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Harmonic based model predictive control for set-point tracking
Pablo Krupa, Daniel Limon, Teodoro Alamo

Abstract—This paper presents a novel model predictive control
(MPC) formulation for set-point tracking. Stabilizing predictive
controllers based on terminal ingredients may exhibit stability
and feasibility issues in the event of a reference change for
small to moderate prediction horizons. In the MPC for tracking
formulation, these issues are solved by the addition of an
artificial equilibrium point as a new decision variable, providing
a significantly enlarged domain of attraction and guaranteeing
recursive feasibility for any reference change. However, it may
suffer from performance issues if the prediction horizon is
not large enough. This paper presents an extension of this
formulation where a harmonic artificial reference is used in place
of the equilibrium point. The proposed formulation achieves even
greater domains of attraction and can significantly outperform
other MPC formulations when the prediction horizon is small.
We prove the asymptotic stability and recursive feasibility of the
proposed controller, as well as provide guidelines for the design
of its main ingredients. Finally, we highlight its advantages with
a case study of a ball and plate system.

I. INTRODUCTION

Model predictive control (MPC) is an advanced control
strategy that is very prevalent in the current literature due
to its inherent capability of providing constraint satisfaction
while ensuring asymptotic stability of the target equilibrium
point. In MPC, the control law is derived from an optimization
problem in which a prediction model is used to predict the
future evolution of the system over a prediction horizon [1].

In order to provide asymptotic stability of the closed-loop
system, two ingredients are typically added to the MPC formu-
lation: the terminal cost, which penalizes a certain measure of
discrepancy between the reference and the terminal state (i.e.
the predicted state at the end of the prediction horizon); and the
terminal set, which is computed as a positive invariant set of
the closed-loop system for the given reference [2]. Stability
is ensured by imposing the terminal state to lie within the
terminal set by the addition of a terminal constraint to the
MPC formulation.

The use of a terminal set and terminal constraint leads
to two downsides when the reference to be tracked can
change online. The first issue is that the terminal set must be
recomputed for the reference every time it changes. If there
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are a known-before-hand, finite number of references, then
a terminal set can be computed offline for each one of them.
Otherwise, it must be computed online each time the reference
changes, which is typically very computationally demanding.
The second issue is that the feasibility of the MPC problem
can be lost in the event of a reference change, i.e. there may
not be a feasible solution of the MPC optimization problem for
the current state and the new reference. This issue is related
to the domain of attraction of the MPC controller, i.e. the set
of states for which the closed-loop system is asymptotically
stabilizable, since the feasibility is lost when the initial state is
out of the domain of attraction of the MPC controller for the
new reference. The terminal constraint is the main contributor
of this issue when the prediction horizon is not large enough.
To see this, note that the predicted state must be able to reach
the terminal set within the prediction horizon window and that
systems are typically subject to input constraints.

These issues are of particular relevance when dealing with
the online implementation of MPC in embedded systems. The
severely limited computational and memory resources of these
systems make them unsuitable for large prediction horizons
and for the computation of positive invariant sets online.
Possible solutions to mitigate this are to use explicit MPC
[3], [4] or to avoid the computation of a positive invariant set
by using a singleton as the terminal set as in [5]. However, the
former approach does not scale well with the dimension of the
system, and the latter may require a prohibitively large value
of the prediction horizon in order to provide good closed-loop
performance and not suffer a loss of feasibility in the event of
reference changes. There are plenty of other publications on
the implementation of MPC in embedded systems, e.g. [6],
[7], [8], [9], [10] and [11]. However, the issues that arise
when dealing with small prediction horizons, the recursive
feasibility of the MPC controller, or the issue of the online
computation of terminal sets are rarely discussed in detail in
this particular field.

Another possible approach would be to use a formulation
such as the MPC for tracking (MPCT) [12], [13], which
incorporates a steady state artificial reference into the op-
timization problem as a decision variable. This formulation
offers a significant increase of the domain of attraction when
compared to standard MPC formulations and only requires the
computation of a single terminal set, valid for all references.
Additionally, the asymptotic stability and recursive feasibility
of the controller is guaranteed, even in the event of a sudden
reference change [14]. However, as we show in Section V, the
closed-loop performance of the controller can suffer in certain
systems if the prediction horizon is too small.

In this paper we present an MPC formulation which we
call harmonic based model predictive control for tracking
and label by HMPC. This formulation, which was initially
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introduced in [15], is of particular interest when dealing with
short prediction horizons, as might be the case when working
with embedded systems. As shown in the preliminary results
[15], it attains even greater domains of attraction than MPCT
or other standard MPC controllers. Additionally, as we show
and discuss in this paper by means of a case study using a ball
and plate system, the HMPC controller can show a significant
performance improvement when the prediction horizon is
small. The improvement can be particularly significant for
systems with integrator states and/or systems subject to slew
rate constraints on its inputs, as is often the case with robotic
and mechatronic systems.

The idea behind this formulation is to substitute the artificial
reference of the MPCT formulation by an artificial harmonic
reference, i.e. a periodic reference signal that is composed
of a sine term, a cosine term and a constant. The inclusion
of this artificial harmonic reference is heavily influenced by
the extensions of the MPCT formulation to tracking periodic
references [16], [17]. However, in this case, even though the
artificial reference used is periodic, the reference to be tracked
is a (piecewise) constant set-point, instead of a periodic one.

Periodic MPC for tracking formulations, such as the ones
cited in the previous paragraph, or, for instance, [18], are
used to track a generic periodic reference signal with period
T by using an artificial reference which is also defined as a
generic periodic signal of period T , during which the system
dynamics and constraints must be imposed. This may lead to
a large number of constraints in the optimization problem if
the period T is long. These formulations can also be used
for tracking constant set-points, where in this case, the period
T can be selected as any positive integer. Choosing T greater
than one sample time would only be of interest if it provides an
improvement in the performance and/or domain of attraction
of the controller. However, doing so would result in an increase
in the number of constraints of the optimization problem.

The motivation behind the use of a harmonic artificial
reference, is that (i) indeed, the performance and/or domain of
attraction when tracking a constant set-point can be improved
by using a periodic artificial reference with a period larger
than one sample time, as we show in this paper, and (ii) that
the system dynamics and constraints can be imposed on it by
means of the addition of a small amount of constraints to the
optimization problem, the number of which does not depend
on the prediction horizon of the controller nor on the period
of the harmonic signal. Therefore, its period can be selected
to attain the desired performance and/or domain of attraction
without affecting the complexity of the optimization problem.

The addition of these constraints leads to the control law
of the HMPC controller being derived from the solution of a
second order cone programming problem, instead of the more
common quadratic programming problems typically found
in other MPC formulations. However, this class of convex
optimization problem is common in the literature and can be
solved by several efficient algorithms [19], [20]. In particular,
we use the solver COSMO [20].

A key property of the HMPC controller is that it retains the
recursive feasibility and asymptotic stability features of the
MPCT formulation, even in the event of reference changes, as

we formally prove in this paper. Moreover, as is also the case
with certain versions of the MPCT formulation (in particular
the one we highlight in this manuscript), it does not require
the computation of a terminal set nor terminal cost.

This paper extends the results of [15] by showing the
performance advantages of the HMPC controller, formally
proving its asymptotic stability and by including the proof
of its recursive feasibility. Additionally, we provide some
guidelines for the design of one of its main ingredients: the
frequency of the artificial harmonic reference.

The paper is organized as follows. Section II describes
the class of system under consideration and control objec-
tive. The MPCT controller is described in Section III. The
proposed HMPC controller is presented in Section IV, with
the theorems stating its recursive feasibility and asymptotic
stability. A comparison of the closed-loop performance of
these two controllers is presented in Section V. Guidelines
for the selection of the frequency of the artificial harmonic
reference are shown in Section VI. Finally, conclusions are
drawn in Section VII.

Notation: The relative interior of a set X is denoted by
ri(X ). The set of integer numbers is denoted by Z. Given
two integers i and j with j ≥ i, Zj

i denotes the set of integer
numbers from i to j, i.e. Zj

i
.
= {i, i+ 1, . . . , j − 1, j}. Given

two vectors x and y, x ≤ (≥) y denotes componentwise
inequalities. The set of positive definite matrices of dimension
n is given by Sn+, whereas Dn

+ is the set of diagonal positive
definite matrices of dimension n. Given vectors xj defined
for a (finite) index set j ∈ J ⊂ Z, we denote by a bold
x their Cartesian product. We denote a (non-finite) sequence
of vectors xj indexed by j ∈ Z by {x}. Given a vector
x ∈ IRn, we denote its i-th component using a parenthesized
subindex x(i). The set of non-negative real numbers is denoted
by IR+. A function α : IR+ → IR is a K∞-class function
if it is continuous, strictly increasing, unbounded above and
α(0) = 0. Given a symmetric matrix A, we denote by λmax(A)
and λmin(A) its largest and smallest eigenvalues, respectively.
Given two vectors x ∈ IRn and y ∈ IRn, their standard

inner product is denoted by 〈x, y〉 .=
n∑

i=1

x(i)y(i). For a vector

x ∈ IRn and a matrix A ∈ Sn+, ‖x‖ .
=
√
〈x, x〉 and ‖x‖A

denotes the weighted Euclidean norm ‖x‖A
.
=
√
〈x,Ax〉.

