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Efficient FPGA parallelization of Lipschitz
interpolation for real-time decision making
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Abstract—One of the main open challenges in the field of
learning based control is the design of computing architectures
able to process data in an efficient way. This is of particular
importance when time constraints must be met, as for instance in
real-time decision making systems operating at high frequencies
or when a vast amount of data must be processed. In this
respect, FPGA-based parallel processing architectures have been
hailed as a potential solution to this problem. In this paper, a
low-level design methodology for the implementation on FPGA
platforms of Lipschitz interpolation algorithms is presented. The
proposed design procedure exploits the potential parallelism of
the Lipschitz interpolation algorithm and allows the user to
optimize the area and energy resources of the resulting implemen-
tation. Besides, the proposed design allows to know in advance
a tight bound of the error committed by the FPGA due to the
representation format. Therefore, the resulting implementation is
a highly parallelized and a fast architecture with an optimal use of
the resources and consumption and with a fixed numerical error
bound. These facts flawlessly suit the desirable specifications
of learning-based control devices. As an illustrative case study,
the proposed algorithm and architecture have been used to
learn a nonlinear model predictive control law applied to self-
balance a two-wheel robot. The results show how computational
times are several orders of magnitude reduced by employing the
proposed parallel architecture, rather than sequentially running
the algorithm on an embedded ARM-CPU based platform.

Index Terms—Data-Driven Control, FPGA Implementation,
Machine Learning Algorithms, Parallel Embedded Systems,
Real-Time Decision Making, Real-Time Control.

I. INTRODUCTION

DURING the past few years, many are the research fields
in which data-driven and learning methods are finding

application, such as medical diagnosis [1], face recognition [2]
or social media [3], among others. Particularly, one of the
areas in which learning methods have experienced a significant
growth is the field of automatic control and real-time decision
making [4], [5].

At the same time, advances in other fields and the appear-
ance of new paradigms, such as industry 4.0 [6], smart cities
[7], or the so-called internet of things [8], have also favored
the fast development of data-driven methods. They all have as
one of their core principle the availability of massive quantities
of data and their further processing, what has spurred the
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development of storage systems [9] and embedded processing
platforms [10] specially designed for these purposes.

Given the importance of data in present-day society, not
only the implementation of new data-based methods is crucial,
but also the development of computing platforms that give
support to the designed algorithms. The cost of manufacturing
application-specific integrated circuits (ASICs), specifically
designed for the implementation of data-driven algorithms,
may be prohibitively high when the system is not intended for
large-scale production, and CPU-based platforms cannot com-
pete with field-programmable gate array (FPGA) platforms in
terms of flexibility and execution speed [11]. An alternative
could be the employment of graphics processing unit (GPU)
devices [12], but the latency [13] associated with memory
access and communication with the CPU may be excessively
large for real-time operation and the use of this type of devices
is sometimes only justified when the set of data to be processed
is sufficiently large.

For this reason, the use of reconfigurable architectures
and programmable logic devices as FPGA platforms has
emerged as one of the preferred options when it comes
to developing embedded hardware systems to run machine
learning algorithms in real time. Works relating to this topic
are abundantly found in current literature as, for instance,
the implementation of convolutional neural networks [14],
classification algorithms [15], algorithms based on fuzzy logic
[16], and many other different families of machine learning
methods.

Lipschitz interpolation (LI) is a learning and predicting
methodology for the regression of unknown Lipschitz func-
tions, for which a data set of observations is available [17].
This method ensures a bounded estimation error and the
prediction algorithm is based on the available data and a
single hyperparameter, so its tuning process is considerably
simpler than other learning techniques. LI algorithms have
been used to learn nonlinear dynamical systems, sometimes
being referred to as nonlinear set membership [18] or kinky
inference [19]. Recently, efficient, robust and safe predictive
control laws have been proposed using LI-based nonlinear
models [20], [21]. However, the time required to compute the
prediction depends linearly on the cardinality of the data set
[20], which may hinder its application to fast real-time systems
when the application requires a large amount of data.

This issue has motivated this work, in which a parallel
architecture and a low-level design methodology for FPGA
platforms is proposed to efficiently implement Lipschitz inter-
polation methods in real-time. This real-time implementation
exploits the following nice properties of the LI algorithm:
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• The prediction algorithm is suitable to be parallelized,
thus allowing different batches of data to be concurrently
processed.

• The calculation of the output only requires simple alge-
braic and comparison operations, so they can be imple-
mented using basic native modules.

• The error committed derived from the data representation
in the algorithm can be bounded. This is of special
interest in those applications where the worst-case error
must be delimited, e.g. for robustness purposes.

In this paper we propose a parallel architecture for the
implementation of LI algorithm on FPGAs and a design
methodology that allows the user to optimize the area and/or
energy consumption while ensuring a given calculation error
bound. Minimising area consumption allows to increase the
total amount of data that can be processed at once, while
reducing energy consumption gives the system greater auton-
omy. The proposed design allows the user to balance between
both objectives depending on the embedded application target.

The rest of the paper is structured as follows. In Sec-
tion II, the foundations of Lipschitz interpolation algorithms
are summarized, and its parallel implementation is shown. In
Section III, the FPGA-based parallel architecture that performs
the interpolation algorithm is presented, while the data repre-
sentation and the calculation error are studied in Section IV.
The optimal design methodology is shown in Section V. In
order to showcase the results of the paper, a case study
where the designed architecture and proposed methodology are
employed to implement a system that learns a nonlinear model
predictive control law is shown in Section VI, accelerating
the computation of the control action and allowing its real-
time implementation. The paper ends with some conclusions
in Section VII.

