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The practical implementation of min–max MPC (MMMPC) is limited by the computational burden

required to compute the control law. This problem can be circumvented by using approximate solutions

or upper bounds of the worst possible case of the performance index. In a previous work, the authors

presented a computationally efficient MMMPC control strategy in which a close approximation of the

solution of the min–max problem is computed using a quadratic programming problem. In this paper,

this approach is validated through its application to a pilot plant in which the temperature of a reactor is

controlled. The behavior of the system and the controller are illustrated by means of experimental

results.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In min–max model predictive controllers (MMMPC), the
control signal is computed for the worst case of a cost function
that considers the effect of process model uncertainties and
disturbances in the controller performance (Campo & Morari,
1987). The main drawback of this approach is the computational
burden that takes to compute the control signal. This usually
involves the solution of a NP-hard min–max problem (Lee & Yu,
1997; Scokaert & Mayne, 1998). As a result, the number of
applications of these control strategies is very small, even when
there is evidence that they work better than standard predictive
controllers in processes with uncertain dynamics (Camacho &
Bordons, 2004).

Multi-parametric programming has been applied to show that
the MMMPC control law is piecewise affine when a quadratic
(Ramirez & Camacho, 2006) or 1-norm based criterion (Bemporad,
Borrelli, & Morari, 2003; Kerrigan & Maciejowski, 2004) is used as
the cost function. Thus, explicit forms of the control law can be
built. Such explicit forms can be evaluated very fast provided that
the complexity of the state space partition is moderate, which is
the case for many applications. However, if the process model or
the controller tuning parameters change, the computation of the
controller has to be redone.

A common solution to the computational burden issue is to use
an upper bound of the worst case cost instead of computing it
explicitly. This upper bound can be computed by using linear
matrix inequalities (LMI) techniques such as in Kothare, Balak-
rishnan, and Morari (1996) and Lu and Arkun (2000). However,
ll rights reserved.
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the LMI problems have a computational burden that cannot be
neglected in certain applications. In Alamo, Ramı́rez, Muñoz de la
Peña, and Camacho (2007) a different approach based on a
computationally cheap upper bound of the worst case cost is
presented. In that work, the MMMPC strategy computes a close
approximation of the exact solution of the min–max problem
using quadratic programming (QP). The resulting computational
burden using the upper bound of the worst case cost is much
lower than the one solving the exact min–max problem and can
be compared to that of a standard constrained MPC based on a
quadratic cost. Thus, it can be easily implemented in almost any
platform capable to run a constrained MPC. Also, stability of the
proposed approach is guaranteed.

In this work, the approach presented in Alamo et al. (2007) has
been validated by means of its application to a pilot plant. The
pilot plant is used to emulate an exothermic chemical reaction
with nonlinear dynamics. This process has been used in previous
works (Gruber & Bordons, 2007; Gruber, Ramirez, Alamo, Bordons,
& Camacho, 2008) as a benchmark system, allowing a direct
comparison of the obtained results with the ones of other linear
and nonlinear model predictive control strategies. With the
MMMPC, based on an identified linear model, controlling a
nonlinear process the robustness of the proposed control strategy
can be shown by means of experimental results. The computa-
tional complexity of the optimization problem is reduced
considerably using an upper bound of the worst case cost. The
reduction of the complexity of the optimization problem leads to a
low computational burden of the control strategy applied to the
pilot plant and allows realistic values for the control and
prediction horizons (i.e., the parameters on which the computa-
tional burden depends). In the experiments, restrictions in the
control action and the output have been considered. It is also
noteworthy that the computer on which the predictive control
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algorithm is implemented does not have sufficient calculation
power to implement a conventional min–max predictive control
strategy. Therefore a computationally efficient strategy as that
used in this work is a good choice if the use of this type of control
is desired.

The results obtained show the validity of the control strategy.
Not only good results have been obtained in set point tracking and
disturbance rejection, but also, the performance achieved is better
than that obtained with a regular predictive controller based on
the same type of prediction model.

The paper is organized as follows. Section 2 presents the
MMMPC strategy. Section 3 presents the proposed implementa-
tion strategy. In Section 4 a detailed description of the used pilot
plant is given. The strategy is illustrated by means of experimental
results of the pilot plant in Section 5. Finally, Section 6 presents
some conclusions.
2. Min–max MPC with bounded additive uncertainties

Consider the following state space model with bounded
additive uncertainties:

xðt þ 1Þ ¼ AxðtÞ þ BuðtÞ þ DyðtÞ ð1Þ

with xðtÞ 2 Rdx the state vector, uðtÞ 2 Rdu the input vector and
yðtÞ 2 fy 2 Rdy : JyJ1reg the uncertainty, that is supposed to be
bounded. The system is subject to p state and input time invariant
constraints FuuðtÞ þ FxxðtÞrg where Fu 2 R

p�du and Fx 2 R
p�dx . It is

assumed a semi-feedback approach in which the control input is
given by

uðtÞ ¼ �KxðtÞ þ vðtÞ ð2Þ

where the feedback matrix K is chosen to achieve some desired
property such as nominal stability or LQR optimality without
constraints. The MMMPC controller will compute the optimal
sequence of correction control inputs vðtÞ. The state equation of
system (1) can be rewritten as

xðt þ 1Þ ¼ ACLxðtÞ þ BvðtÞ þ DyðtÞ ð3Þ

with ACL ¼ ðA� BKÞ.
The proposed strategy also works without semi-feedback

approach (i.e., uðtÞ ¼ vðtÞ). All the computational advantages of
the strategy remain the same and the procedures described here
can be used without any modification. Furthermore if the process
is open-loop stable (as in the case of the pilot plant used in this
work) the stabilizing conditions, which will be discussed later, can
be used without problems.