II. PROBLEM FORMULATION

We consider a controllable linear time-invariant system
described by the following discrete state space model,

xk+1 = Axk +Buk, (1)

where xk ∈ IRn and uk ∈ IRm are the state and control input
at sample time k, respectively. Additionally, we consider that
the system is subject to the box constraint,

(xk, uk) ∈ Z .
= {(x, u)∈ IRn× IRm : zm ≤ Cx+Du ≤ zM},

(2)
where we assume that the upper and lower bounds zm ∈ IRnz ,
zM ∈ IRnz , satisfy zm < zM .

We are interested in controllers capable of steering the
system to the given reference (xr, ur) while satisfying the
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system constraints (2). This will only be possible if the
reference is an admissible steady state of the system, as defined
in the following definition. Otherwise, we wish the system
to be steered to the “closest” admissible steady state to the
reference, for some given criterion of closeness.

Definition 1. An ordered pair (xa, ua) ∈ IRn × IRm is said
to be an admissible steady state of system (1) subject to (2) if

(i) xa = Axa +Bua, i.e. it is a steady state of system (1).
(ii) (xa, ua) ∈ ri(Z).

Remark 1. We note that the imposition of condition (ii) in
the previous definition, instead of (xa, ua) ∈ Z , is necessary
to avoid the possible controllability loss when the constraints
are active at the equilibrium point [12]. In a practical setting,
this restriction is typically substituted by defining vectors
ẑm

.
= zm + ε and ẑM

.
= zM − ε, where ε ∈ IRnz is some

arbitrarily small positive vector such that ẑm < ẑM , and
instead imposing (xa, ua) ∈ Ẑ ⊂ ri(Z), where

Ẑ .
= { (x, u) ∈ IRn × IRm : ẑm ≤ Cx+Du ≤ ẑM },

This way, we avoid working with the open set ri(Z).

III. MODEL PREDICTIVE CONTROL FOR TRACKING

This section recalls the MPC for tracking (MPCT) formu-
lation [13], which is the basis of the controller we propose in
Section IV.

In MPCT, an artificial reference is included as an additional
decision variable of the optimization problem. This inclusion
provides several benefits, such as (i) a significant increase of
the domain of attraction w.r.t. standard MPC formulations, (ii)
recursive feasibility, even in the event of reference changes,
and (iii) the use of a terminal set which is valid for any
reference. In what follows, we present a specific MPCT
formulation which uses a singleton as the terminal set and
which does not require a terminal cost.

For a given prediction horizon N , the MPCT control law
for a given state x and reference (xr, ur) is derived from the
solution of the following convex optimization problem labeled
by T(x;xr, ur),

T(x;xr, ur)
.
= min

x,u,xa,ua

J(x,u, xa, ua;xr, ur) (3a)

s.t. xj+1 = Axj +Buj , j ∈ ZN−1
0 (3b)

zm ≤ Cxj +Duj ≤ zM , j ∈ ZN−1
0 (3c)

x0 = x (3d)
xN = xa (3e)
xa = Axa +Bua (3f)
ẑm ≤ Cxa +Dua ≤ ẑM , (3g)

where x = (x0, . . . , xN−1, xN ) are the predicted states,
u = (u0, . . . , uN−1) the control inputs, and (xa, ua) is the
artificial reference. The cost function J(x,u, xa, ua;xr, ur)
is composed of two terms: the summation of stage costs

`T (x,u, xa, ua) =

N−1∑
j=0

‖xj − xa‖2Q +

N−1∑
j=0

‖uj − ua‖2R,

which penalizes the distance between the predicted states xj
and inputs uj with the artificial reference by means of the cost
function matrices Q ∈ Sn+ and R ∈ Sm+ ; and the offset cost

VT (xa, ua;xr, ur) = ‖xa − xr‖2Ta
+ ‖ua − ur‖2Sa

, (4)

which penalizes the distance between the artificial reference
(xa, ua) and (xr, ur) by means of the cost function matrices
Ta ∈ Sn+ and Sa ∈ Sm+ . Note that equations (3f) and (3g),
where ẑm and ẑM are obtained as in Remark 1, guarantee
that (xa, ua) is an admissible reference (see Def. 1).

The MPCT formulation guarantees that the closed-loop
system asymptotically converges to an admissible steady state
of the system so long as the problem is initially feasible, re-
gardless of whether or not the reference (xr, ur) is admissible
[12], [13]. In fact, if the reference is not admissible, the system
will converge to the admissible steady state that minimizes the
offset cost function (4).

IV. HARMONIC BASED MPC FOR TRACKING

This section presents the main contribution of the paper:
a harmonic based MPC formulation for tracking. The idea
behind this formulation is to substitute the artificial reference
of MPCT with the artificial harmonic reference sequences
{xh}, {uh}, whose values at each discrete time instant j ∈ Z
are given by,

xhj = xe + xs sin(w(j−N)) + xc cos(w(j−N)), (5a)
uhj = ue + us sin(w(j−N)) + uc cos(w(j−N)), (5b)

where w > 0 is the base frequency. The harmonic sequences
{xh} and {uh} are parameterized by decision variables xe,
xs, xc ∈ IRn and ue, us, uc ∈ IRm. To simplify the text, we
use the following notation,

xH
.
= (xe, xs, xc) ∈ IRn × IRn × IRn,

uH
.
= (ue, us, uc) ∈ IRm × IRm × IRm,[

ze zs zc
] .

=
[
C D

] [ xe xs xc
ue us uc

]
. (6)

For a given prediction horizon N and base frequency w, the
HMPC control law for a given state x and reference (xr, ur)
is derived from the following second order cone programming
problem labeled by H(x;xr, ur),

H(x;xr, ur)
.
= min

x,u,xH ,uH

H(x,u,xH ,uH ;xr, ur) (7a)

s.t. xj+1 = Axj +Buj , j ∈ ZN−1
0 (7b)

zm ≤ Cxj +Duj ≤ zM , j ∈ ZN−1
0 (7c)

x0 = x (7d)
xN = xe + xc (7e)
xe = Axe +Bue (7f)
xs cos(w)− xc sin(w) = Axs +Bus (7g)
xs sin(w) + xc cos(w) = Axc +Buc (7h)√
z2s(i) + z2c(i) ≤ ze(i) − ẑm(i), i ∈ Znz

1 (7i)√
z2s(i) + z2c(i) ≤ ẑM(i) − ze(i), i ∈ Znz

1 , (7j)
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where x = {x0, . . . , xN−1}, u = {u0, . . . , uN−1}, and the
cost function H(x,u,xH ,uH ;xr, ur) is composed of two
terms: the summation of stage costs

`h(x,u,xH ,uH) =

N−1∑
j=0

‖xj − xhj‖2Q + ‖uj − uhj‖2R,

where Q ∈ Sn+ and R ∈ Sm+ ; and the offset cost

Vh(xH ,uH ;xr, ur) = ‖xe − xr‖2Te
+ ‖ue − ur‖2Se

+ ‖xs‖2Th
+ ‖xc‖2Th

+ ‖us‖2Sh
+ ‖uc‖2Sh

, (8)

where Te ∈ Sn+, Th ∈ Dn
+, Se ∈ Sm+ , and Sh ∈ Dm

+ .
Note that the artificial harmonic reference (5) is taking

the role of the artificial reference (xa, ua) of the MPCT
controller. Therefore, it must satisfy the system dynamics
and the tightened constraints (see Remark 1) at all future
time instants. The reason for choosing a harmonic signal (5),
as opposed to some other periodic signal, is that these two
conditions can be imposed by the addition of the small amount
of constraints (7f) to (7j), the number of which does not
depend on the value of the prediction horizon nor on the period
of the artificial harmonic reference. In particular, as shown
in Property 2 in Appendix A, the satisfaction of the system
dynamics is imposed with the inclusion of constraints (7f) to
(7h). Additionally, as shown by Property 3 in Appendix A,
the satisfaction of the tightened constraints is imposed with
the inclusion of constraints (7i) and (7j).