II. LIPSCHITZ INTERPOLATION ALGORITHM

A. Algorithm

This paper is devoted to implement a machine learning
algorithm known as Lipschitz interpolation [17], which aims
to learn an unknown function given a data set of input/output
samples, under the assumption that such function is Lipschitz
continuous. This is summarized in the following statement:

Setup: Consider a function f : W ⊂ Rnw → Y ⊂ Rny .
From this f , a data set of ND (possibly) noisy samples is
known, grouped in:

D = {(f̂(wi), wi), i = 1, . . . , ND}, (1)

where f̂(·) stands for the noisy observation of f(·). The
sets W,Y are assumed to be compact, and the additive noise
is assumed to be confined in a compact set E ⊂ Rny .

It is also assumed that f is Lipschitz continuous,
i.e., ∀w1, w2 ∈ W , for each output component j = 1, . . . , ny ,

‖fj(w1)− fj(w2)‖ ≤ Lj‖w1 − w2‖, (2)

for a certain Lipschitz constant L ∈ Rny

Then, the resulting prediction of f at a query q is computed
as [19]:

Fig. 1: Lipschitz interpolation over f(w) = −w2

2 + 3w
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ND = 6 and L = 1.5.
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+
1

2
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(f̂i,j − Lj‖q − wi‖)

=
1

2
min

i=1,...,ND
ui +

1

2
max

i=1,...,ND
li, (3)

where f̂j is the j-th component of f̂, f̂i,j the j-th component
of the value of the observed map for the i-th data point in D
and wi is its corresponding input. The terms u and l are called
the ceiling and floor functions, respectively, and the space
between them is called the enclosure. Note that due to the
equivalence among norms, any norm could be employed in
the previous expression [19], although, for reasons that will
be explained further on, the infinity norm will be taken in this
paper. The interpolation method is illustrated in Figure 1.

Remark 1: Note that the true Lipschitz constant (the small-
est Lj that satisfies (2)) may be unknown a priori. Several
works propose inference methods that obtain an estimation of
the Lipschitz constant based on the available data [22], [23].
Since this is not within the scope of this paper, knowledge of
the true Lipschitz constant is assumed, as in [18], [24].

Remark 2: One of the main advantages of this machine
learning method is that if the ground truth function is Lipschitz
continuous and its Lipschitz constant is either known or esti-
mated (as in [23]), the method provides a bounded prediction
error, which decreases as the density of the data set increases.

B. Parallelization of the algorithm

The core expression of the prediction algorithm to be
implemented is given by (3). The calculation consists in
obtaining the ceiling and floor functions for every data point
in D, computing the minimum ceiling and maximum floor
terms (particularized at the query q) and then calculating the
estimation as the average of both values. This method is
represented in Figure 1.

Therefore, it is possible to compute simultaneously as
many ceiling and floor terms as possible, since each of them
is independent of the others for a given q, allowing the
parallelization of the algorithm. This strategy, represented in
Figure 2, splits the algorithm in three serial blocks: in the first
block the calculation of all ceiling and floor terms is carried
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Fig. 2: Parallel Lipschitz interpolation.

out in parallel. In the second block, the maximum of the floors
and the minimum of the ceilings are calculated, and these are
finally averaged on the last block to obtain the prediction.

Additionally, as it will be justified in Section VI, avoiding
multiplications in the algorithm simplifies the area and energy
optimization problem as well as the calculation of data word-
length. In this paper we propose that the multiplication by Lj ,
which is the only one in the algorithm, to be avoided by a
simple storing policy of the data set. In effect, storing f̃j =
f̂j/Lj (instead of f̂j), and bearing in mind that the result (now
denoted f̃j) has to be multiplied by Lj to get the prediction.
Thus, the algorithm can be rewritten as

f̃j(q; D̄) =
f̂j(q;Lj ,D)

Lj

=
1

2
min

i=1,...,ND

(
f̃i,j + ‖q − wi‖

)
+

1

2
max

i=1,...,ND

(
f̃i,j − ‖q − wi‖

)
=

1

2

(
min

i=1,...,ND
ui + max

i=1,...,ND
li

)
(4)

where f̃i,j = f̂i,j/Lj , u and l redefine the ceiling and floor
functions, respectively; and D̄ is equal to D but with every
output divided by Lj .

In the following section, the FPGA-based parallel architec-
ture is proposed, tailored to the algorithm presented above.

III. PARALLEL ARCHITECTURE

The implementation of the parallel algorithm in the FPGA
requires to define an appropriate architecture of the overall
system. The proposed global parallel architecture is shown
in Figure 3 and it is conceptually composed of three different
parts: (i) a cluster of block random access memories (BRAMs)
where data are stored (green shadowed); (ii) a processing
subsystem in charge of performing the arithmetic calculations
of the ceiling and floor terms and the final prediction (as
well as storing partial results if more than one iteration
is needed)(red shadowed); and (iii) a sequential finite state
machine (FSM) synchronized with the clock signal, which
governs the BRAMs in the system (blue shadowed). The only
entries of the system are the clock signal clk that synchronizes
data uploads, and the new query point q. The corresponding
output of the system is the estimated value of the function f̃(q).

There are a total of K BRAM memories and each of them
stores a total of n = dD̄/Ke data points. Data coming from
these memories are the inputs of a cluster of K enclosure

calculation arithmetic units (ECAUs) where the calculation
of the ceiling and floor terms is performed for the query
point input, according to (4). In Figure 4, the internal structure
of each ECAU is shown. Notice that thanks to choosing the
infinity norm in the algorithm, only basic blocks are employed
in the ECAU. The one norm could also be implemented using
simple blocks, but the error committed may be larger than
when using the infinity norm [19].

Once the parallel calculation of all ceiling and floor terms
has been performed, the maximum of the floors and the
minimum of the ceilings are computed in a block consisting
of a tree of comparators, as shown in Figure 5. The total
number of comparison blocks required to implement this stage
is upper-bounded by K, and the total number of comparison
stages by dlog2Ke, which correspond to the work and step
complexities of the algorithm, respectively [25]. Note that, in
case there are enough area resources to process all data at
once, the step complexity of the comparison stage determines
the step complexity of the whole algorithm since the step
complexity of the previous stage where all ceiling and floor
terms are calculated is just 1.

