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a b s t r a c t

In this paper the application of a novel robust predictive controller for tracking periodic references to a
section of Barcelona's drinking water network is presented. The system is modeled using a large scale
uncertain differential-algebraic discrete time linear model in which it is assumed that a prediction of the
water demand is available and that it is affected by unknown and bounded uncertainties. The control
objective is to satisfy the water demand while trying to follow a given reference of the level of the tanks
of the network. The controller considered has been modified to account for algebraic equations and large
scale models and it joins a dynamic trajectory planner and a robust predictive controller in a single layer
to guarantee that the closed-loop system converges asymptotically to a neighborhood of optimal
reachable periodic trajectory satisfying the constraints for all possible uncertainties even in the presence
of sudden changes in the reference. To demonstrate these properties three different simulation scenarios
have been considered.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Drinking water networks (DWNs) are large-scale systems
subject to a set of operating, safety and quality-of-service con-
straints. The dynamics of this type of systems is usually affected by
stochastic disturbances as is shown in Ocampo-Martinez, Puig,
Cembrano, and Quevedo (2013) and Grosso, Ocampo-Martinez,
and Puig (2013). Thus, an interesting research focus is the im-
provement of the management of DWN guaranteeing the water
supply when there are errors in the demand forecasting as Barcelli,
Ocampo-Martinez, Puig, and Bemporad (2010) and Ocampo-Mar-
tinez, Barcelli, Puig, and Bemporad (2012) have pointed out. Ex-
amples of this interest are Sampathirao et al. (2014) where various
methods for demand forecasting were studied, such as seasonal
ARIMA, BATS and support vector machine presenting a set of
statically validated time series models; Agudelo-Vera et al. (2014)
where a methodology to determine the robustness of the water
drinking distribution systems was developed testing the perfor-
mance of three networks under three future demand scenarios
using head loss and resident time as indicators; and Le Quiniou,
Mandel, and Monier (2014) where off-line support tools to opti-
mize the procurement management of water reducing the energy
costs where developed and applied to a DWN in France.

Model predictive control (MPC) is one of the most important
unding from the MCYT-Spain
control techniques used in industry to operate multi-variable
constrained systems. Recently, this modern control technique has
been applied to improve the management of DWN. In Fiorelli,
Schutz, and Meyers (2011) MPC was used to manage the water
storage in a small DWN in Luxemburg. In Ocampo-Martínez, Bovo,
and Puig (2011) a decentralized MPC over a partitioned model of
the Barcelona's drinking water network was presented. In Grosso,
Ocampo-Martínez, Puig, and Joseph (2014) a chance-constrained
MPC strategy based on a finite horizon stochastic optimization
problem with joint probabilistic constraints was proposed. In
Pascual et al. (2013) some model predictive control techniques are
applied to the supervisory flow management in large-scale DWNs.
In this case, MPC was used to generate the set-points for the
regulatory controller (low level layer). In Grosso, Ocampo-Marti-
nez, and Puig (2012) a model predictive control strategy to assure
reliability of the DWN given a costumer service level and a fore-
casting demand was presented. In Grosso, Ocampo-Martinez, Puig,
Limon, and Pereira (2014) a multi-objective cost function using a
economically oriented model predictive control strategies was
studied.

The operation of DWNs is strongly conditioned by the un-
certainties in the forecast water demand and the possibly time
varying costs, see Quevedo et al. (2006). Therefore, the optimal
operation from an economic point of view may not be to regulate
the system to a steady state but to follow a time-varying trajectory.
If the evolution of the reference is known a priori, the tracking
error can be predicted and then MPC can be designed to achieve
asymptotic stability, however when the reference may be changed

www.sciencedirect.com/science/journal/09670661
www.elsevier.com/locate/conengprac
http://dx.doi.org/10.1016/j.conengprac.2016.08.017
http://dx.doi.org/10.1016/j.conengprac.2016.08.017
http://dx.doi.org/10.1016/j.conengprac.2016.08.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2016.08.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2016.08.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2016.08.017&domain=pdf
http://dx.doi.org/10.1016/j.conengprac.2016.08.017


M. Pereira et al. / Control Engineering Practice 57 (2016) 50–60 51
without a predefined deterministic law or even randomly the
tracking problem is considerably more difficult since MPC is
naturally suited to deterministic control problems. In the case of
arbitrary changes of the reference, the resulting reference trajec-
tory may not be reachable, which is an important issue in this
context. Examples can be found in Pannocchia (2004) and Pan-
nocchia, Laacho, and Rawlings (2005) where the set-point change
is considered equivalent to a disturbance to be rejected and
asymptotic stability and offset-free is ensured by integrating a
disturbance model in the prediction model. A different approach
was proposed in the context of reference governors (Bemporad,
Casavola, & Mosca, 1997; Gilbert, Kolmanovsky, & Tan, 1999) that
guarantee robust tracking without considering the performance of
the obtained controller nor the domain of attraction. In Ferra-
mosca, Limon, Alvarado, Alamo, and Camacho (2009) and Limon,
Alvarado, Alamo, and Camacho (2008) a different strategy based
on a single layer that unites dynamic trajectory planning and
control was proposed which has been extended to deal with
periodic references and economic MPC in Limon et al. (2015, 2014)
and Pereira, Limon, Muñoz de la Peña, Valverde, and Alamo (2015).

The aforementioned approaches do not take into account the
periodic of the demand which leads to periodic references which
appear naturally in important control problems such as repetitive
control (Lee, Natarajan, & Lee, 2001), periodic systems (Gondha-
lekar, Oldewurtel, & Jones, 2013; Kern, Bhm, Findeisen, & Allgwer,
2009) or economic operation of complex systems (Huang, Har-
inath, & Biegler, 2011). In addition, although there exists prediction
of the future demand, the real demand is uncertain which leads to
the need to consider robust predictive formulations, which is a
relevant problem that has received a lot of attention from the MPC
community (see Mayne, Rawlings, Rao, & Scokaert, 2000). Worst-
case approaches, for example, Campo and Morari (1987) and
Scokaert, Rawlings, and Meadows (1997), can be found in the lit-
erature, but usually are characterized by a large computational
burden. More recent approaches are based on minimizing a cost
function that depends on nominal predictions while guarantee
robust constraint satisfaction, see Chisci, Rossiter, and Zappa
(2001), Mayne et al. (2000) and Langson, Chryssochoos, Rakovic,
and Mayne (2004). Following this idea, in Alvarado, Limon, Muñoz
de la Peña, Alamo, and Camacho (2010) a method that under
certain assumptions avoids the computation of minimal robust
positive invariant sets was proposed.