Constraint (7e) imposes that the predicted state xN reaches
the harmonic artificial reference (note that xhN = xe + xc).
Then, since we are imposing the satisfaction of the system
dynamics and tightened constraints with (7f)-(7j), we can
remain in an admissible state trajectory (5a) by applying the
(admissible) control actions given by (5b).

We denote the optimal value of optimization problem
(7) for a state x and a given reference (xr, ur) by
H∗(x;xr, ur)=H(x∗,u∗,x∗H ,u

∗
H ;xr, ur), where x∗, u∗, x∗H ,

u∗H are the arguments that minimize (7). Furthermore, for
every j ∈ Z, we denote by

x∗hj = x∗e + x∗s sin(w(j−N)) + x∗c cos(w(j−N)), (9a)

u∗hj = u∗e + u∗s sin(w(j−N)) + u∗c cos(w(j−N)), (9b)

the harmonic signals parameterized by (x∗H ,u
∗
H). At each

sample time k, the HMPC control law is given by uk = u∗0,
obtained from the solution of H(xk;xr, ur).

Note that the constraints (7b)-(7j) do not depend on the
reference. Therefore, the feasibility region of the HMPC
controller, i.e. the set of states x for which H(x;xr, ur) is
feasible, is independent of the reference. As such, feasibility
is never lost in the event of reference changes.

Theorem 3 states the asymptotic stability of the HMPC
controller to the optimal artificial harmonic reference, which
is defined and characterized below in Definition 2. In order to
prove it, we first prove the recursive feasibility of the HMPC
controller, which is stated in Theorem 1. This theorem was
originally stated in [15, Theorem 1] without its proof, which
we include in Appendix B of this manuscript.

Definition 2 (Optimal artificial harmonic reference). Given a
reference (xr, ur), we define the optimal artificial harmonic
reference of the HMPC controller as the harmonic sequences
{x◦h}, {u◦h} (see (5)) parameterized by the unique solution
(x◦H ,u

◦
H) of the strongly convex optimization problem

(x◦H ,u
◦
H) = arg min

xH ,uH

Vh(xH ,uH ;xr, ur) (10)

s.t. (7f)-(7j).

Additionally, we denote by V ◦h (xr, ur)
.
= Vh(x◦H ,u

◦
H ;xr, ur)

the optimal value of problem (10).

The following lemma states that the optimal artificial har-
monic reference is in fact an admissible steady state of system
(1) subject to (2), i.e. x◦hj = x◦e , u◦hj = u◦e and (x◦hj , u

◦
hj) ∈ Ẑ ,

∀j ∈ Z.

Lemma 1. Consider optimization problem (10). Then, for any
(xr, ur), its optimal solution is the admissible steady state
(x◦e, u

◦
e) ∈ Ẑ that minimizes ‖x◦e−xr‖2Te

+‖u◦e−ur‖2Se
. That

is, x◦H = (x◦e, 0, 0) and u◦H = (u◦e, 0, 0).

Proof. We prove the lemma by contradiction. Assume that
x̂◦H = (x◦e, x

◦
s, x
◦
c), û◦H = (u◦e, u

◦
s, u
◦
c), is the optimal solution

of (10) and that at least some (if not all) of x◦s , x◦c , u◦s , u◦c 6= 0.
First, we show that x◦H = (x◦e, 0, 0), u◦H = (u◦e, 0, 0) satisfy
(7f)-(7j). Constraints (7g) and (7h) are trivially satisfied and
(7f) is satisfied since (x̂◦H , û

◦
H) is assumed to be the solution

of (10). Moreover, since

0 ≤
√

(z◦s(i))
2 + (z◦c(i))

2, ∀i ∈ Znz
1 ,

we have that (7i) and (7j) are also satisfied for (x◦H ,u
◦
H).

Finally, it is clear from the initial assumption and (8) that

Vh(x◦H ,u
◦
H ;xr, ur) < Vh(x̂◦H , û

◦
H ;xr, ur),

contradicting the optimality of (x̂◦H , û
◦
H). The fact that

(x◦e, u
◦
e) ∈ Ẑ follows from the satisfaction of (7i)-(7j).

The following theorem states the recursive feasibility of
the HMPC controller. That is, suppose that a state x belongs
to the feasibility region of the HMPC controller. Then, for
any feasible solution x, u, xH and uH of H(x;xr, ur) we
have that the successor state Ax + Bu0 also belongs to the
feasibility region of the HMPC controller. The first claim of the
theorem states that feasible solutions of the HMPC controller
provide constraint satisfaction for all future predicted states.
The second claim states the recursive feasibility property of
the HMPC controller. Its proof, which we include in Appendix
B, follows the standard approach, in which it is shown that a
feasible solution of (7) can be be obtained for the successor
state from the feasible solution of the previous time instant.

Theorem 1 (Recursive feasibility of the HMPC controller).
Suppose that x belongs to the feasibility region of the
HMPC controller. Suppose also that x̄ = {x̄0, . . . , x̄N−1},
ū = {ū0, . . . , ūN−1}, xe, xs, xc, ue, us, uc, constitute a
feasible solution to the constraints (7b) to (7j). Then,

(i) The control input sequence {u} defined as

uj =

{
ūj , j ∈ ZN−1

0

uhj , j ≥ N,
(11)
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where uhj is given by (5b), and the trajectory {x} defined
as x0 = x,

xj+1 = Axj +Buj , j ≥ 0,

satisfies

zm ≤ Cxj +Duj ≤ zM ,∀j ≥ 0. (12)

(ii) The successor state Ax + Bū0 also belongs to the
feasibility region of the HMPC controller.

Proof. See Appendix B.

Theorem 3 states the asymptotic stability of the HMPC
controller to the optimal artificial harmonic reference (Def. 2).
Its proof, which is inspired by the proof of the asymptotic
stability for the MPCT controller [14, Theorem 1], relies on the
following well known Lyapunov asymptotic stability theorem
[2, Appendix B.3]. However, in our case, we directly derive
a Lyapunov function that satisfies the asymptotic stability
conditions. An assumption made by Theorem 3 is that N
must be greater or equal to the controllability index of the
system, which we define below in Definition 3. Note that the
controllability index of a controllable system is always lower
or equal to the dimension of its state space.

Theorem 2 (Lyapunov asymptotic stability). Consider an
autonomous system zk+1 = f(zk) with states zk ∈ IRn and
where the function f : IRn → IRn is continuous and satisfies
f(0) = 0. Let Γ be a positive invariant set and Ω ⊆ Γ be a
compact set, both including the origin as an interior point. If
there exists a function W : IRn → IR+ and suitable K∞-class
functions α1(·) and α2(·) such that,

(i) W (zk) ≥ α1(‖zk‖), ∀zk ∈ Γ,
(ii) W (zk) ≤ α2(‖zk‖), ∀zk ∈ Ω,

(iii) W (zk+1) < W (zk),∀zk ∈ Γ \ {0},
and W (zk+1) = W (zk) if zk = 0,

then W (·) is a Lyapunov function for zk+1 = f(zk) in Γ and
the origin is asymptotically stable for all initial states in Γ.

Definition 3 (Controllability index). Consider a controllable
system (1). Its controllability index is the smallest integer
j > 0 for which matrix [B,AB,A2B . . . Aj−1B] has rank n.

Theorem 3 (Asymptotic stability of the HMPC controller).
Consider a controllable system (1) subject to (2) and assume
that N is greater or equal to its controllability index. Then,
for any reference (xr, ur) and initial state x belonging to the
feasibility region of the HMPC controller H(x;xr, ur), the
system controlled by the control law derived from the solution
of (7) is stable, fulfills the system constraints at all future time
instants, and asymptotically converges to the optimal artificial
harmonic reference (x◦e, u

◦
e) given by Lemma 1.

Proof. See Appendix C.

Note that, as stated in Theorem 3, the HMPC controller
provides asymptotic convergence to an admissible steady state
regardless of whether the reference is itself an admissible
steady state or not. In fact, as is also the case with the MPCT
controller [14], it is clear from Lemma 1 that the HMPC
controller will converge to (xr, ur) if it is admissible, and

that it will converge to the admissible steady state (x, u) that
minimizes the distance ‖x− xr‖2Te

+ ‖u− ur‖2Se
otherwise.