A sequential batch strategy is proposed in case the number
of data points that can be processed in parallel (K) is lower
than the total number of data points ND to be processed (i.e.,
if n > 1).

In this case, the pairs of outputs of the comparison stage
(which are the minimum ceiling and maximum floor terms
resulting from the processing of K data points) are stored in
another BRAM (a multi-port memory in this case, so that all
output data can be downloaded at once), whose depth n is
equal to the number of iterations required to process all data.

As it is shown in Figure 3, once all the required iterations
have been completed, the results of processing each batch of
data are again compared so that the minimum ceiling and the
maximum floor terms among all the partial results are found.
These terms are finally provided to an output arithmetic-logic
unit (ALU), where they are averaged (cf. eq. (4)) to obtain the
estimated output.

This sequential procedure requires the implementation of
a management system in the form of a finite state machine
whose states correspond to the batch of data loaded from
the BRAMs to the ECAUs. This system manages both the
cluster of BRAMs where the estimation data is stored and the
BRAM where partial results are saved, as shown in Figure 6.
This module is designed as a synchronous Moore finite state
machine [26] whose outputs are the address (addr) and enable
(ena, enb) signals of all BRAMs. Every time a positive edge
of the external clock signal is detected, the address signals
(which initially points to the first position of the BRAMs) are
increased, pointing to the following position. At the same time,
the enable signals of all memories are conveniently controlled.

Defining τ as the clock cycle, the proposed architecture
takes nτ units of time to compute a prediction. Note that the
computation time is directly proportional to ND, and inversely
proportional to the number of ECAUs, K. In any case, K
and τ are typically such that the computation time nτ is
significantly faster than the computation time of the sequential
algorithm implemented in a CPU-based system (as it will be
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Fig. 3: Lipschitz interpolation module global architecture.

Fig. 4: Enclosure calculation arithmetic units (ECAUs).

Fig. 5: Tree of comparators.

illustrated in the case study, where the proposed implementa-
tion is four orders of magnitude faster than an ARM cortex
A-based microcontroller).

Once we have seen the proposed architecture, the next step
is to choose an appropriate data format, which is extensively
described in the following section.

State 1 State 2 State n

addr = 1 addr = 2 addr = n

clk clk

clk

Fig. 6: Sequential control finite state machine.

IV. DATA FORMAT

Each data point in D̄ consists of measured output values f̃i
and their corresponding inputs wi, being these terms arrays
of lengths ny and nw, respectively. To represent these data,
fixed-point format is proposed [27]. In general, the use of
this type of representation, in comparison with floating-point
representation [28], has the advantage that numbers are easier
to handle, as they are treated as integers by the processing unit,
and arithmetic operations are computed faster. The con is that
fixed point representation provides a worse precision for the
same number of bits than floating point representation [29],
making necessary an study of the calculation error of the
algorithm due to this representation.

Figure 7 shows an schematic of how data are organized
inside the BRAMs. Each memory address of the BRAMs
allocates a row of data consisting of the ny outputs and the nw
inputs. Each of these values is represented in fixed point format
with 1 bit for the sign, ι bits for the integer part and ϕ bits
for the fractional part, resulting a total of ι+ ϕ+ 1 bits.

The selection of the number of bits to be used in the data
representation is crucial in the design of the implementation,
since this determines the area and energy consumption as well
as the precision of the calculations to be carried out [30], [31].
The greater the number of bits, the greater the amount of area
and energy that are consumed and the greater the precision of
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Fig. 7: Data format and memory organization.

the proposed architecture. Hence, the number of bits ι and ϕ
must be selected to in such a way that the system is optimized
while some specifications are met. The resulting optimization
problem is studied and detailed in Section V.

One of the specifications that the representation of the data
must fulfill is that this can represent every possible value
resulting of the algorithm, avoiding overflow and ensuring
sufficient precision. The number of bits of the integer part
ι must be large enough to avoid overflow regardless the value
of the input signals, while the number of bits of the fractional
part ϕ must be large enough to meet the precision requirement.

A traditional approach to determine the minimum number of
bits would be to first fix the value of bits of the fractional part
and then perform a range evaluation analysis for every operand
in the system taking into account that the error committed can
make the integer value fluctuate. The range evaluation problem
has commonly been dealt with via three different approaches:
Monte Carlo analysis [32], transfer-function-based analysis
[33] and interval analysis [34], [35].

In this work, and based on the principles described in [36],
where affine arithmetic models [37] are used to represent fixed-
point numbers, we propose the following approach tailored
to the LI algorithm. First, a range evaluation analysis for all
signals in the system is performed considering no error is
committed due to the fractional part. This will allow us to
find the overflow constraint. Knowing that this value can later
fluctuate due to the error committed, an extra bit must be
added to the integer part. Once this is done, an analysis of how
the error propagates through the system is performed, and the
minimum number of bits of the fractional part is selected so
that the maximum error meets the desired limit. Note that these
two processes could have been carried out using probabilistic
simulation-based methods, but because of the simplicity of the
algorithm, a conservative analytical approach can be derived.