The main contribution of this paper is to propose a model
predictive control technique capable of coping with the inherent
issues of the management of the DWN: (i) efficient operation of
the network fulfilling the operation limits of the tanks and ac-
tuators; (ii) satisfaction of the water demand at each time in spite
of the mismatches of the forecasted values; (iii) guarantee of these
properties in the presence of possible variations in management
policy that may be derived, for instance, from changes in the
unitary prices of the energy supply or the water supply. To this
aim, the robust MPC for tracking presented in Pereira, Muñoz de la
Peña, Limon, Alvarado, and Alamo (2016) has been extended to
deal with this problem. The following extensions have been in-
troduced: (i) capability to deal uncertain difference-algebraic
models that describe the DWN; (ii) introduction of a feedforward
control scheme to guarantee the satisfaction the real demand at
each sampling time in spite on the uncertain variation; (iii) in-
troduction of a design methodology appropriate for large-scale
DWN and (iv) guarantee of robust closed-loop stability and con-
straint satisfaction of the controlled network.

In order to demonstrate these features, the proposed controller
has been applied in simulation to a section of Barcelona's drinking
water network presented in Sampathirao et al. (2014). Different
scenarios have been considered to demonstrate that the proposed
controller is capable of operating the DWN efficiently satisfying
the operation limit and converging to the best possible trajectory
in spite of the uncertainty on the demand and sudden changes in
the trajectory to be tracked.
2. Description of the drinking water network

In order to demonstrate that robust MPC is a suitable control
scheme to deal with the management of DWN, a section of Bar-
celona's drinking water network is chosen as case study. This case
study has been proposed and used to develop novel control stra-
tegies by Quevedo and Puig's group, see Ocampo-Martínez et al.
(2011), Ocampo-Martinez et al. (2013) and the references therein.

Barcelona's DWN is divided into two layers: the transport network,
that links the water treatment plants with the reservoirs spread over
the city, and the distribution network, that links the reservoirs with
the consumers. As the distribution network is sectorised, each sector
of the distribution network can be described as a demand for the
appropriate reservoir which can be forecasted by means of time-series
model (Ocampo-Martínez et al., 2011).

The water management system consists of a low-level control
level that manipulates the actuators of the valves and the pumps
to ensure a flow set-point provided by the upper-level control.
This regulatory level accomplishes the fast and nonlinear behavior
of the network and allows the upper level control to be designed
by using a flow-based control-oriented model where the manip-
ulable inputs are the setpoints of the flows of the valves and
pumps provided to the regulatory level (Ocampo-Martínez et al.,
2011; Sampathirao et al., 2014).

The case study of this paper is a part of the transport network
that consists of 17 water tanks connected to 25 reservoirs or de-
mand points from which water is consumed, and nine water
supply points from which water is obtained.

The network is modeled from the water balance equations at
each of the network nodes and tanks. The water balance equations
of the tanks is read as the variation of the volume of water stored
in each tank, xi (in m3), is equal to sum of the input flows (in m3/s)
minus the output flows (in m3/s). This balance applied to each one
of the 17 tanks of the network leads to the following set of dif-
ferential equations:

̇ ( ) = ( ) + ( )− ( ) ( )t t t tx u u d 1a1 3 4 1

̇ ( ) = ( )− ( ) ( )t t tx u d 1b2 5 3

̇ ( ) = ( )− ( ) + ( ) + ( )− ( ) ( )t t t t t tx u u u u d 1c3 7 8 10 11 4

̇ ( ) = ( ) + ( )− ( )− ( ) + ( )− ( ) + ( ) ( )t t t t t t t tx u u u u u u u 1d4 8 9 10 11 13 14 19

̇ ( ) = ( )− ( ) + ( )− ( )− ( ) ( )t t t t t kx u u u u u 1e5 12 15 16 20 21

̇ ( ) = ( ) + ( )− ( ) + ( ) ( )t t t t tx u u u u 1f6 6 20 23 27

̇ ( ) = ( )− ( )− ( ) + ( ) + ( )− ( )− ( )

+ ( )− ( )− ( ) ( )

t t t t t t t t

t t t

x u u u u u u u

u u d 1g

7 17 18 22 23 24 31 32

37 38 13

̇ ( ) = ( )− ( )− ( )− ( )− ( )− ( ) ( )t t t t t t tx u u u u u d 1h8 21 24 27 33 34 10
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̇ ( ) = − ( ) + ( ) + ( )− ( ) ( )t t t t tx u u u d 1i9 28 29 33 8

̇ ( ) = − ( ) + ( )− ( )− ( ) + ( )− ( ) + ( )

+ ( ) + ( )− ( ) ( )

t t t t t t k t

t t t

x u u u u u u u

u u d 1j

10 29 30 36 37 38 42 45

51 52 12

̇ ( ) = ( ) + ( )− ( ) ( )t t t tx u u d 1k11 35 36 11

̇ ( ) = ( ) + ( )− ( ) + ( )− ( ) ( )t t t t t tx u u u u d 1l12 41 47 48 56 18

̇ ( ) = ( )− ( )− ( ) ( )t t t tx u u d 1m13 42 44 19

̇ ( ) = − ( )− ( )− ( ) + ( ) + ( ) + ( )− ( ) ( )t t t t t t t tx u u u u u u d 1n14 46 53 54 55 57 58 21