V. CLOSED-LOOP COMPARISON BETWEEN THE HMPC
AND MPCT CONTROLLERS

This section presents results of controlling a ball and plate
system with the HMPC and MPCT controllers. The inclusion
of the MPCT controller is done to highlight the fact that for
certain systems, and especially for low values of the prediction
horizon, its closed-loop performance can suffer due to the
fact that the predicted state xN must reach an admissible
steady state of the system (see constraint (3e)). The results
with the HMPC controller, and our subsequent discussion in
Section V-B, suggest that HMPC may provide a significant
improvement over MPCT in this regard.

A. Ball and plate system

The ball and plate system consists of a plate that pivots
around its center point such that its slope can be manipulated
by changing the angle of its two perpendicular axes. The
objective is to control the position of a solid ball that rests
on the plate. We assume that the ball is always in contact
with the plate and that it does not slip when moving. The
non-linear equations of the system are [21],

z̈1 =
m

m+ Ib/r2

(
z1θ̇21 + z2θ̇1θ̇2 + g sin θ1

)
(13a)

z̈2 =
m

m+ Ib/r2

(
z2θ̇22 + z1θ̇1θ̇2 + g sin θ2

)
, (13b)

where m, r and Ib are the mass, radius and mass moment of
inertia of a solid ball, respectively; z1 and z2 are the position
of the ball on the two axes of the plate relative to its center
point; ż1, ż2, z̈1 and z̈2 their corresponding velocities and
accelerations; θ1 and θ2 are the angle of the plate on each of
its axes; and θ̇1 and θ̇2 their corresponding angular velocities.

The state of the system is given by

x = (z1, ż1, θ1, θ̇1, z2, ż2, θ2, θ̇2),

and the control input u = (θ̈1, θ̈2) is the angle acceleration of
the plate in each one of its axes. We consider the following
constraints on the velocity, angles and control inputs,

|żi| ≤ 0.5 m/s2, |θi| ≤
π

4
rad, |θ̈i| ≤ 0.4 rad/s2, i ∈ Z2

1.

A linear time-invariant discrete-time model (1) of the system
is obtained by linearizing its non-linear equations taking the
origin as the operating point and discretizing with a sample
time of 0.2s. We use this linear model as the prediction model
of the MPC controllers as well as the model used to simulate
the system. We do so to illustrate the properties of the HMPC
controller under nominal conditions, since Theorems 1 and 3
consider this premise. We take m = 0.05 Kg, r = 0.01 m,
g = 9.81 m/s2 and Ib = (2/5)mr2 = 2 · 10−6Kg·m2.
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(d) Position of ball on the plate.

Fig. 1: Closed-loop comparison between HMPC and MPCT.

Fig. 2: Computation times of the COSMO and OSQP solvers.

B. Performance comparison between HMPC and MPCT

We perform a closed-loop simulation of the ball and plate
system with the MPCT and HMPC controllers. The system is
initialized at the origin and the objective is to steer it to the
position z1 = 1.8, z2 = 1.4, i.e.

xr = (1.8, 0, 0, 0, 1.4, 0, 0, 0), ur = (0, 0).

The HMPC controller is solved using version v0.7.5 of the
COSMO solver [20], while the MPCT controller is solved
using version 0.6.0 of the OSQP solver [22]. These two solvers
employ the same operator splitting approach, based on the
alternating direction method of multipliers [23]. In fact, their
algorithms are very similar, with OSQP being particularized
to QP problems. The settings of both solvers are set to their
default values with the exception of the tolerances eps_abs,
eps_rel, eps_prim_inf and eps_dual_inf, which
are set to 10−4.

The parameters of the controllers, which where manually
tuned to provide an adequate closed-loop performance, are

TABLE I: Parameters of the controllers

Parameter Value

Q diag(10, 0.05, 0.05, 0.05, 10, 0.05, 0.05, 0.05)

Te diag(600, 50, 50, 50, 600, 50, 50, 50)

Parameter Value Parameter Value

R diag(0.5, 0.5) Se diag(0.3, 0.3)

Th Te Sh 0.5Se

Ta Te Sa Se

N 5 (HMPC), 8 and 15 ε (10−4, 10−4, 10−4)

w 0.3254

diag(·) denotes a diagonal matrix with the indicated elements.

TABLE II: Performance comparison between controllers

Controller MPCT HMPC

Prediction horizon (N) 5 8 15 5

Performance (Φ) 2014.03 844.16 488.88 511.09

described in Table I. We compare the HMPC controller with
N = 5 to three MPCT controllers with prediction horizons
N = 5, 8, 15. The prediction horizon N = 15 was chosen by
finding the lowest value for which the MPCT performed well.
The performance is measured as

Φ
.
=

Niter∑
k=1

‖xk − xr‖2Q + ‖uk − ur‖2R,

where xk, uk are the states and control actions throughout the
simulation and Niter = 50 is the number of sample times. Table
II shows the performance index for each one of the controllers.
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(d) MPCT: Position of ball on plate.

Fig. 3: Snapshot of HMPC and MPCT at iteration 15.

Figure 1 shows the closed-loop simulation results for each
controller. Figures 1a and 1b show the position and velocity of
the ball on axis 1, i.e. z1 and ż1, respectively. Figure 1c shows
the control input on axis 1, i.e. θ̈1. Finally, Figure 1d shows
the trajectory of the ball on the plate. The markers indicate
the position of the ball at sample times 10, 20 and 30 for each
one of the controllers. The computation times of the HMPC
controller and the MPCT controller with the prediction horizon
N = 15 are shown in Figure 2. As can be seen, the COSMO
solver applied to the HMPC problem provides computation
times that are reasonable when compared to the results of the
OSQP solver applied to the MPCT problem; in spite of the
fact that the OSQP solver is particularized to QP problems,
whereas the COSMO solver is not particularized to the second
order cone programming problem (7). Our intent with this
figure is to show that, even though (7) is a more complex
problem than (3) due to the inclusion of second order cone
constraints, it can still be solved in reasonable times using
state of the art solvers. We note that COSMO runs on the
Julia programming language, while OSQP is programmed in
C and executed using its Matlab interface.

Notice that the velocities obtained with the MPCT con-
trollers with small prediction horizons are far away from its
upper bound of 0.5. The HMPC controller, on the other hand,
reached much higher velocities even though its prediction
horizon is also small. This results in a much faster convergence
of the HMPC controller, as can be seen in Figures 1a and 1d.
If the prediction horizon of the MPCT controller is sufficiently
large (e.g. N = 15), then this issue no longer persists.

To understand why this happens, let us compare the solution
of the HMPC controller with the MPCT controller with
N = 8. Figure 3 shows a snapshot of sample time 15 of the

same simulation shown in Figure 1. Lines marked with an
asterisk are the past states from iteration k = 0 to the current
state at iteration k = 15, those marked with circumferences
are the predicted states x for j ∈ ZN

0 , and those marked with
dots are the artificial reference. The position of the markers
line up with the value of the signals at each sample time, e.g.
each asterisk marks the value of the state at each sample time
k ∈ Z15

0 . Figures 3a and 3c show the velocity ż1 of the ball
on axis 1 for the HMPC and MPCT controllers, respectively.
Figures 3b and 3d show the position of the ball on the plate.

The reason why the velocity does not exceed ≈0.2 with
the MPCT controller can be seen in Figure 3c. The predicted
states of the MPCT controller must reach a steady state at
j = N (see constraint (3e)). In our example this translates into
the velocity having to be able to reach 0 within a prediction
window of length N = 8. This is the reason that is limiting
the velocity of the ball. A velocity of 0.5 is not attainable
with an MPCT controller with a prediction horizon of N = 8
because there are no admissible control input sequences u
capable of steering the velocity from 0.5 to 0 in 8 sample
times. This issue does not occur with the HMPC controller
because it does not have to reach a steady state at the end of
the prediction horizon, as can be seen in Figure 3a. Instead, it
must reach an admissible “steady state” harmonic reference,
which can have a non-zero velocity.

It is clear from this discussion, and the results of the MPCT
controller with N = 15, that this issue will become less
and less pronounced as the prediction horizon is increased.
However, for low values of the prediction horizon, the HMPC
controller can provide a significantly better performance than
the MPCT controller, as shown in the example presented here.

Figure 4 illustrates the behaviour of the HMPC controller
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Fig. 4: Closed-loop simulation of the non-linear model with
the HMPC controller.

when simulating the system using the non-linear model (13).
In this test, the system is started in the origin. Then, each
50 sample times, the reference is changed to each one of the
vertices of a regular pentagon inscribed in the unit circle (in
clockwise order starting from the uppermost vertex). Addi-
tionally, Gaussian noise with a standard deviation of 0.01 is
added to the position of the ball given to the HMPC controller
as the current system state (7d). This is done to simulate a
small amount of measurement noise. The other states are left
undisturbed for the sake of simplicity.