As it was previously stated, the first problem to be addressed
is to find the overflow constraint. For that purpose, a range
evaluation analysis of all signals in the system is performed
using the principles of interval arithmetic [38]. In this analysis
it is not considered the representation error of the stored data

or the query point. The intervals to which the values of the
input signals belong to can be expresses as

qj ∈ [q−, q+], wi,j ∈ [w−, w+], f̃i,k ∈ [f̃−, f̃+],

i = 1, ..., ND̄, j = 1, ..., nw, k = 1, ..., ny.
(5)

With this, the intervals to which the rest of the signals
belong to are

qj − wi,j ∈ [q− − w+, q+ − w−], (6)

‖q − wi‖ ∈
[
0,max(|q− − w+|, |q+ − w−|)

]
, (7)

ui ∈
[
f̃−, f̃+ + max

(
|q− − w+|, |q+ − w−|

)]
, (8)

li ∈
[
f̃− −max

(
|q− − w+|, |q+ − w−|

)
, f̃+

]
, (9)

f̃ ∈
[

1

2
(2f̃− −max

(
|q− − w+|, |q+ − w−|

)
),

1

2
(2f̃+ + max

(
|q− − w+|, |q+ − w−|

)
)

]
.

(10)

Once the ranges of values of all signals in the system
have been evaluated, we must ensure that the number of
bits selected for the integer part ι is such that all signals
can be represented without suffering overflow. Suppose all
input signals are scaled in the range [0,1]. Let ν and ν be
the minimum and maximum values among all signals in the
circuit, i.e.

ν = min{(qj − wi,j)−, l−i }, (11a)
ν = max{‖q − wi‖+, u+

i }. (11b)

Then, the minimum number of bits to be selected so that none
of the signals suffers overflow [39] is calculated as

ιmin = η(ν, ν) = dlog2(max(ν, ν))e+ 1, (12)

where an extra bit has been added as a safety margin. Note that
this value is obtained following a conservative approach and
in practice the range that the real values could take is smaller
than this. Because of this, a simpler and less conservative
simulation-based approach [40] could have been followed, but
the results obtained following this type of methods is less
robust than the solution here proposed.

In order to find the error bound, the next step is to study how
the representation error propagates. According to the principles
of affine arithmetic, an uncertain number can be expressed as
a nominal value plus some sources of uncertainty. Thus, the
affine representation of a variable x can be expressed as

x = x0 +

p∑
i=1

xiεi, (13)

where x0 is the nominal value of the signal, each εi ∈ [−1, 1]
is an independent uncertainty factor, each xi ∈ R the mag-
nitude of each component and p is the number of sources of
uncertainty. Any number represented in this way can also be
represented using interval notation as

x ∈

[
x0 −

p∑
i=1

|xi|, x0 +

p∑
i=1

|xi|

]
. (14)
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In the specific case of fixed-point representation of bounded
random values (as in our case), two main sources of uncer-
tainty are commonly taken into account. The first one stems
from the range of values the signal may take. The second one
is the quantization error due to the number of bits chosen to
represent the fractional part. Considering these two sources
of uncertainty, the affine fixed-point representation xf of a
number x can be expressed as

xf = x0 + x1ε1,x + aε2,x, (15)

where x0 is the mean of the interval of values the number x
can take, x1 is the deviation this value can suffer to cover the
whole range of values, a = 2−(ϕ+1) is the maximum absolute
representation error and ε1,x and ε2,x are random variables
in the range [-1,1]. Because the range evaluation analysis has
already been performed for the integer part, in this case we
only consider the uncertainty due to the representation error.

Next, consider that the same number of bits ϕ is employed
to represent the fractional part of all signals. Let B(·, ·) be an
interval defined as

B(xc, r) = {xc + ru : |u| ≤ 1}, (16)

where xc ∈ R is the center of the interval and r ∈ R is its
radius. Then, the inputs of each ECAU in the system can be
represented in affine fixed-point format as

qfj ∈ B(qj , a), (17a)
wfi,j ∈ B(wi,j , a), (17b)

f̃fi,k ∈ B(f̃i,k, a), (17c)
i = 1, ..., ND,

j = 1, ..., nw,

k = 1, ..., ny.,

where the subscript f is used to denote the fixed-point repre-
sentation of the real number (for instance, qf denotes the fixed-
point representation of q). In the first stage of the ECAUs, each
new input query point q is subtracted from each wi and then
the infinite norm is calculated. Using the principles of interval
arithmetics, this results in

‖qf − wfi‖f ∈ B(‖wi − q‖, 2a). (18)

Consequently, the ceiling and floor terms associated to each
data point i in D̄ can be calculated as

ufi,k ∈ B(f̃i,k + ‖wi − q‖, 3a), (19)

lfi,k ∈ B(f̃fi(k)− ‖wi − q‖, 3a). (20)

Then, the minimum among all ceiling terms and the maxi-
mum among all floor ones are given by

ufk = min
i

ufi,k ∈ B(min
i

(f̃i + ‖wi − q‖), 3a)

= B(uk, 3a),
(21)

lfk = max
i

lfi,k ∈ B(max
i

(f̃i − ‖wi − q‖), 3a)

= B(lk, 3a).
(22)

Finally, both ceiling and floor terms are added together and
divided by two. This division is carried by simply shifting
one bit to the right, and thus, no uncertainty is introduced
by the multiplication operation. The output signal can now be
calculated as

f̃fk ∈ B
(

1

2
(uk + lk), 3a

)
= B

(
f̃k, 3a

)
.

(23)

On the basis of these results, it can be seen that the
maximum error committed throughout the system ρ(ϕ) is
given by

ρ(ϕ) ≤ 3a = 3 · 2−(ϕ+1). (24)

Thus, the minimum number of bits of the fractional part
ϕmin to be employed so that the maximum error committed
ρ(ϕ) is bounded by some value ρmax is given by

ϕmin = − log2

(
ρmax

3

)
− 1. (25)

V. DESIGN METHODOLOGY

In this section, the calculation of the optimal number of bits
for the integer (ι) and fractional (ϕ) parts of the fixed-point
representation of all signals in the system is described. These
values are determined by solving an optimization problem
where a certain performance measure of the design is min-
imized, subject to the constraints that ensure the satisfaction
of the requirements on the range of representation to avoid
overflow, as well as on the specified precision.