̇ ( ) = − ( ) + ( ) + ( )− ( ) ( )t t t t tx u u u d 1o15 49 50 53 23

̇ ( ) = ( ) + ( )− ( ) ( )t t t tx u u d 1p16 54 59 24

̇ ( ) = ( ) + ( )− ( ) ( )t t t tx u u d 1q17 48 60 22

where ( )txi denotes the volume of water (in m3) stored in the i-th
tank, ( )tuj denotes water flow (in m3/s) through j-th actuator given

and ( )tdk denotes the water flow ⎜ ⎟⎛
⎝

⎞
⎠in m

s

3
k-th water demand. De-

noting ∈ x 61 as the vector of the water volume stored in the
tanks, ∈ u 61 as the vector of manipulable flows of the network
and ∈ d 25 as the vector of the water demands of the reservoirs,
these equations can be written as follows:

̇( ) = ( ) + ( ) + ( ) ( )t t t tx A x B u B d 2c cu cd

On the other hand, the water balance equations of the nodes is
read as the sum of the input flows (in m3/s) minus the sum of the
output flows (in m3/s) is zero. Thus, this balance applied to each
one of the eleven nodes of the network results in the following set
of algebraic equations:

( )− ( )− ( )− ( ) = ( )t t t tu u u u 0 3a1 2 5 6

( )− ( ) = ( ) ( )t t tu u d 3b2 3 2

( )− ( ) = ( ) ( )t t tu u d 3c18 13 5

( ) + ( )− ( )− ( ) + ( ) = ( ) ( )t t t t t tu u u u u d 3d14 15 19 25 26 7

( )− ( ) = ( ) ( )t t tu u d 3e22 30 9

( )− ( )− ( ) = ( ) ( )t t t tu u u d 3f32 39 40 14

( )− ( ) + ( ) + ( ) + ( )− ( ) = ( ) ( )t t t t t t tu u u u u u d 3g25 26 32 34 40 41 15

( )− ( ) + ( )− ( ) = ( ) ( )t t t t tu u u u d 3h39 45 46 47 17

( )− ( )− ( ) + ( ) = ( ) ( )t t t t tu u u u d 3i28 35 43 49 16

( ) + ( ) = ( ) ( )t t tu u d 3j43 44 20
( )− ( )− ( )− ( )− ( )− ( )− ( )− ( )− ( )

= ( ) ( )

t t t t t t t t t

t

u u u u u u u u u

d 3k

61 50 51 52 56 57 58 59 60

25

This set of equations can be rewritten as follows:

= ( ) + ( ) ( )t tE u E d0 4u d

Constraints which limit the maximum volume of each tank and
the maximum water flow of each actuator (the flows of the net-
work are one directional and cannot be reversed) are considered.
In particular it is assumed that ≤ ( ) ≤tx x0 i i

max and ≤ ( ) ≤tu u0 i i
max

for all tanks and actuators. The maximum values for each tank and
actuator can be found in the supplementary material in
Tables 1 and 2 respectively. There are large differences between
the maximum flow values of each of the actuators. For example,
actuator 50 has a maximum value of 15 m3/s, while actuators 8 or
9 have minimum values of 0.03 m3/s or 0.0056 m3/s, respectively.
It is worth to note that one of the actuators is assumed to be zero
for operating reasons, in particular actuator 7, which has a max-
imum flow of −10 m /s5 3 . These differences must be taken into ac-
count in the controller design to avoid feasibility and constraint
satisfaction issues in the presence of uncertainty in the demand.

It is important to note that the model of the tank depends on
the demand, which is not precisely known, but forecasted. This
implies that the controller might be able to incorporate this pre-
diction to compensate this effect but this must account for the
possible mismatches between the real demand and the expected
one in order to ensure the behavior of the system and the fulfill
the operation limits of the network. With a slight abuse of nota-
tion, in what follows the forecasted demand will be denoted as
di(t) and the uncertainty on the demand as wi(t).

In order to design the proposed controller, the differential-al-
gebraic equations (2) and (4) that describe the network has been
discretized using the Euler approximation and a sampling time of
one hour. Taking into account also the uncertainty on the demand,
the resulting uncertain discrete time algebraic-difference linear
model that defines the network is as follows:

( + ) = ( ) + ( ) + ( ( ) + ( )) ( )k k k k kx Ax B u B d w1 5au d

= ( ) + ( ( ) + ( )) ( )k k kE u E d w0 5bu d

where ( ) ∈ kx 17 denotes the vector of the volume of the tanks in
m3 at =t 3600 k. ( ) ∈ ku 61 denotes the vector of water flows
through the sixty one actuators given in m3/s at =t k3600 , vector

( ) ∈ kd 25 denotes the known predicted demands in m3/s at
=t 3600 k and vector ( ) ∈ kw 25 denotes the prediction error in

these demands. The matrices of the model are calculated as fol-
lows: = +A I A360017 c, =B B3600u cu and =B B3600d cd, where I17
is the identity matrix of order 17.

The states of the system and the manipulable inputs must be
fulfill the constraints ( ) ∈kx , ( ) ∈ku , where sets and are
defined from corresponding maximum and minimum values.

In this case study, the predicted demand ( )kd that will be used
in the simulations has been obtained from historic data (Ocampo-
Martinez et al., 2012) and this can be found in the supplementary
material in Tables 3–5. The prediction error is assumed to be
bounded in the set defined as follows:

( ) ∈ ≜ { ∈ | | ≤ ∀ = … } ( )k iw w w w: , 1, , 25 6i i
max25

where the maximum prediction error is equal to 5% of the max-
imum demand during the test, that is, = ( )kw d0.05maxi

max
k i .



1 Hat bold letters denote trajectories of signals over the prediction horizon/
period.
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3. Robust MPC design for the DWN

3.1. Controller design aspects

The control objective is to drive the system as close as possible
to an arbitrary state and input periodic target reference. For this
case study, the target trajectories of the tank levels ( )kxi

t are given
in the supplementary material in Tables 6–8. These trajectories
where obtained solving an optimization problem to optimize the
economic operation cost taking into account the water and the
electricity costs but not taking into account the constraints. The
value of the actuator water flow references ( )kui

t have been ob-
tained from the solution in the least squares sense to the under
determined system of equations obtained from the dynamic
model and the predicted values of the demand. The target tra-
jectories do not satisfy the constraints for all times, in particular
the target level of the tanks is greater than the maximum allowed
value during some time.

