4: Oracle-based predictive controller, in which the model
is a Gaussian process
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Fig. 5: Comparison of the performance of the EMPC with
two different models: the ideal set of ODEs and the oracle
model based on data, for 100 simulations

hundred simulations are carried out. In these tests the initial
state is chosen randomly within [0.54 0.61 0.48 0.71] ≤ h ≤
[0.650.720.590.82]m, and the duration of each test is 5 min.

The results are shown in Figure 5, illustrating that the
oracle-based predictive controller is able to emulate the
behaviour of the real MPC. The performance index of each
simulation is calculated as the sum of the economic cost all
along each trajectory:

Φ =

tsim∑
i=1

y(i).

This performance analysis shows that the oracle-based
MPC provides in this example similar behaviour, which
support the theoretical results presented.

VI. CONCLUSION

The objective of this paper was to prove that an economic
predictive controller can be designed for a system whose
model is unknown, under the assumption that the states are
not accessible. On the contrary, only the economic cost of
the plant is observed as the unique output along the operation
of the system.

This set-up can be encountered in many current situations
in which the client may not be queen on providing further
details of the intern operation of his plant, or provided that
the system is too complex to model. The evolution of the
economic cost is predicted using an oracle, i.e., a data-based
model of the output is learned from a set of historical input-
output data points of past trajectories. The structure of the
oracle is a NARX regressor, and the prediction is done with
certain machine learning technique.

In the case study presented, the prediction technique
chosen are Gaussian processes. The problem is applied to
the economic control of a quadruple-tank process, proving
to be able to perform as well as the standard economic MPC.

Future work lines include the extension of the proposed
approach to the robust case, considering stability and feasi-
bility issues in the presence of noise and estimation errors.
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