The performance of the design is measured by the area and
dynamic energy consumption 1. Assuming that all signals in
the system employ the same number of bits, the area consump-
tion and the energy consumption can be posed as functions
of the number of bits, namely CA(ϕ, ι) : R2

≥0 → R≥0 and
CE(ϕ, ι) : R2

≥0 → R≥0, respectively.
Then, the optimal representation is derived from the solution

of the following optimization problem:

minimize
ϕ,ι

J(ϕ, ι) = CA(ϕ, ι) + αCE(ϕ, ι) (26a)

s.t. ϕ ≥ ϕmin (26b)
ι ≥ ιmin, (26c)

where α ≥ 0 is a weighing factor that allows the user to
balance between the optimization of the area and the energy
consumption. The limit values of the constraints, ιmin and
ϕmin, are given by (12) and (25), respectively.

The determination of the functions CA(ϕ, ι) and CE(ϕ, ι)
is in general complex, and it depends on the blocks used in the
design and the options used in the generation of the layout. In
practice, these functions are typically empirically obtained by
extensive simulation, as shown it will be shown in Section VI.
If the cost function J(ϕ, ι) turns to be a non-convex function,

1In this analysis static energy is not considered because it is mainly due to
the reverse bias leakage currents of the PN junctions and it does not depend
on the design but on the selected platform [41].
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then nonlinear programming methods must be used to solve
the resulting optimization problem.

Next, we show that, under some mild and practical assump-
tions, explicit expressions for CA(ϕ, ι) and CEϕ, ι) can be
estimated allowing us to find the optimal values of ϕ and ι.

The total area and energy consumed can be approximated
by the sum of areas and energies consumed by each of
the elements in the system. In this estimation, the following
statements must be taken into account: (i) the area consumed
by the output ALU is not significant compared to the rest of
the blocks; (ii) the area consumed by the FSM can be taken as
a constant offset value that does not influence the optimization
problem, (iii) only BRAM blocks are employed to store data
so no LUTs are consumed and (iv) the employment of digital
signal processors (DSPs) is avoided by a right configuration
of the FPGA syntethizer and avoiding using multiplications.
Therefore, area and energy consumption functions can be
estimated by considering only the contribution of all ECAUs
and comparators, resulting in

CKA (ϕ, ι) ≈
K∑
i=1

CECAU
A,i +

K−1∑
j=1

CCOMP
A,j , (27a)

CKE (ϕ, ι) ≈
K∑
i=1

CECAU
E,i +

K−1∑
j=1

CCOMP
E,j , (27b)

where K is equal to the number of data points to be processed
in parallel, K− 1 is the total number of comparators, CECAU

A,i

and CCOMP
A,j the amount of area consumed by the j-th ECAU

and comparator, respectively, and CECAU
E,i and CCOMP

E,j the
amount of energy consumed by the j-th ECAU and com-
parator, respectively. Supposing all ECAUs and comparators
consume the same amount of area and energy (which is
normally the case), area and energy consumption functions
can be expressed as

CKA ≈ K · CECAU
A + (K − 1) · CCOMP

A , (28a)
CKE ≈ K · CECAU

E + (K − 1) · CCOMP
E , (28b)

where CECAU
A and CECAU

E are the area and energy consumed
by a single ECAU, respectively, and CCOMP

A and CCOMP
E

the area and energy consumed by a single comparator, re-
spectively. These terms are in turn functions of the type of
resources employed to implement these blocks, mainly look-up
tables (LUTs) and DSPs [42], according to the configuration
of the resource allocation algorithm [43]. Since the proposed
architecture avoids using multiplications (cf. Section II), the
resource allocation algorithm (with the adequate configuration)
only uses LUTs to implement the system. In this case, the
cost function of the problem is linear with respect to the total
number of bits (ϕ+ι) employed to represent data (see Figures
(12) and (13) in the case study), and the optimization problem
can be expressed as

minimize
ι,ϕ

J = β(K) · (ι+ ϕ) (29a)

s.t. ϕ ≥ ϕmin (29b)
ι ≥ ιmin, (29c)

where β(·) : R≥0 → R≥0 is a function that depends on the
number of ECAUs and comparators employed, and thus on
the number of data points processed in parallel.

From this analysis we can state that under the presented
simplifying assumptions (which are typically fulfilled by
the proposed architecture), the optimal number of bits that
minimizes area and energy consumption functions are the
minimum values of ι and ϕ that meet overflow and error
constraints, irrespective of the size of the system (given by
K), i.e.

(ϕ∗, ι∗) = (ϕmin, ιmin). (30)

Notice that this reasoning would also be valid if the cost
function were continuous and monotonically increasing with
respect to the number of bits.

From this study, the following optimal design methodology
is proposed: Design Methodology

1) Begin with a given data setD and a Lipschitz constant L.
Store f̃j = f̂j/Lj , j = 1, · · · , ny , as explained in
Section II-B.

2) Perform a range evaluation analysis using the expres-
sions proposed in Section IV and obtain the overflow
constraint. Note that no simulation-based analysis is
required.

3) Define the maximum allowable error to be commit-
ted, ρmax, and analytically find the error constraint using
the expressions proposed in Section IV.

4) Set ϕ and ι to ϕmin and ιmin, respectively.
5) Determine the number of data that can be processed in

parallel K so that the constraint imposed by the number
of available LUTs is satisfied.

6) Build the system as described in Section III.

VI. CASE STUDY

In order to illustrate the proposed structure and methodology
design of Lipschitz interpolation algorithms in an FPGA, this
has been tested on a challenging real-time control problem:
the real-time implementation of a constrained nonlinear model
predictive control law for a self-balancing vehicle.

The resulting design has been experimentally implemented
and tested on the target platform Xilinx Zynq-7000 system
on chip embedded on a Zybo z7 board which integrates a
dual-core ARM Cortex-A9 processor with a Xilinx 7-series
FPGA [44]. The board is shown in Figure 8.