To design a robust controller, an auxiliary control input is in-
troduced from the explicit solution of Eq. (5b) in order to satisfy
the water balance equations for any demand prediction error. Note
that it is not possible to formulate a robust model predictive
control optimization problem based on a differential-algebraic
equation using as optimization variables the actuator flows be-
cause it would not be possible to satisfy the water balance equality
constraints for all possible uncertainties. The value of the water
flows ( )ku that satisfy the water balance equations are given by

( ) = ( ) + ( ) ( )k k ku M d M v 71 2

where ( ) ∈ kv 50 denotes the new set of control inputs which
guarantee the water balance equations in the eleven nodes that do
not have a tank. Matrices ∈ ×M1

61 25 and ∈ ×M2
61 50 are obtained

from the solution of (5b). Matrix M2 is an orthogonal basis for the
null space of Eu obtained from the singular value decomposition.
Matrix M1 provides a particular solution to the equation that de-
pends on ( )kd . There are infinite solutions which provide different
ways of distributing the flow to satisfy the balance equations for a
given demand. An inappropriate selection of matrix M1 may lead
to optimization problems with a reduced feasibility region, in
particular if matrix M1 distributes the demand in a way such that
the actuators with a lower maximum value are saturated. In order
to distribute the demand taking into account that each flow has a
different maximum value, matrix M1 has been chosen in a way
such that minimizes the norm of the matrix M GMT

1 1 where G is a
diagonal matrix that weights each actuator ui inversely to the
square of its maximum value.

The real water demand must always be satisfied, to this end at
each sampling time, the MPC controller will decide the optimal
value for the auxiliary control input ( )⁎ kv , which is designed to
satisfy the predicted demand ( )kd , however, the real value of the
actuators ( )⁎ ku are obtained both from ( )⁎ kv and the real demand
which is available instantaneously; that is, taking into account the
prediction error ( )kw :

*( ) = ( ( ) + ( )) + *( ) ( )k k k ku M d w M v 81 2

3.2. Tightening local control law

In order to design the proposed robust MPC for tracking peri-
odic references, a local control law aimed at reducing the effect of
the uncertainty in the predictions is needed. In the water dis-
tribution control problem considered, this local control law deci-
des the value of the auxiliary control inputs ( )kv on behalf of the
deviation of the perturbed predictions from the nominal predic-
tions obtained the previous sampling time e(k). The objective of
this control law is to reject the uncertainty. To this end, a linear
control law, that is ( ) = ( )k kv Ke is designed for the system

( + ) = ( ) + ( ) ( )k k ke Ae B M v1 9u 1

where ( )ke in the aforementioned deviation. This system is ob-
tained taking into account the definition of the auxiliary control
variable and ignoring the effect of the predicted demand in system
(5).

The local controller is used to design the reduced set of con-
straints that guarantee both robust constraint satisfaction and
recursive feasibility of the controller in closed-loop. In order to
guarantee recursive feasibility and hence, closed-loop convergence
to the optimal feasible periodic trajectory, the local control gain
must satisfy

σ∥ ( + ) ∥ ≤ ( )∈

−A B M K wmax 10
N

w
u 1

1

where s is the tolerance of the optimization problem solver. This
implies that the local controller is able to eliminate the effect of
any uncertainty after −N 1 time steps. Although in principle any
stabilizing linear gain that guarantees disturbance rejection in N
steps could be used, an inappropriate design of this controller may
result in empty feasibility regions of the MPC optimization pro-
blems. To avoid this issue, the controller has to be designed taking
into account the constraints on the tanks and the actuators, and
more precisely, it has to take into account the difference in the
state and actuators ranges. Design procedures to guarantee that
the resulting optimization problem has a non-empty feasibility
region are outside the scope of this work. The reader can refer to
Alvarado et al. (2010) for an LMI based design procedure for this
problem.

In the considered WDN, an LQR control law has been designed
using weight matrices that depend on the maximum tank and
water flow levels. In particular, the weighting matrices QK and RK
are defined as follows

= ( ) = ( ) ( )diag p diagQ x R M u M1/ , 1/ 11i
max T

i
max

K K 2 2

where p weights the input cost with respect to the state cost. The
value p¼10 was chosen by trial and error.

The control gain obtained using these weights satisfies the
uncertainty rejection assumption and yields an MPC optimization
problem with a non-empty feasibility region. In particular, the
maximum eigenvalue of the matrix ( + ))A B M Ku 1

23 is
1.6483 �10�34.

3.3. Proposed robust MPC controller

The cost function1 of the proposed controller is defined as
follows:

( )
^ ^ ^ ^ ^ = ^ ^ ^ + ^ ^ ^ ^⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ 12V V Vx x u d x v v x d x v v x u d x v, , , ; , , , ; , , , , ; ,N

t t r r
t

r r
p

t t r r
0 0 0

where

( )
( )

∑

∑

^ ^ ^ = ( )− ( ) + ( )− ( )

^ ^ ^ ^

= ( )− ( ) + ( )− ( )
( )

=

−

=

−

V i i i i

V

i i i i

x d x v v x x u u

x u d x v

x x u u

, ; , ,

, , ; ,

13

t
r r

i

N
r r

p
t t r r

i

T
r t r t

Q R

S V

0
0

1
2 2

0

0

1
2 2

The parameters that define the optimization problem at time step
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k are the current state x , the future state and actuator trajectories

given by vectors ^ ^x u,
t t

respectively and the predicted demand

given by vector d̂. The optimization variables are the auxiliary
reference defined by its initial state xr

0 and future T-step (one

period) auxiliary control input trajectory v̂
r
, and the predicted N-

step auxiliary control input trajectory v̂
r
.

The control scheme considered is a tracking controller and the
cost considered has no physical interpretation (nor economic). The

term ( )^ ^ ^V xx d v v, ; , ,t
r r
0 penalizes the tracking error of the open-

loop predicted trajectories with respect to the planned reachable
reference along the prediction horizon N. This cost defines the

transient behavior. The term ( )^ ^ ^ ^V x u d x v, , ; ,p
t t r r

0 penalizes the er-

ror between the artificial reference trajectory and the target re-
ference trajectory along one period of length T time steps. This cost
defines the steady state behavior.