Remark 2. The performance advantages of a (suitably tuned)
HMPC are especially noticeable if the system presents in-
tegrator states and/or slew rate constraints, as is the case
of the example shown above. However, the issue that affects
the performance of the MPCT controller is that the state
cannot “move far away” from the subspace of steady states
of the system due to the presence of input constraints coupled
with the low prediction horizon. As such, the performance
advantage of the HMPC controller may still be present in a
wider range of systems. Moreover, the HMPC controller can
be viewed as an MPCT with an added degree of freedom.
Therefore, it can always be tuned to behave like the MPCT
controller, by taking, for instance, w = 2π. Additionally, due to
the added degree of freedom, the HMPC controller can provide
an enlargement of the domain of attraction with respect to the
MPCT controller, as illustrated in [15].

VI. PRACTICAL SELECTION OF PARAMETER w

This section discusses the selection of parameter w of the
HMPC controller, providing a simple, intuitive approach for its
selection. It is important to note that the stability and recursive
feasibility of the controller are satisfied for any value of w.
However, the performance of the controller can be improved
by a proper selection of this parameter.

There are two main considerations to be made. The first one
is related to the phenomenon of aliasing and of the selection
of the sampling time for continuous-time systems. This will
provide an upper bound to w. The second one is related to
the frequency response of linear systems, which will provide
some insight into the selection of an initial, and well suited,
value of w. Subsequent fine tuning may provide better results,
but this initial value of w should work well in practice and
provide a good starting point.

A. Upper bound of w

The signals (5) parametrized by any feasible solution
(xH ,uH) of (7) satisfy the discrete-time system dynamics,
as discussed in Section IV. Therefore, all that remains is to
select w small enough such that signals (5) describe a suitably
sampled signal.

In order to prevent the aliasing phenomenon, w must be
chosen below the Nyquist frequency for anti-aliasing, i.e.
w < π [24]. However, since the inputs are applied using a
zero order holder, we would recommend taking

w ≤ π

2
. (14)

In any case, the stability and recursive feasibility of the
controller will not be lost, since Theorems 1 and 3 do not
make any assumptions on the value of w, but the benefits of
using HMPC instead of MPCT may be lost if this bound is not
respected. Indeed, for w = 2π, HMPC is identical to MPCT.

B. Selection of a suitable w

There are three additional considerations to be made for
selecting an adequate w: (i) high frequencies equate fast
system responses, (ii) high frequencies tend to have small
input-to-state gains, and (iii) the presence of state constraints.

At first glance, it would seem that selecting a high value of
w would lead to fast system responses. However, this need not
be the case, since the gain of the system tends to diminish as
the frequency of the input increases, i.e. if w is selected in the
high frequency band of the system. If the gain is low, then xh
is very similar to a constant signal of value xe, which results
in HMPC behaving very similarly to the MPCT. Therefore, w
should be selected taking into account the gain of the system
for that frequency.

A tentative lower bound for w is then the highest frequency
of the low frequency band of the system. However, a final con-
sideration can be made with regard to the system constraints
as follows: the presence of constraints can override the desire
for frequencies with large system gains. For instance, take as
an example a system with a static gain of 4 with an input u
subject to |u| ≤ 1 and a state x subject to |x| ≤ 2. Then,
selecting a w whose Bode gain is close to the static gain of
the system is not desirable because the amplitude of uh will
be limited by the constraints on xh. Therefore, we can select
a higher frequency. In this case, a proper selection might be
to chose w as the frequency whose Bode gain is 2.

Remark 3. If the system has multiple states/inputs, then the
above considerations should be made extrapolating the idea
to the frequency response of MIMO systems. One approach
in this case is to focus on the slow dynamics (states) of the
system, which are the most restrictive, in that they may require
higher prediction horizons in order to be able to reach steady
states. Additionally, it is also useful to identify if the system has
any integrator states and to take into account their constraints
as described in the above discussion.

Example 1. As an example, take the case study of Section
V, which is a MIMO system. Figure 5 shows the closed-loop
simulation of HMPC controllers using the parameters from
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Fig. 5: Closed-loop simulation for different realizations of w.

Table I but different realizations of w. For the results shown in
Section V-B, w = 0.3254 was selected as the cutting frequency
of the Bode plot from u to ż. It was chosen this way because of
the constraints |u| ≤ 0.4 and |ż| ≤ 0.5. As shown in the figure,
choosing a lower w, such as w = 0.7 ·0.3254 = 0.2278 would
have resulted in a higher gain, which would be pointless due
to these constraints, and an overall slower convergence due to
the slower frequency and the smaller amplitude of {uh}. On
the other hand, choosing a higher w, such as w = π/2, leads
to a small frequency gain. This results in a harmonic reference
signal {xh} that is very similar to a constant signal, leading
to a poor performance. Finally, we show one of the possible
undesirable effects of choosing a w that does not satisfy (14).
In this case, selecting w = 2π makes the HMPC controller
identical to the MPCT controller with the same prediction
horizon. We should note that all the simulations shown in
Figure 5 eventually converge to the reference.

VII. CONCLUSIONS

This paper presents a novel MPC formulation for tracking
piecewise constant references that can significantly outperform
other MPC formulations in the case of small prediction hori-
zons, as well as provide a larger domain of attraction. This
is due to the fact that the terminal state does not need to
reach a steady state of the system, but instead just needs to
reach a periodic trajectory of the system given by a single
harmonic signal. We find that the performance advantage is
especially noticeable in systems with integrators and/or slew
rate constraints, which are very typical in robotic applications.

Additionally, the controller does not require the computation
of a terminal set, and its recursive feasibility (and asymptotic
stability) is guaranteed even in the event of a reference change.
These properties are welcome in any setting, but particularly
so when dealing with embedded systems.

The computation times needed to solve the HMPC problem
with the COSMO solver suggest that its online implementation
in embedded systems might be attainable, especially if a
specialized solver is developed.

APPENDIX

A. Collection of properties
This section contains three properties from the appendix of

[15] which are used in various of the proofs of this manuscript.
They are included here for completeness.

Property 1. Let the elements v` ∈ IRnv of a sequence {v}
be given by

v` = ve + vs sin(w`) + vc cos(w`), ∀` ∈ Z,

where w ∈ IR and ve, vs, vc ∈ IRnv . Then,

v`+1 = ve + v+s sin(w`) + v+c cos(w`), ∀` ∈ Z,

where

v+s = vs cos(w)− vc sin(w),

v+c = vs sin(w) + vc cos(w).

Moreover,

(v+s(i))
2 + (v+c(i))

2 = v2s(i) + v2c(i), i ∈ Znv
1 .

Proof. The proof relies on the following well-known trigono-
metric identities

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β).

From these expressions we obtain

sin(w(`+ 1)) = sin(w) cos(w`) + cos(w) sin(w`)

cos(w(`+ 1)) = cos(w) cos(w`)− sin(w) sin(w`).

Therefore,

v`+1 = ve + vs sin(w(`+ 1)) + vc cos(w(`+ 1))

= ve + vs [sin(w) cos(w`) + cos(w) sin(w`)]

+ vc [cos(w) cos(w`)− sin(w) sin(w`)]

= ve + [vs cos(w)− vc sin(w)] sin(w`)

+ [vs sin(w) + vc cos(w)] cos(w`)

= ve + v+s sin(w`) + v+c cos(w`).

This proves the first claim of the property. Denote now

Hw
.
=

[
cos(w) − sin(w)
sin(w) cos(w)

]
.

With this notation,[
v+s(i)
v+c(i)

]
= Hw

[
vs(i)
vc(i)

]
, i ∈ Znv

1 .

From the identity sin2(w) + cos2(w) = 1 we obtain

H>wHw = I2.

We are now in a position to prove the last claim of the property.

(v+s(i))
2 + (v+c(i))

2 =

∥∥∥∥∥
[
v+s(i)
v+c(i)

]∥∥∥∥∥
2

=

[
vs(i)
vc(i)

]>
H>wHw

[
vs(i)
vc(i)

]
=

[
vs(i)
vc(i)

]> [
vs(i)
vc(i)

]
= v2s(i) + v2c(i).
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Property 2. Given the system xk+1 = Axk + Buk, suppose
that

uN+` = ue + us sin(w`) + uc cos(w`), ∀` ≥ 0

xN = xe + xc

xe = Axe +Bue

xs cos(w)− xc sin(w) = Axs +Bus

xs sin(w) + xc cos(w) = Axc +Buc.