In this section, the design steps described in the previ-
ous sections are followed, demonstrating and justifying the
proposed design methodology. Standard Verilog has been
employed to implement the system on the FPGA as well as
to perform all analysis and verification tests. For comparison
purposes, the sequential version of the algorithm running on
the ARM processor has been programmed using C language.

A. Model predictive control of a two-wheel self-balancing
robot

The system to be controlled is a self-balancing two-wheel
robot presented in [45] (and represented in Figure 9). The
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Fig. 8: Zybo z7 board.

Fig. 9: Scheme of the two-wheel robot, reproduced from [45].

objective is to stabilize this constrained nonlinear system on
the upper position by manipulating the acceleration of the
wheels.

The state of the system comprises the tilt angle φ (rad), its
velocity φ̇ (rad/s) and the velocity of the angle between the
wheel spin and the vertical, θ̇ (rad/s) (see Figure 9). The con-
trol action is the angular acceleration of the wheels, θ̈ (rad/s2).
The nonlinear model is discretized such that x(k + 1) =
g(x(k), u(k)). The model function g and its parameters can be
found in [45, Appendix]. The sampling time to satisfactorily
control this system has been fixed to 40 ms, making its real-
time implementation on an embedded platform difficult.

The following stabilizing nonlinear model predictive con-
trol (MPC) law has been designed, taking into account the
constraints on the inputs (|θ̈| ≤ 50 rad/s2), to obtain the
desired control action, which is applied in a receding horizon

manner [46]:

min
u

N−1∑
j=0

‖x̂(j|k)‖Q + ‖u(j)‖R (31a)

s.t. x̂(0|k) = x(k) (31b)
x̂(j + 1|k) = g(x̂(j|k), u(j)), (31c)
u(j) ∈ B(0, 50),∀j = 0, . . . , N − 1, (31d)
x̂(N |k) = [0, 0, 0]T . (31e)

The prediction horizon is set to N = 4, and the stage cost
weights to Q = diag(10, 1, 10) and R = 0.1.

Solving such constrained nonlinear optimization problem in
less than 40 ms on an embedded platform is hard. To overcome
this problem, the resulting control law is learnt using Lipschitz
interpolation, based on a suitable data set obtained from off-
line simulations of the proposed MPC. Thus, the function to
be learnt is the control law, as a function of the robot’s state,
i.e.

u(k) = θ̈(k) = κMPC(x(k)) = f(φ(k), φ̇(k), θ̇(k)). (32)

Note that the function has three inputs and one output,
i.e. ny = 1 and nw = 3.

Then, the proposed Lipschitz interpolation algorithm is
implemented in the FPGA allowing the real time execution
of the control law. In the following, the steps followed for
this design are showcased.

B. Obtaining the data set

Once that the stabilizing nonlinear MPC control law has
been designed, the data set for the learning method is obtained
carrying out several closed-loop simulations in which the robot
is balanced in the vertical position, subject to:
• Different random initial states, in which φ(0)

and φ̇(0) are uniformly distributed in B(0, 0.6) rad
and B(0, 5) rad/s, respectively, and θ̇ is kept at 0 rad/s.

• Additive random sensors’ noise in the measure of the
angle φ, normally distributed with 0 mean and standard
deviation of 0.05 rad.

This process aims to obtain a data set rich enough to learn
the control action, and thus a data set with ND = 14000 is
collected. An example of the closed-loop performance of this
MPC is shown in Figure 10. Each control action is calculated
in approximately 70 ms in Matlab, on an Intel® Core™ i7-
6700HQ CPU @ 2.60GHz 12GB RAM, which is more than
the 40 ms required by the system.

All the signals are scaled to range [0,1], and the Lipschitz
constant has been estimated as in [23], yielding L = 4.67.
Next, the loop is closed applying in each iteration the control
action obtained by

u(k) = Lf̃(x(k); D̄). (33)

The learnt control law is then validated. Its performance
relies on the obtained data set. To this aim, closed-loop sim-
ulation applying the Lipschitz interpolation-based control law
are carried out, subject to the same previous conditions (i.e.,
random initial states and random sensor’s noise), checking
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Fig. 10: Closed-loop simulation of the robot controlled by the
MPC.

Fig. 11: Closed-loop simulation of the robot controlled by the
LI controller.

whether the robot is stabilized towards the vertical position.
An example of this learnt control law is shown in Figure 11,
illustrating how the learnt control law also stabilizes the
system.

C. Area and energy consumption

Once the data set has been defined, area and energy
consumption functions are studied. As it was mentioned in
Section II, avoiding multiplications simplifies the optimization
problem, because no digital signal processor (DSPs) are used
by the FPGA to implement the system. Only LUTs are
employed, and area and energy consumption functions are
linear with respect to the number of bits employed to represent
data.

Since this will depend on the employed platform and the
resource allocation configuration, as mentioned before, next
we experimentally demonstrate that this is the case for the
considered target platform. To obtain experimentally the area
and energy consumption functions, several designs have been
implemented, employing different number of bits (ϕ+ ι) and
considering an ambient air temperature of T = 25 °C and a
constant airflow of A = 75 m/s. The results obtained from the
implementation of the different components on the real board

Fig. 12: Area consumption: (red) area consumption of a single
comparator, CCOMP

A , (blue) area consumption of a single
ECAU, CECAU

A , (black) sum of the areas consumed by an
ECAU and a comparator.

Fig. 13: Energy consumption: (red) energy consumption of a
single comparator, CCOMP

E , (blue) energy consumption of a
single ECAU, CECAU

E , (black) sum of the energies consumed
by an ECAU and a comparator.

are represented in Figures 12 and 13, demonstrating that these
are linear functions as assumed.