It is important to note that the control effort needed to achieve
the effective response (that is the tank level reference) is not op-
timized directly in this tracking controller. The controller tries to
minimize the cost function which depends on two different terms,
first, the deviation of the steady state periodic trajectory from the
desired one (which defines precisely the distance criterion) and a
tracking term that defines the transient behavior. Modifying the
cost matrices of the tracking and the artificial reference cost, dif-
ferent transient trajectories and hence different control efforts
would be achieved, however, the steady state control effort is
defined by the desired reference, which is decided by a higher
hierarchy system.

The optimal trajectories of the proposed robust MPC for
tracking periodic signals can be obtained from the solution of the

following finite horizon optimal control problem ( ^ ^ ^)x x u d, , ,N
t t 2

( )^ ^ ^ ^ ^ ( ) =
( )^ ^

V x x u d x v v x xmin , , , ; , , s. t. 0
14a

N
t t r r

x v v, ,
0

r r
0

( + ) = ( ) + ( ) + ( ) ∈ ( )i i i i ix Ax B u B d1 14bNu d
1

( ) = ( ) + ( ) ∈ ( )−i i i iu M d M v 14cN1 2 1
0

( ) ∈ ∈ ( )i ix 14di N
1

( ) ∈ ∈ ( )−i iu 14ei N 1
0

( ) = ( ) ( )N Nx x 14fr

( + ) = ( ) + ( ) + ( ) ∈ ( )i i i i ix Ax B u B d1 14gr r r
Tu d
1

( ) = ( ) + ( ) ∈ ( )−i i i iu M d M v 14hr r
T1 2 1
0

( ) ∈ ∈ ( )i ix 14ir
N T

1

2  j
i denotes the sequence { … }i j, , .
( ) ∈ ∈ ( )− −i iu 14jr
N T1 1

0

( ) = ( ) = ( )Tx x x0 14kr r r
0

where the sets i and i are defined as follows

= ⊖ ⊕ ( + ) ( + )

= ⊖ ⊖ ⊕ ( + ) ( + ) ( )

=
−

=
−

A B M K B B M

M M K A B M K B B M 15

i j
i j

i j
i j

u 2 d u 1

1 u 2 d u 1

0
1

2 0
1

It is important to remark that the calculation of these sets is
trivial, even for the system of dimension 17 considered. The cal-
culation, however, of a robust positive invariant set may be in
general a difficult task, precluding the application of robust
scheme to large scale systems.

The optimal solution of this optimization problem at time step

k is denoted ( )( ) ^ ( ) ^ ( )⁎ ⁎ ⁎
k k kx v v, ,r r

0 . The value of the water flows of

each actuator depends on the solution of this optimization pro-
blem and the real demand and is obtained as follows:

( ) = ( | ) + ( ( ) + ( )) ( )⁎k k k ku M v M d w0 162 1

where ( | )⁎ kv 0 is the optimum value for the first auxiliary input at
time step k. This implies that the water flows are different from
the ones predicted in the optimization problem because they have
to be modified to account for the prediction errors. For this reason,
in order to guarantee robust constraint satisfaction on the con-
straints of the water flows, the feasible set must be reduced taking
into account the possible effect of the prediction error. Constraints
(14e) and (14j) reduce the feasible set of water flows by the set
M1 to account for this issue.

The constraints of the optimization variables, which define
maximum and minimum values of the tank levels and the network
water flows, are contracted with every step of the prediction
horizon. Constraints (14e) and (14j) show that as the prediction
step i increases, the sets are reduced taking into account the
possible effect of a perturbation on the predicted system in closed-
loop with the auxiliary controller. This contraction is time in-
variant and can be calculated off-line. Constraints (14b)-(14c) are
defined by the nominal model, that is, assuming that the predic-
tion error is zero, and provides the predicted state and input tra-
jectories. Constraint (14b) imposes that the initial state of the
predicted trajectory is equal to the state of the system at time step
k. Constraint (14f) states that the predicted state must reach the
artificial reference in T steps. These constraints are used to guar-
antee recursive feasibility using an appropriately defined shifted
solution. Constraints (14g)–(14h) are defined by the nominal
model, that is, assuming that the prediction error is zero, and
provides the artificial references state and input trajectories. Note
that the initial state of the artificial reference is a free variable,
however, it is constrained to be a periodic trajectory in constraint
(14k). The artificial references must satisfy the state and input
constraints, but because in order to guarantee recursive feasibility,
the artificial reference is used to define the shifted input trajectory
at prediction time −N 1, the constraint set is contracted by the
same set for all steps which depends on the prediction horizon N.
In particular, the artificial references must satisfy (14d) and (14e)
for = −i N 1.

If the controller is not designed appropriately, the admissible
tank levels and actuators flow sets for the predicted trajectories
may be empty for some time step i. In this case, the optimization
problem is unfeasible for all states. The chosen matrix M1 and the
control law gain K for the simulations guarantee the cancelation of
the effect of an uncertainty in −N 1 time steps and that the feasi-
bility set is not empty.

It is important to note that the constraints of the optimization
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problem do not depend on the target trajectories. This implies that
a sudden change in these trajectories cannot cause a loss of fea-
sibility of the optimization problem. This will be shown in the
simulation example.

For this case study, the prediction horizon is chosen equal to
the period, that is = =N T 24. The cost matrices Q , R , S and V are
defined as follows

= · = · = · = · ( )Q R S V100 , 10 , 700 , 700 1717 61 17 61

where n is the identity matrix of dimension n. These matrices
define the optimal trajectories but do not affect the closed-loop
properties of the controller.