Then

xN+` = xe + xs sin(w`) + xc cos(w`), ∀` ≥ 0.

Proof. Since xN = xe + xc, the claim is trivially satisfied for
` = 0. Suppose now that the claim is satisfied for ` ≥ 0, we
will show that it is also satisfied for `+ 1. Indeed,

xN+`+1 = AxN+` +BuN+`

= A [xe + xs sin(w`) + xc cos(w`)]

+B [ue + us sin(w`) + uc cos(w`)]

= Axe +Bue + (Axs +Bus) sin(w`)

+ (Axc +Buc) cos(w`)

= xe + [xs cos(w)− xc sin(w)] sin(w`)

+ [xs sin(w) + xc cos(w)] cos(w`)

(∗)
= xe + xs sin(w(`+ 1)) + xc cos(w(`+ 1)).

We note that equality (∗) is due to Property 1.

Property 3. Let the elements v` ∈ IRnv of a sequence {v}
be given by

v` = ve + vs sin(w`) + vc cos(w`), ∀` ∈ Z,

where w ∈ IR and ve, vs, vc ∈ IRnv . Then, for every ` ∈ Z
and i ∈ Znv

1 , we have,

v`(i) ≤ ve(i) +
√
v2s(i) + v2c(i), (15a)

v`(i) ≥ ve(i) −
√
v2s(i) + v2c(i). (15b)

Proof. We prove inequality (15a). The proof for (15b) is
similar.

v`(i) = ve(i) + vs(i) sin(w`) + vc(i) cos(w`)

= ve(i) +
[
vs(i) vc(i)

] [ sin(w`)
cos(w`)

]
≤ ve(i) +

∥∥∥∥[ vs(i)
vc(i)

]∥∥∥∥ ∥∥∥∥[ sin(w`)
cos(w`)

]∥∥∥∥
= ve(i) +

√
v2s(i) + v2c(i).

B. Proof of the recursive feasibility of HMPC

Proof of Theorem 1. We begin by proving the first claim.
Since uj = ūj for j ∈ ZN−1

0 and x0 = x, we obtain by
a direct inspection of (7d) and (7b) that

xj = x̄j , j ∈ ZN
0 . (16)

This implies

Cxj +Duj = Cx̄j +Dūj , j ∈ ZN−1
0 .

Therefore, we have from inequality (7c) that

zm ≤ Cxj +Duj ≤ zM , j ∈ ZN−1
0 . (17)

We now prove that these inequalities also hold for j ≥ N .
From (11) we have that

uN+` = ue + us sin(w`) + uc cos(w`), ` ≥ 0.

From (16) and (7e) we also have that xN = x̄N = xe + xc.
Taking also into consideration equalities (7f) to (7h) we obtain

uN+` = ue + us sin(w`) + uc cos(w`), ` ≥ 0

xN = xe + xc

xe = Axe +Bue

xs cos(w)− xc sin(w) = Axs +Bus

xs sin(w) + xc cos(w) = Axc +Buc.

which along with Property 2, allows us to write

xN+` = xe + xs sin(w`) + xc cos(w`), ∀` ≥ 0.

Therefore, we have that

zN+` = CxN+` +DuN+`

= Cxe +Due + (Cxs +Dus) sin(w`)

+ (Cxc +Duc) cos(w`)

= ze + zs sin(w`) + zc cos(w`),

where the last equality is simply due to the definitions of ze,
zs and zc (6). From this expression of zN+` and Property 3
we deduce that for every ` ≥ 0 and i ∈ Znz

1 ,

zN+`,(i) ≤ ze(i) +
√
z2s(i) + z2c(i),

zN+`,(i) ≥ ze(i) −
√
z2s(i) + z2c(i).

From this, alongside inequalities (7i) and (7j), we obtain that

ẑm(i) ≤ zN+`,(i) ≤ ẑM(i), ∀i ∈ Znz
1 , ∀` ≥ 0.

Since by construction zm(i) ≤ ẑm(i) and ẑM(i) ≤ zM(i) (see
Remark 1), we have that,

zm ≤ CxN+` +DuN+` ≤ zM , ∀` ≥ 0. (18)

Which along with (17), proves (12).
We now prove the second claim, i.e. Ax+Bū0 belongs to

the feasibility region of H(Ax + Bū0;xr, ur). To do so, we
show that

ū+j
.
= ūj+1, j ∈ ZN−2

0 (19a)

ū+N−1
.
= ue + uc (19b)

x̄+0
.
= Ax+Bū0 (19c)

x̄+j+1
.
= Ax̄+j +Bū+j , j ∈ ZN−1

0 (19d)

u+e
.
= ue (19e)

u+s
.
= us cos(w)− uc sin(w) (19f)

u+c
.
= us sin(w) + uc cos(w) (19g)[
x+e x+s x+c

] .
=
[
A B

] [ xe xs xc
ue us uc

]
(19h)
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is a feasible solution for the initial condition Ax + Bū0 by
showing that (19) satisfies constraints (7b) to (7j). That is, we
prove in what follows that

x̄+j+1 = Ax̄+j +Bū+j , j ∈ ZN−1
0 (20a)

zm ≤ Cx̄+j +Dū+j ≤ zM , j ∈ ZN−1
0 (20b)

x̄+0 = Ax+Bū0 (20c)

x̄+N = x+e + x+c (20d)
x+e = Ax+e +Bu+e (20e)
x+s cos(w)− x+c sin(w) = Ax+s +Bu+s (20f)
x+s sin(w) + x+c cos(w) = Ax+c +Bu+c (20g)√

(z+s(i))
2 + (z+c(i))

2 ≤ z+e(i) − ẑm(i), i ∈ Znz
1 (20h)√

(z+s(i))
2 + (z+c(i))

2 ≤ ẑM(i) − z+e(i), i ∈ Znz
1 , (20i)

where variables z+e , z+s and z+c are given by[
z+e z+s z+c

] .
=
[
C D

] [ x+e x+s x+c
u+e u+s u+c

]
.

Equalities (20a) and (20c) are trivially satisfied by construc-
tion (see (19c)-(19d)). Since x̄+0 = Ax + Bū0 = x̄1, and
ū+j = ūj+1, j ∈ ZN−2

0 (see (19a)), we have[
x̄+j
ū+j

]
=

[
x̄j+1

ūj+1

]
, j ∈ ZN−2

0 . (21)

Therefore, from (7c) we obtain

zm ≤ Cx̄+j +Dū+j ≤ zM , j ∈ ZN−2
0 . (22)

We now compute the value of x̄+N−1.

x̄+N−1 = Ax̄+N−2 +Bū+N−2
= Ax̄N−1 +BūN−1 = x̄N = xe + xc. (23)

Since ū+N−1 = ue + uc we obtain

z+N−1 = Cx̄+N−1 +Dū+N−1
= C(xe + xc) +D(ue + uc) = ze + zc.

Defining

zN+` = ze + zs sin(w`) + zc cos(w`), ∀` ∈ Z,

we have z+N−1 = zN . This, along with (18), yields

zm ≤ Cx̄+N−1 +Dū+N−1 ≤ zM .

From this and (22), we conclude

zm ≤ Cx̄+j +Dū+j ≤ zM , j ∈ ZN−1
0 ,

which proves (20b). The value of x̄+N can be computed from
x̄+N−1 = x̄N and ū+N−1 = ue + uc as follows.

x̄+N = Ax̄+N−1 +Bū+N−1 = Ax̄N +B(ue + uc)

= A(xe + xc) +B(ue + uc) = x+e + x+c ,

which proves (20d). From

x+e = Axe +Bue = xe,

and equality u+e = ue (see (19e)) we obtain from (19h)

x+e = Axe +Bue = Ax+e +Bu+e ,

which proves (20e). We now prove (20f).

Ax+
s +Bu+

s = A(Axs +Bus) +Bu+
s

= A(xs cos(w)− xc sin(w))

+B(us cos(w)− uc sin(w))

= (Axs +Bus) cos(w)− (Axc +Buc) sin(w)

= x+
s cos(w)− x+

c sin(w).

We prove (20g) in a similar way.

Ax+
c +Bu+

c = A(Axc +Buc) +Bu+
c

= A(xs sin(w) + xc cos(w))

+B(us sin(w) + uc cos(w))

= (Axs +Bus) sin(w) + (Axc +Buc) cos(w)

= x+
s sin(w) + x+

c cos(w).