D. Data format analysis

1) Range evaluation: In order to calculate the minimum
number of bits devoted to the integer part so that overflow
is avoided, a range evaluation analysis supposing no repre-
sentation error is carried out by using expressions (5) to (10).
Since the signals to be applied are scaled in the range [0,1], the
results obtained show that all signals in the system lie within
the interval [-1,2], so 2 bits are enough to represent the whole
range of values, while ensuring no overflow appears. An extra
bit has been added to ensure no overflow appears due to the
approximation error, resulting that minimum number of 3 bits
is required to represent the integer part of all signals in the
system.

In order to validate this range analysis, an experiment
in which a total of 105 random input values scaled in the
range [0,1] are applied to the algorithm, has been performed.
The results (the values that all signals take assuming no
approximation error) are shown in Figure 14. It can be seen
that all signals lie in the estimated interval [-1,2].

In addition, note that the interval algebra evaluation yields
a range of [−0.5, 1.5] for the output f̃, provided that the
ceiling and floor terms lied in the ranges [0, 2] and [−1, 1],
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Fig. 14: Range evaluation analysis.

Fig. 15: Representation error.

respectively (cf. eq. (23)). However, this is a conservative
overestimation of the actual range, which results in [0, 1], as
illustrated in Figure 14.

2) Error analysis: In order to find the minimum number
of bits devoted to the fractional part is necessary to know
the maximum allowable error. In this case, and based on the
nature of the problem, a maximum error of ρmax = 4× 10−4

has been selected, since it has been numerically tested that
the predictive controller maintains a good performance in
case that a disturbance in the input of the system within this
range is applied. From expression (24), we have that taking
ϕmin = 12 guarantees a maximum error of ρ(ϕ) ≤ 3·212+1 ≈
3.66× 10−4.

This bound has also been experimentally validated evalu-
ating 105 random inputs for a collection of data format with
different number of bits of the fractional part (ϕ). The obtained
results are shown in Figure 15. As it can be seen, the maximum
absolute representation error exponentially decreases with the
number of bits ϕ. It is also interesting to demonstrate that
the maximum error committed when representing all signals
in the system are those given by expressions (18) to (23),
demonstrating that these expressions are valid.

E. Optimal design

In the previous subsections, we have determined the area
and energy consumption functions, and overflow and error
constraints. Therefore, we are ready to calculate the optimal
design of the proposed implementation, which is derived from
the solution of the optimization problem proposed in Sec-
tion V. Since, as assumed, both area and energy consumption
functions are monotonically increasing, the solution of the

Fig. 16: Optimization problem solution.

Fig. 17: Representation error of all signals in the system.

problem is the minimum allowable values of ϕ and ι, i.e.
ι = ιmin = 3 and ϕ = ϕmin = 12. Taking an extra bit to
describe the sign, the optimal number of bits to be employed
to represent data is equal to 16.

In Figure 16 the cost functions to be optimized together with
the achieved minimum for K = 1 are illustrated, proving that
this choice provides the minimum number of LUTs and energy
consumption.

Next, we experimentally validate that this optimal number
of bits is appropriate for every signal of the implementation. To
this aim, an experiment in which a total of 105 random input
values scaled in the range [0,1] have been applied to the system
has been performed. The results are shown in Figure 17.

F. Architecture configuration

The final step in the design process is to configure the
architecture and to find out how many data points can be
processed in parallel. To maximize this number, the area
required for different numbers of K has been calculated and
the results are shown in Figure 18. The red dashed line
represents the number of LUTs available to implement the
system (53200 LUTs for the chosen target platform) while
the blue line represents the number of LUTs consumed as a
function of K. From this, it is derived that a total of K = 256
is the maximum number of data that can be processes in
parallel.

G. Experimental results

The designed implementation has been experimentally vali-
dated in real time in the Xilinx Zynq-7000 platform, by means
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Fig. 18: System area consumption.

Fig. 19: Close-loop simulation of the robot controlled by the
parallel LI controller.

of Processor in the Loop (PiL) architecture. The nonlinear
predictive control law implemented in the FPGA is used to
control in real time the two-wheel self-balancing robot model.
It is simulated on one of the two ARM cores available on the
SoC, connected by AXI-Lite interface.

Simulation results of the closed-loop PiL system for random
initial conditions and under the presence of bounded sensor
noise and disturbances are shown in Figure 19. As it can
be seen, the implemented control law stabilizes the system
towards the vertical position.

An analysis of the error made for 2500 queries due to the
parallelization is represented in Figure 20, comparing three
different implementations of the predictive control law: (a) the
MPC law, i.e. the ground truth function calculated in Matlab
with double precision; (b) the LI prediction implemented in
Matlab using double precision; and (c) the proposed parallel
LI prediction implemented in the FPGA. Note that the error
between the LI implemented in Matlab (b) and in the FPGA
(c) is of the order of 1× 10−5, which is even less than the
maximum representation error established ρmax.

After performing a time analysis, a clock signal of 15 ns has
been selected, which provides a positive WNS (Worst Negative
Slack). Since data uploading from the BRAM memories is
synchronized with the clock signal, new output terms are gen-
erated every 15 ns. As it was previously shown, the maximum
number of data that can be processed in parallel is K = 256,
a total of n = 55 iterations are required to process all data,
being this equal to the depth of each BRAM in the system.
Thus the computation time of the resulting implementation of
the control law results to be 825 ns, four orders of magnitude

Fig. 20: Prediction error for 2500 queries. (a) MPC law vs
standard LI (b) MPC law vs parallel prediction. (c) Standard
LI vs parallel predictions.

Fig. 21: Computation time w.r.t the size of the data set.

faster than the specified sampling time.
Finally, to illustrate the benefits of the parallel implemen-

tation in the FPGA of the LI algorithm versus its serial
implementation in the embedded ARM processor available in
the SoC, we have studied their open-loop computation time
for a single query point w.r.t. the number of data points on
the data base ND. The results are shown in Figure 21 and
clearly demonstrate that the parallel version of the algorithm
implemented on the FPGA device is significantly faster (three
orders of magnitude in this case) than the sequential algorithm,
irrespective of the size of the data set.