The provided target trajectory may not be coherent with the
dynamic model or the constraints. As proved in Pereira et al.
(2016), the system in closed-loop converges asymptotically to a
neighborhood of the trajectory obtained minimizing

( )^ ^ ^ ^V x u d x v, , ; ,p
t t r r

0 w.r.t. ( )^x v,r r
0 , subject to constraints (14g)–

(14k). This optimization problem is denoted the robust planner.
Because the demand and the target references are periodic, and
the cost function is strictly convex, the optimal periodic trajec-
tories do not depend on the time step k in which the optimization
problem is formulated. The resulting trajectory takes into account
the effect of the uncertainty in the constraints in order to guar-
antee robust constraint satisfaction. In this case, the robust plan-
ner is not independent of the prediction horizon of the corre-
sponding robust MPC for tracking, because the reduction of the
constraint sets depends on N. In the simulations the optimal tra-
jectories of this optimization problem are denoted as the robust
planner trajectories. If the prediction error is assumed to be zero,
the nominal planner trajectories defined in Limon et al. (2015) are
obtained. It is important to remark that it is not necessary to solve
the planner optimization problems to define the MPC controller.
The convergence property stems directly from the controller
formulation.

3.4. Recursive feasibility

A traditional analysis of the closed-loop properties of the
controller considered are beyond the scope of this work. This
analysis can be found in Pereira et al. (2016), however, the im-
plementation procedure presented takes into account the effect of
the uncertainty in the decision of the flows through the valves and
pumps and that in general, for large scale systems is difficult to
obtain invariant sets. To this end the constraints of the MPC op-
timization problem have been modified taking into account these
issues. The procedure proposed to take into account the algebraic
constraints and the use of a terminal equality constraint in the
presence of bounded uncertainties instead of a traditional robust
invariant set leads to a different proof of recursive robust feasi-
bility, which is necessary to inherit the closed-loop properties of
the controller presented in Pereira et al. (2016).

In this section it is proved that closed-loop constraint sa-
tisfaction and recursive feasibility of the optimization problem is
guaranteed if the initial state is inside the feasibility region, even
in the presence of sudden changes in the reference. To this end, a
feasible solution for ( + )kx 1 denoted shifted solution is obtained
from the optimal solution for ( )kx . The notation |k is used to de-
note the time step to which a given variable is referred and bold
letter to denote vectors or a sequence of variables. The shifted
variables are denoted with the superscript s and
Δ = ( | + )− ( + | )⁎ ⁎x i k i kx x1 1s s . The shifted solution at time +k 1 is
obtained as follows:

( | + ) = ( + ) = ( ) + ( | ) + ( ) + ( ) ( )⁎k k k k k kx x Ax B u B d B w0 1 1 0 18as
u d d
( | + ) = *( + | ) = … − ( )i k i k i Nv v1 1 , 0, , 2 18brs r

( − | + ) = *( | ) ( )N k kv v1 1 0 18crs r

( )*( | + ) = ( + | ) + Δ = … − ( − | + ) = ( | )⁎ ⁎ 18di k i k x i N N k kv v K v v1 1 0, , 2 1 1 0s s s r

Taking into account constraints (14b), (14c), (14g) and (14h) it
follows that:

( | + ) = *( + | ) = … − ( )i k i k i Nu u1 1 , 0, , 2 19ars r

( − | + ) = *( | ) ( )N k ku u1 1 0 19brs r

( | + ) = ( + | ) + Δ = … − ( )⁎ ⁎i k i k x i Nu u M K1 1 0, , 2 19cs s
2

( − | + ) = *( | ) ( )N k ku u1 1 0 19ds r

Taking into account that the artificial reference is a periodic tra-
jectory, the shifted artificial reference states are the following

( )* *( | + ) = ( + | ) = … − ( | + ) = ( | ) 20ai k i k i N N k kx x x x1 1 , 0, , 1 1 1rs r rs r

The shifted predicted states are obtained using the following
equation:

( + | + ) = ( | + ) + ( | + ) + ( ) ( )i k i k i k ix Ax B u B d1 1 1 1 21s s s
u d

with ( | + ) = ( + )k kx x0 1 1s . By definition, these states satisfy

( )( | + ) = ( + | ) + ( + ) ( − ) ( ) = … −* 22i k i k k i Nx x A B M K B B M w1 1 0, , 1s i
u 2 d u 1

providing a bound of the error between the state of the proposed
feasible solution at time +k 1 and the predicted state in k. In
addition, if K is chosen as a −N 1 dead-beat control law, that is, it
satisfies that

( + ) = ( )−A B M K 0 23N
u 2

1

then it follows that

( − | + ) = *( | ) = *( | ) = ( − | + ) ( )N k N k N k N kx x x x1 1 1 1 24s r rs

and taking into account that

( − | + ) = * = ( − | + ) ( )|N k N ku u u1 1 1 1 25s
k

r rs
0

it follows that

( + ) = ( | + ) ( )N k N kx x, 1 1 26s rs

Constraints (14d) and (14e) are satisfied at time step +k 1 for
= −i N 1 because the optimal artificial reference satisfies (14i) and

(14j) for all future time steps and the optimal and shifted states
satisfy (22). By definition the shifted trajectories satisfy the model
equations so (14b), (14c), (14g) and (14h) are satisfied. Taking into
account that ( + | )i kx 1 satisfies (14d) for +i 1 and that (26) holds,
it follows that ( | + )i kx 1 satisfies (14d) for i. The same holds true
for constraint (14e). The terminal equality constraint (14f) is sa-
tisfied because the −N 1 dead beat control law cancels the dis-
turbance in the predicted states in −N 1 states and the shifted
trajectory follows the artificial optimal at time trajectory step k
following (19d). Constraints (14i), (14j) and (14k) hold because the
optimal artificial reference at time step k is periodic and the
shifted reference trajectory is not modified following (18b) and
(18c). Because at time step N the artificial reference state and ac-
tuators must satisfy (14d) and (14e) for = −i N 1because the shifted
trajectory follows the artificial trajectory, see (19d), those
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constraints must be included along the whole prediction horizon
as shown in (14i) and (14j).
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Fig. 1. Tank 10 (scenario 1): closed loop system with nominal controller (dis-
continuous blue), closed-loop system with robust controller (blue), robust planner
trajectory (discontinuous green with circle), tank level constraint (cyan), target
trajectory (discontinuous red). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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Fig. 2. Tank 11 (scenario 1): closed loop system with nominal controller (dis-
continuous blue), closed-loop system with robust controller (blue), robust planner
trajectory (discontinuous green with circle), tank level constraint (cyan), target
trajectory (discontinuous red). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
4. Simulation results

To demonstrate the properties of the proposed controller dif-
ferent simulations scenarios have been considered. The simula-
tions have been made with Matlab 2013a using the function
quadprog to solve the resulting QP optimization problem. The
number of decision variables is 6144 because a simultaneous for-
mulation was used in which the tank levels, actuator water flows
and auxiliary control input for both the predicted and the artificial
reference trajectories were included as decision variables. For all
the simulations, the initial volume of each tank is 60% of its cor-
responding maximum volume and the simulation length is three
days.