Next, we express z+e , z+s and z+c in terms of ze, zs, zc.

z+e = Cx+
e +Du+

e = Cxe +Due = ze.

z+s = Cx+
s +Du+

s = C(Axs +Bus) +Du+
s

= C(xs cos(w)− xc sin(w)) +D(us cos(w)− uc sin(w))

= (Cxs +Dus) cos(w)− (Cxc +Duc) sin(w)

= zs cos(w)− zc sin(w).

z+c = Cx+
c +Du+

c = C(Axc +Buc) +Du+
c

= C(xs sin(w) + xc cos(w)) +D(us sin(w) + uc cos(w))

= (Cxs +Dus) sin(w) + (Cxc +Duc) cos(w)

= zs sin(w) + zc cos(w).

Therefore, for every i ∈ Znz
1 we have

z+e(i) = ze(i)

z+s(i) = zs(i) cos(w)− zc(i) sin(w)

z+c(i) = zs(i) sin(w) + zc(i) cos(w).

In view of Property 1 this leads to√
(z+s(i))

2 + (z+c(i))
2 =

√
z2s(i) + z2c(i), i ∈ Znz

1 .

From this we conclude that inequalities (20h) and (20i) are
directly inferred from (7i) and (7j).

C. Proof of the asymptotic stability of the HMPC controller

The proof of Theorem 3 relies on the following lemma,
whose proof, as well as the proof of the theorem, are heav-
ily influenced by the proofs of Theorem 1 and Lemma 1
from [14]. However, in our case, we directly prove the
existence of a function that satisfies the Lyapunov asymptotic
stability conditions of Theorem 2.

Lemma 2. Consider a system (1) subject to (2) and assume
that N is greater or equal to its controllability index. Let
(xr, ur) be a given reference and x be a state belonging to
the feasibility region of the HMPC controller H(x;xr, ur).
Then, x = x∗h0 if and only if x = x◦e , where x∗h0 is given by
(9a) and x◦e by Lemma 1.

Proof. Due to space considerations, we will drop the depen-
dency w.r.t. (xr, ur) from the notation of the functions. First,
we show the implication x = x∗h0→x = x◦e . Assume that
x = x∗h0 and let V ∗h

.
= Vh(x∗H ,u

∗
H) and V ◦h

.
= Vh(x◦H ,u

◦
H).
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Then, it can be shown that H∗(x;xr, ur) = Vh(x∗H ,u
∗
H), i.e.,

that the optimal solution of H(x;xr, ur) is given by

x∗j = x∗hj , u∗j = u∗hj , ∀j ∈ ZN−1
0 , (24)

where x∗hj and u∗hj are given by (9).
Indeed, the stage cost of (24) is `h(x∗,u∗,x∗H ,u

∗
H) = 0,

which is its smallest possible value for all solutions in which
x∗h0 = x. Additionally, it can be shown that (24) is a feasible
solution of (7b)-(7j).

Next, we prove that V ∗h = V ◦h by contradiction. Assume
that V ∗h > V ◦h . Since (x◦H ,u

◦
H) is the unique minimizer of

Vh(·) for all (xH ,uH) that satisfy (7f)-(7j), this implies that
(x∗H ,u

∗
H) 6= (x◦H ,u

◦
H).

Let x̂H be defined as

x̂H = (x̂e, x̂s, x̂c) = λx∗H + (1− λ)x◦H

= λ(x∗e, x
∗
s, x
∗
c) + (1− λ)(x◦e, 0, 0), λ ∈ [0, 1],

and ûH similarly. Then, since N is greater or equal to
the controllability index of the system, Z is convex, and
(x∗hj , u

∗
hj) ∈ ri(Z) for all j ∈ Z (as can be deduced from

Property 3 and the fact that (x∗H ,u
∗
H) satisfies (7i) and (7j)),

there exists a λ̂ ∈ [0, 1) such that for any λ ∈ [λ̂, 1] there is
a dead-beat control law udb for which the predicted trajectory
xdb satisfying xdb

0 = x∗h0 and xdb
N = x̂h0 is a feasible solution

(xdb,udb, x̂H , ûH) of problem H(x∗h0;xr, ur).
Then, taking into account the optimality of (24), and noting

that there exists a matrix P ∈ Sn+ such that

N−1∑
j=0

‖xdb
j − x̂hj‖2Q + ‖udb

j − ûhj‖2R ≤ ‖xdb
0 − x̂h0‖2P ,

we have that

V ∗h = H(x∗,u∗,x∗H ,u
∗
H) ≤ H(xdb,udb, x̂H , ûH)

= `h(xdb,udb, x̂H , ûH) + Vh(x̂H , ûH)

≤ ‖x∗h0 − x̂h0‖2P + Vh(x̂H , ûH)

(∗)
= (1− λ)2‖x∗h0 − x◦e‖2P + Vh(x̂H , ûH), (25)

where step (∗) is using

x∗h0 − x̂h0 = x∗h0 − [λx∗h0 + (1− λ)x◦h0]

= (1− λ)(x∗h0 − x◦h0) = (1− λ)(x∗h0 − x◦e).

From the convexity of Vh(·) we have that

Vh(x̂H , ûH) ≤ λV ∗h + (1− λ)V ◦h , λ ∈ [0, 1],

which combined with (25) leads to,

V ∗h ≤ θ(λ), λ ∈ [λ̂, 1], (26)

where

θ(λ)
.
= (1− λ)2‖x∗h0 − x◦e‖2P + λ(V ∗h − V ◦h ) + V ◦h .

The derivative of θ(λ) (w.r.t. λ) is

θ′(λ) = −2(1− λ)‖x∗h0 − x◦e||2P + (V ∗h − V ◦h ).

Taking into account the initial assumption V ∗h − V ◦h > 0, we
have that θ′(1) > 0. Therefore, there exists a λ ∈ [λ̂, 1) such

that θ(λ) < θ(1) = V ∗h , which together with (26) leads to the
contradiction V ∗h < V ∗h .

Therefore, we have that Vh(x∗H ,u
∗
H) ≤ Vh(x◦H ,u

◦
H). More-

over, since (x◦H ,u
◦
H) is the unique minimizer of Vh(xH ,uH)

for all (xH ,uH) that satisfy (7f)-(7j), we conclude that
x∗h0 = x◦e .

The reverse implication is straightforward. Assume now that
x = x◦e . Then,

x∗H = x◦H , u
∗
H = u◦H , x

∗
j = x◦e, u

∗
j = u◦e, ∀j ∈ ZN−1

0 (27)

is a feasible solution of H(x;xr, ur), since (x◦H ,u
◦
H) satisfies

(7f)-(7j) and (x◦e, u
◦
e) is a steady state of the system. Moreover,

(27) is the optimal solution of H(x;xr, ur). Indeed, note that
`h(x∗,u∗,x∗H ,u

∗
H) = 0 and that Vh(x∗H ,u

∗
H) = Vh(x◦H ,u

◦
H),

which is, once again, its minimum value for all (xH ,uH)
satisfying (7f)-(7j). Therefore, due to the strict convexity of
Vh(·), we conclude that x∗H = x◦H , implying x∗h0 = x◦e .

Proof of Theorem 3. The proof is based on finding a function
that satisfies the Lyapunov conditions for asymptotic stability
given in Theorem 2.

Let us consider a state x belonging to the domain of
attraction of the HMPC controller and a reference (xr, ur).
Let x∗, u∗, x∗H , u∗H be the optimal solution of H(x;xr, ur),
H∗(x;xr, ur)

.
= H(x∗,u∗,x∗H ,u

∗
H) be its optimal value,

V ∗h
.
= Vh(x∗H ,u

∗
H ;xr, ur) and V ◦h

.
= Vh(x◦H ,u

◦
H ;xr, ur).

We will now show that the function

W (x;xr, ur) = H∗(x;xr, ur)− V ◦h (xr, ur)

is a Lyapunov function for x − x◦e by finding suitable
α1(‖x − x◦e‖) and α2(‖x − x◦e‖) K∞-class functions such
that the conditions of Theorem 2 are satisfied. Due to space
considerations, in this proof we will drop the dependency w.r.t.
(xr, ur) from the notation of the functions.

Let x+ .
= Ax+Bū∗0 be the successor state and consider the

shifted sequence x+, u+, x+
H , u+

H be defined as in (19) but
taking x∗, u∗, x∗H , u∗H in the right-hand-side of the equations.
It is clear from the proof of Theorem 1 that this shifted
sequence is a feasible solution of H(x+;xr, ur).