VII. CONCLUSION

In this work, a FPGA-based architecture was proposed to
parallelize the inference method known as Lipschitz interpo-
lation. The algorithm was posed in a suitable form to be par-
allelized, avoiding multiplications, and a suitable architecture
was proposed for its implementation. In addition, a design
methodology was presented to optimize the design in terms
of area and energy consumption while the given precision
specification is ensured by design. This results not only in
a better use of the FPGA resources but also in increasing the
number of data that can be processed simultaneously, leading
to a significant reduction of the computational time.

The architecture and the design methodology were validated
in an experimental real-time case study devoted to learn
a nonlinear model predictive control law that stabilizes a
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two-wheel self-balancing robot. The resulting control law
implementation successfully stabilizes the system yielding a
computation time four orders of magnitude faster than the
original controller. As it has been demonstrated, the proposed
algorithm is three orders of magnitude faster than the standard
sequential algorithm and the prediction error committed falls
below the specified limit.

REFERENCES

[1] Y. Liu, Q. Leng, and S. Wang, “Learning medical diagnosis via scaled
convex hull-based SK algorithm,” in 2019 IEEE 8th Data Driven Control
and Learning Systems Conference (DDCLS), 2019, pp. 377–381.

[2] T. Alobaidi and W. B. Mikhael, “A modified discriminant sparse
representation method for face recognition,” in 2018 IEEE 8th Annual
Computing and Communication Workshop and Conference (CCWC),
2018, pp. 727–730.

[3] L. Li, Q. Zhang, X. Wang, J. Zhang, T. Wang, T. Gao, W. Duan,
K. K. Tsoi, and F. Wang, “Characterizing the propagation of situational
information in social media during covid-19 epidemic: A case study on
weibo,” IEEE Transactions on Computational Social Systems, vol. 7,
no. 2, pp. 556–562, 2020.

[4] S. Lucia, D. Navarro, O. Lucia, P. Zometa, and R. Findeisen, “Optimized
FPGA implementation of model predictive control for embedded sys-
tems using high-level synthesis tool,” IEEE transactions on industrial
informatics, vol. 14, no. 1, pp. 137–145, 2017.

[5] C. Wu, J. Chen, C. Xu, and Z. Liu, “Real-time adaptive control of a
fuel cell/battery hybrid power system with guaranteed stability,” IEEE
Transactions on Control Systems Technology, vol. 25, no. 4, pp. 1394–
1405, 2016.

[6] A. G. Gonzalez, M. V. Alves, G. S. Viana, L. K. Carvalho, and
J. C. Basilio, “Supervisory control-based navigation architecture: a new
framework for autonomous robots in industry 4.0 environments,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1732–1743,
2017.

[7] Y. Zhang, M. Yutaka, M. Sasabe, and S. Kasahara, “Attribute-based
access control for smart cities: A smart contract-driven framework,”
IEEE Internet of Things Journal, 2020.

[8] K.-L. Tsai, F.-Y. Leu, and I. You, “Residence energy control system
based on wireless smart socket and IOT,” IEEE Access, vol. 4, pp. 2885–
2894, 2016.

[9] D. Hu, D. Feng, Y. Xie, G. Xu, X. Gu, and D. Long, “Efficient
provenance management via clustering and hybrid storage in big data
environments,” IEEE Transactions on Big Data, vol. 6, no. 4, pp. 792–
803, 2019.

[10] R. Chapman and T. S. Durrani, “Ip protection of DSP algorithms
for system on chip implementation,” IEEE Transactions on signal
processing, vol. 48, no. 3, pp. 854–861, 2000.

[11] D. B. Thomas, L. Howes, and W. Luk, “A comparison of CPUs, gpus,
FPGAs, and massively parallel processor arrays for random number
generation,” in Proceedings of the ACM/SIGDA international symposium
on Field programmable gate arrays, 2009, pp. 63–72.

[12] N. S. Alizadeh and M. Momtazpour, “Machine learning-based inter-
ference detection in GPGPU concurrent kernel execution,” in 2020 25th
International Computer Conference, Computer Society of Iran (CSICC),
2020, pp. 1–4.

[13] M. Andersch, J. Lucas, M. A. LvLvarez-Mesa, and B. Juurlink, “On la-
tency in gpu throughput microarchitectures,” in 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2015, pp. 169–170.

[14] N. Shah, P. Chaudhari, and K. Varghese, “Runtime programmable
and memory bandwidth optimized FPGA-based coprocessor for deep
convolutional neural network,” IEEE transactions on neural networks
and learning systems, vol. 29, no. 12, pp. 5922–5934, 2018.

[15] D. Tong, Y. R. Qu, and V. K. Prasanna, “Accelerating decision tree
based traffic classification on FPGA and multicore platforms,” IEEE
transactions on parallel and distributed systems, vol. 28, no. 11, pp.
3046–3059, 2017.

[16] C.-F. Juang, C.-M. Lu, C. Lo, and C.-Y. Wang, “Ant colony optimization
algorithm for fuzzy controller design and its FPGA implementation,”
IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1453–
1462, 2008.

[17] G. Beliakov, “Interpolation of Lipschitz functions,” Journal of compu-
tational and applied mathematics, vol. 196, no. 1, pp. 20–44, 2006.

[18] M. Canale, L. Fagiano, and M. Signorile, “Nonlinear model predictive
control from data: a set membership approach,” International Journal
of Robust and Nonlinear Control, vol. 24, no. 1, pp. 123–139, 2014.

[19] J.-P. Calliess, “Conservative decision-making and inference in uncertain
dynamical systems,” Ph.D. dissertation, University of Oxford, 2014.

[20] J. M. Manzano, D. Limon, D. Muñoz de la Peña, and J.-P. Calliess,
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