First, the robust MPC for tracking periodic references is com-
pared with the nominal MPC for tracking periodic references
proposed in Limon et al. (2014, 2015). The nominal MPC controller
is based on the same optimization problem, but assuming that the
prediction error is zero for all times. Both controllers use the same
design parameters. The main difference between both controllers
is that the nominal controller does not take into account the un-
certainties, which may lead to constraint violation and possible
loss of feasibility. The objective of the first simulation is twofold,
first to compare the behavior of the nominal controller and the
proposed robust controller and second to show the proposed
controller convergence properties. To this end, for these simula-
tions the prediction error is assumed to be zero. This implies that
for this simulation both the nominal and the robust controller
closed-loop trajectories converge to their corresponding planner
with zero error. The planner trajectories follow the target trajec-
tories when possible. It can be seen that the target trajectories do
not satisfy the constraints for all times.

Figs. 1 and 2 show the trajectories of the tank levels 10 and 11
of the nominal (blue discontinuous) and robust (blue) controller.
In this case the nominal controller drives the closed-loop system
as close as possible to the target reference (red discontinuous)
without violating the constraints reaching the trajectory provided
by the nominal planner (note that the reference is not always
feasible). The robust controller converges to the trajectory pro-
vided by the robust planner (green discontinuous), which is the
best trajectory that the disturbed system can follow when the
closed loop system is tracking the proposed reference without
violating the constraints. The trajectory provided by the robust
planner does not reach the constraint limits in order to guarantee
robust constraint satisfaction in the presence of disturbances. The
water flow of the actuators show similar results. Fig. 3 shows the
water flow trajectories of actuator 15. It can be seen that the
nominal controller saturates the controller in certain times, while
the robust controller converges to the robust planner trajectory,
which has to take into account possible prediction errors and
hence has to be more conservative.

The time needed to converge to the optimal cost is about
4 hours. The cost of the robust planner is about ×8.9 1011 and the
cost of the nominal controller is about ×8.17 1011. The conserva-
tiveness feature of the robust controller is the cause of this mis-
match between the costs.

In the second scenario, the same simulations are carried out
assuming that the demand was always 5% lower than the pre-
dicted value, that is, ( ) + ( ) = ( )k k kd w d0.95 for all times. This is a
worst case scenario that is included in the uncertainty bounds
used to design the robust controller. This implies that even in this
case, the controller guarantees robust constraint satisfaction and
recursive feasibility. On the other hand, the nominal controller
does not guarantee constraint satisfaction. The simulations de-
monstrate this issue and show that often the level of the tanks and
the water flow of the actuators of the trajectories of the nominal
controller were higher than the maximum levels, in particular,
when the nominal planner trajectory was saturated or close to the
constraints. The robust controller closed-loop trajectories satisfied
the constraints for all times. Figs. 4 and 5 show the trajectories of
the tank levels 10 and 11 of the nominal (yellow discontinuous)
and robust (blue) controller. In the case of the proposed disturbed
close loop system the nominal controller violates the upper con-
straints becoming the closed loop system unfeasible but in the
case of the robust controller the trajectory are always below the
upper limit.

Fig. 6 shows the evolution of actuator 15 along the three days of
simulation and it can be seen how the trajectory of this water flow
is equal to the trajectory of the robust planner as in the case of the
evolution of the tanks. When the drinking water network is
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Fig. 3. Actuator 15 (scenario 1): closed loop system with nominal controller (dis-
continuous blue), closed-loop system with robust controller (blue), robust planner
trajectory (discontinuous green with circle), constraints related to water flow in
actuator 15 (cyan). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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Fig. 4. Tank 10 (scenario 2): closed loop system with nominal controller (dis-
continuous black with diamond), closed-loop system with robust controller (blue),
robust planner trajectory (discontinuous green with circle), tank level constraint
(cyan), target trajectory (discontinuous red). (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 5. Tank 11 (scenario 2): closed loop system with nominal controller (dis-
continuous black with diamond), closed-loop system with robust controller (blue),
robust planner trajectory (discontinuous green with circle), tank level constraint
(cyan), target trajectory (discontinuous red). (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 6. Actuator 15 (scenario 2): closed loop system with nominal controller (dis-
continuous black with diamond), closed-loop system with robust controller (blue),
robust planner trajectory (discontinuous green with circle), constraints related to
water flow in actuator 15 (cyan). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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subject to prediction error in the demand, the trajectory of the
closed-loop system does not converge the robust planner but it
never breaks the constraints.

In the third scenario a sudden change in the target levels and
water flow trajectories is shown. The prediction error in this si-
mulation is 5% of the maximal demand along the period but its
sign is random. In this simulation the target level for each tank

changes after 38 h. The new target trajectory for each tank ^ ( )x ki
t

is

obtained as ^ ( ) = − ( )k kx x xi
t

i
max

i
t . The corresponding values of the

actuator references ( )kui
t have been obtained from the solution in

the least squares sense to the under determined system of equa-
tions obtained from the dynamic model and the predicted values
of the demand. The trajectory of the robust planner is different for
both target references. Their corresponding costs are 8.8926 �1011
and 1.0854 �1012 respectively. The simulation shows that the ro-
bust MPC optimization cost converges to a neighborhood of the
cost of the original trajectory, and then changes suddenly to the
cost of the modified trajectory without losing feasibility or vio-
lating any constraints.