The satisfaction of condition (i) of Theorem 2, for any
state x belonging to the domain of attraction of the HMPC
controller, follows from

W (x) =

N−1∑
j=0

‖x∗j − x∗hj‖2Q + ‖u∗j − u∗hj‖2R + V ∗h − V ◦h

(A1)

≥ ‖x∗0−x∗h0‖2Q +
σ̂

2
‖x∗h0 − x◦e‖2

≥ min{λmin(Q),
σ̂

2
}
(
‖x− x∗h0‖2 + ‖x∗h0 − x◦e‖2

)
(A2)

≥ 1

2
min{λmin(Q),

σ̂

2
}‖x− x◦e‖2,

where (A2) is due to the parallelogram law, which states that
for any two vectors v1, v2 ∈ IRnv ,

‖v1‖2 + ‖v2‖2 =
1

2
‖v1 + v2‖2 +

1

2
‖v1 − v2‖2,

and (A1) follows from the fact that

V ∗h − V ◦h ≥
σ̂

2
‖x∗h0 − x◦e‖2 (28)
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for some σ̂ > 0. To show this, note that Vh(·) is a strongly
convex function. Therefore, it satisfies for some σ > 0 [25,
Theorem 5.24], [26, §9.1.2],

Vh(z)− Vh(y) ≥ 〈∇Vh(y), z − y〉+
σ

2
‖z − y‖2,

for all z, y ∈ IRn × IRn × IRn × IRm × IRm × IRm.
Particularizing for z = (x∗H ,u

∗
H) and y = (x◦H ,u

◦
H) we have,

V ∗h − V ◦h ≥ 〈∇V ◦h , (x∗H ,u∗H)− (x◦H ,u
◦
H)〉

+
σ

2
‖(x∗H ,u∗H)− (x◦H ,u

◦
H)‖2.

From the optimality of (x◦H ,u
◦
H) we have that [27, Proposition

5.4.7], [26, §4.2.3],

〈∇V ◦h , (xH ,uH)− (x◦H ,u
◦
H)〉 ≥ 0

for all (xH ,uH) satisfying (7f)-(7j). Since (x∗H ,u
∗
H) satisfies

(7f)-(7j), this leads to

V ∗h − V ◦h ≥
σ

2
‖(x∗H ,u∗H)− (x◦H ,u

◦
H)‖2

=
σ

2

(
‖x∗H − x◦H‖2 + ‖u∗H − u◦H‖2

)
≥ σ

2
(‖x∗e − x◦e‖2 + ‖x∗s‖2 + ‖x∗c‖2)

≥ σ

2
(‖x∗e − x◦e‖2 + ‖x∗s sin(−wN)‖2+‖x∗c cos(−wN)‖2).

Finally, making use of the parallelogram law, inequality (28)
follows from the fact that there exists a scalar σ̂ > 0 such that
σ

2
(‖x∗e − x◦e‖2 + ‖x∗s sin(−wN)‖2 + ‖x∗c cos(−wN)‖2)

≥ σ̂

2
‖x∗e − x◦e + x∗s sin(−wN) + x∗c cos(−wN)‖2

=
σ̂

2
‖x∗h0 − x◦e‖2.

Since (x◦e, u
◦
e) ∈ ri(Z) (see Lemma 1), the system is

controllable and N is greater than its controllability index,
there exists a sufficiently small compact set containing the
origin in its interior Ω such that, for all states x that satisfy
x− x◦e ∈ Ω, the dead-beat control law

udb
j = Kdb(xdb

j − x◦e) + u◦e

provides an admissible predicted trajectory xdb of system (1)
subject to (2), where xdb

j+1 = Axdb
j + Budb

j , j ∈ ZN−1
0 ,

xdb
0 = x and xdb

N = x◦e .
Then, taking into account the optimality of x∗, u∗, x∗H , u∗H ,

we have that,

W (x) = `h(x∗,u∗,x∗H ,u
∗
H) + Vh(x∗H ,u

∗
H)− V ◦h

≤ `h(xdb,udb,x◦H ,u
◦
H) + Vh(x◦H ,u

◦
H)− V ◦h

=

N−1∑
j=0

‖xdb
j − x◦e‖2Q + ‖udb

j − u◦e‖2R.

Therefore, there exists a matrix P ∈ Sn+ such that

W (x) ≤ λmax(P )‖x− x◦e‖2

for any x− x◦e ∈ Ω. This shows the satisfaction of condition
(ii) of Theorem 2.

Next, let ∆W (x)
.
= W (x+) − W (x) and note that, as

shown by (19b), (19h), (21), (23) and Property 1, we have

that x+j = x∗j+1 for j ∈ ZN−1
0 , u+j = u∗j+1 for j ∈ ZN−1

0 ,
and that x+hj = x∗h,j+1 and u+hj = u∗h,j+1 for j ∈ Z. Then,

∆W (x) = H∗(x+)− V ◦h −H∗(x) + V ◦h

≤ H(x+)−H∗(x)

=

N−1∑
j=0

‖x+j − x
+
hj‖

2
Q + ‖u+j − u

+
hj‖

2
R

+

N−1∑
j=0

−‖x∗j − x∗hj‖2Q − ‖u∗j − u∗hj‖2R

+ Vh(x+
H ,u

+
H)− Vh(x∗H ,u

∗
H)

(∗)
=

N−1∑
j=1

‖x∗j − x∗hj‖2Q + ‖u∗j − u∗hj‖2R

+

N−1∑
j=0

−‖x∗j − x∗hj‖2Q − ‖u∗j − u∗hj‖2R

+ ‖x∗N − x∗hN‖2Q + ‖u∗N − u∗hN‖2R
= −‖x∗0 − x∗h0‖2Q − ‖u∗0 − u∗h0‖2R
≤ −λmin(Q)‖x− x∗h0‖2,

where in step (∗) we are making use of the fact that,

Vh(x+
H ,u

+
H) = Vh(x∗H ,u

∗
H).

Indeed, note that x+e = x∗e and u+e = u∗e . Therefore, the
first two terms of Vh(x+

H ,u
+
H) (8) are the same as those of

Vh(x∗H ,u
∗
H). We now show that, since Th and Sh are diagonal

matrices, the terms ‖xs‖2Th
+‖xc‖2Th

are also the same (terms
‖us‖2Sh

+ ‖uc‖2Sh
follow similarly).

‖x+s ‖2Th
+ ‖x+c ‖2Th

= ‖x∗s cos(w)− x∗c sin(w)‖2Th

+ ‖x∗s sin(w) + x∗c cos(w)‖2Th

= (sin(w)2 + cos(w)2)‖x∗s‖2Th

+ (sin(w)2 + cos(w)2)‖x∗c‖2Th

+ 2 cos(w) sin(w)〈x∗s, Thx∗c〉
− 2 cos(w) sin(w)〈x∗s, Thx∗c〉
= ‖x∗s‖2Th

+ ‖x∗c‖2Th
.

The satisfaction of condition (iii) of Theorem 2 now follows
from noting that inequality

W (xk+1)−W (xk) ≤ −λmin(Q)‖xk − x∗h0(xk)‖2

along with Lemma 2 leads to

W (xk+1) < W (xk), ∀xk 6= x◦e,

W (xk+1) = W (xk), if xk = x◦e.
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[9] S. Lucia, D. Navarro, Ó. Lucı́a, P. Zometa, and R. Findeisen, “Optimized
FPGA implementation of model predictive control for embedded sys-
tems using high-level synthesis tool,” IEEE transactions on industrial
informatics, vol. 14, no. 1, pp. 137–145, 2018.

[10] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, “Embedded online optimization for model predictive
control at megahertz rates,” IEEE Transactions on Automatic Control,
vol. 59, no. 12, pp. 3238–3251, 2014.

[11] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on control systems technology, vol. 18,
no. 2, pp. 267–278, 2009.

[12] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for
tracking piecewise constant references for constrained linear systems,”
Automatica, vol. 44, no. 9, pp. 2382–2387, 2008.

[13] A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, and E. Camacho,
“MPC for tracking with optimal closed-loop performance,” Automatica,
vol. 45, no. 8, pp. 1975–1978, 2009.

[14] D. Limon, A. Ferramosca, I. Alvarado, and T. Alamo, “Nonlinear MPC
for tracking piece-wise constant reference signals,” IEEE Transactions
on Automatic Control, vol. 63, no. 11, pp. 3735–3750, 2018.

[15] P. Krupa, M. Pereira, D. Limon, and T. Alamo, “Single harmonic based
model predictive control for tracking,” in IEEE 58th Conference on
Decision and Control (CDC). IEEE, 2019, pp. 151–156.

[16] D. Limon, M. Pereira, D. M. de la Peña, T. Alamo, C. N. Jones,
and M. N. Zeilinger, “MPC for tracking periodic references,” IEEE
Transactions on Automatic Control, vol. 61, no. 4, pp. 1123–1128, 2016.
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