Figs. 7 and 8 show the evolution of the closed-loop system and
its behavior when the tracking reference suddenly changes. In
these figures the trajectory of the robust planner for the first re-
ference (green discontinuous with circle) and for the second re-
ference (black discontinuous with x) are represented. The evolu-
tion of the closed-loop system modifies its evolution from fol-
lowing the first reference to follow the new reference without
breaking the constraints even with disturbances. In the case of the
behavior of actuator 18, the evolution of the water flow follow the
same pattern of the tank level 10. The simulation demonstrates
that the robust controller (under certain assumptions) maintains
recursive feasibility even when the references are not periodically
constant and without the necessity to calculate any robust in-
variant set.
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Fig. 7. Tank 10 (scenario 3): closed-loop system with robust controller (blue), ro-
bust planner for reference 1 (discontinuous green), robust planner for reference 2
(discontinuous black with x), tank level constraint (cyan), target trajectory (dis-
continuous red). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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Fig. 8. Actuator 18 (scenario 3): closed-loop system with robust controller (blue),
robust planner for reference 1 (discontinuous green), robust planner for reference 2
(discontinuous black with x), constraints related to water flow in actuator 18
(cyan). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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Fig. 9. Trajectory of the optimal cost (scenario 3) of the robust controller (blue
discontinuous with circle) and the robust planers for references 1 and 2 (green
discontinuous with circle and black discontinuous with x respectively). (For in-
terpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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Fig. 9 shows the evolution of the cost of the closed-loop system
(blue discontinuous with circle) with the robust controller and
how it changes at instant 38 from the previous cost value (green
discontinuous with circle) to the new cost value (black dis-
continuous with x). It can be seen that the cost function for the
second reference is higher and in addition, how there is sudden
jump in the optimal cost when the reference changes. Note that
the robust controller is not modified.
4.1. Evaluation and comparison of the proposed controller

As was commented before, three different scenarios have been
tested to evaluate the benefits of the proposed controller. For these
scenarios, the behavior of the controlled network is measured by a
performance index that is the average optimal cost of the con-
troller
∑Φ = *( )
=

−

T
V k

1

s k

T

N
0

1s

where Ts¼72 is the number of samples that takes the whole test.
In the first scenario, the convergence of the controller is de-

monstrated in the case that the real demands are equal to the
forecasted ones. In this case, the nominal controller and the pro-
posed robust controller have been applied and, as expected, in
both cases, the controlled network converges asymptotically to the
best possible evolution of the network, which is calculated by the
corresponding planner. In the first column of Table 2 it is shown
that the performance index Φ of the robust planner which is the
best possible index that can be achieved by the robust controller
since the trajectory of the planner is the one that minimizes cost

(·)Vp . The performance index of the robust controller is slightly
larger than the one of the robust planner due to the tracking cost
along the transient. On the other hand, the nominal cost achieves a
lower performance index since the set of constraints considered in
this controller includes the set of constraints of the robust one.
This loss of performance is the price to pay to use a robust con-
troller that is safe in presence of uncertainty.

The second scenario shows the effect of the uncertainty on the
former controllers: the nominal one and the robust one. In this
case it is considered that the demands are lower than forecasted
leading to a potential overload of the tanks, which is the worst
scenario. As expected, the nominal controller presents a worse
behavior and is not capable of satisfying the constraints along the
test. Thanks to the fact that the feasibility of the nominal controller
is not lost along the test, the nominal control law has been applied
for the whole test and the number of samples when any of the
state variables are out of the operation limits have been counted.
Table 1 shows the percentage of time in which the network con-
trolled by the nominal and by the robust controller satisfy all the
state and actuator constraints. It can be seen that the robust for-
mulation satisfies the constraints for all times. The second column
of Table 2 shows the performance index of the robust controller
and the robust planner, the nominal one is not calculated since the
constraints are not fulfilled. As expected, the performance of the
robust planner is equal to the one of the scenario 1 since the
forecasted demands are the same. The robust controller exhibits a



Table 1
Constraint satisfaction for Scenario 2.

Controller Constraint satisfaction (%)

Nominal 68.71
Robust 100

Table 2
Performance index Φ measured for each scenario.

Controller Scenario 1 Scenario 2 Scenario 3

Nominal 8.1883659 �1011 – –

Robust 8.8930378 � 1011 8.8930708 � 1011 9.848186 � 1011
Robust planner 8.8925994 �1011 8.8925994 �1011 9.818756 � 1011
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slightly larger performance index due to effect of the transient and
the uncertainty of the demand. This latter effect is the cause of
getting a performance index worse than the one of the scenario 1.

The third scenario has been carried out to show the behavior of
the proposed controller in the presence of random uncertainty
under a sudden change of the target trajectory to track, which may
be derived for instance from a change in the management policy of
the overall DWN. As has been proved, the controlled network
fulfills the operation limits of the tanks and the actuators in spite
of the uncertainty and the change in the operation conditions.
Besides, the controller steers the network to a neighborhood of the
optimal trajectory after the change.

The third column of Table 2 shows the total accumulated cost
for the different scenarios and control laws, including the cost of
the planners for the two references considered. During the first 38
h, the first target trajectory is applied and the optimal cost of the
robust planner is * = ·V 8.892599 10p

11, while in the 34 remaining
hours, the second target trajectory is provided yielding a optimal
cost * = ·V 10.853873 10p

11. The resulting performance index Φ of
the optimal trajectory is then 9.818756 �1011. The performance
index of the controlled network is 9.8481857 �1011 whose differ-
ence with the index of the optimal trajectory is due to the cost of
the transient.
5. Conclusions

In this work, a novel robust MPC for tracking periodic refer-
ences is applied to an uncertain discrete time algebraic-differential
linear model of a large scale water distribution network obtained
from the water balance equations of a section of Barcelona's water
drinking network. To this end, a large scale model of the network
and uncertain predictions of the demand have been considered.
The control objective is to track a periodic arbitrary reference
while guaranteeing robust constraint and water demand satisfac-
tion. The proposed controller provides closed-loop robust con-
straint satisfaction even in the presence of sudden changes in the
periodic target reference and asymptotic convergence to an opti-
mal (in a sense) trajectory. The proposed controller is based on the
solution of a single quadratic programming optimization problem
and is defined without the necessity of the computation of a ro-
bust positive invariant set. These features are very important in
practical applications and make this controller an appropriate
approach to control large scale systems.
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