The cost function is a quadratic performance index

Vðx; v; hÞ ¼
XN�1

j¼0

xðt þ jjtÞT Qxðt þ jjtÞ þ
XN�1

j¼0

uðt þ jjtÞT Ruðt þ jjtÞ

þxðt þ NjtÞT Pxðt þ NjtÞ ð4Þ

where xðtjtÞ ¼ x, xðt þ jjtÞ is the prediction of the state for t þ j

made at t and uðt þ jjtÞ ¼ �Kxðt þ jjtÞ þ vðt þ jjtÞ. Note that these
values depend on the future values of the uncertainty. The
sequence of future values of yðtÞ over a prediction horizon N is
denoted by h ¼ ½yðtÞT ; . . . ; yðt þ N � 1ÞT �T , and H ¼ fh 2 RN�dy :

JhJ1reg is the set of possible uncertainty trajectories. On the
other hand, v ¼ ½vðtjtÞT ; . . . ; vðt þ N � 1jtÞT �T is the control correc-
tion sequence. Matrices Q ; P 2 Rdx�dx and R 2 Rdu�du are sym-
metric positive definite matrices used as weighting parameters.

Min–max MPC (Campo & Morari, 1987) minimizes the cost
function for the worst possible case of the predicted future
evolution of the process state or output signal. This is
accomplished through the solution of a min–max problem

v�ðxÞ ¼ arg min
v

max
h2Y

Vðx; v; hÞ

s:t: Fuuðt þ jjtÞ þ Fxxðt þ jjtÞrg

j ¼ 0; . . . ;N; 8h 2 Y

xðt þ NjtÞ 2 O; 8h 2 Y ð5Þ

A terminal region constraint xðt þ NjtÞ 2 O, where O is a
polyhedron, is included to assure stability of the control law
(Mayne, Rawlings, Rao, & Scokaert, 2000).

The predictions xðt þ jjtÞ and control actions uðt þ jjtÞ depend
linearly on x, v and h. This means that it is possible to find a vector
d 2 Rp and matrices Gx, Gv and Gy (Camacho & Bordons, 2004),
such that all the robust linear constraints of problem (5) can be
rewritten as:

Gi
xxþ Gi

vvþ Gi
yhrdi; i ¼ 1; . . . ; p; 8h 2 Y ð6Þ

where Gi
x, Gi

v, Gi
y denote the i-th rows of Gx, Gv and Gy respectively

and di is the i-th component of d 2 Rp. Denote now JGi
yJ1 the sum

of the absolute values of row Gi
y. Taking into account that

maxh2Y Gi
yh ¼ maxJhJ1re Gi

yh ¼ eJGi
yJ1, the robust fulfillment of

the constraints is satisfied if and only if Gi
xxþ Gi

vvþ eJGi
yJ1rdi;

i ¼ 1; . . . ; p. Therefore, to guarantee robust constraint satisfaction,
the set of linear constraints Gxxþ Gvvrde must be satisfied, where
the i-th component of de is equal to di � eJGi

yJ1. Note that this is a
necessary and sufficient condition.

Taking into account (2)–(4), the cost function can be evaluated
as a quadratic function:

Vðx; v; hÞ ¼ vT Mvvvþ hT Myyhþ 2hT Myvv

þ2xT MT
vf vþ 2xT MT

yf hþ xT Mff x ð7Þ

where the matrices can be obtained from the system and the
control parameters (Camacho & Bordons, 2004). Due to the
convexity properties of Vðx; v; hÞ, problem (5) is equivalent to

v�ðxÞ ¼ arg min
v

max
h2vertðHÞ

Vðx; v; hÞ

s:t: Gxxþ Gvvrde ð8Þ

where vertðHÞ is the set of vertices of H (Camacho & Bordons,
2004).

The terminal region O is assumed to satisfy the following
conditions:
�
 C1: If x 2 O then ACLxþ Dy 2 O, for every
y 2 fy 2 Rdy : JyJ1reg.

�
 C2: If x 2 O then uðxÞ ¼ �Kx 2 U, where U9fu : Fuuþ Fxxrgg.

Moreover, matrix P that characterizes the terminal cost is
assumed to satisfy
�
 C3: P � AT
CLPACL4Q þ KT RK.
The stability of ACL guarantees the existence of a positive definite
matrix P satisfying C3.

The maximum cost for a given x and v is denoted as

V�ðx; vÞ ¼ max
h2vertðHÞ

Vðx; v; hÞ ¼ Vðx; v;0Þ þ max
h2vertðYÞ

hT Hhþ 2hT qðx; vÞ

ð9Þ

where H ¼ Myy, qðx; vÞ ¼ MyvvþMyf x and Vðx; v;0Þ ¼ vT Mvvv
þ2xT MT

vf vþ xT Mff x is the part of the cost that does not depend
on the uncertainty (that is, the nominal cost). With this definition,
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problem (8) can be rewritten as

v�ðxÞ ¼ arg min
v

V�ðx; vÞ

s:t: Gxxþ Gvvrde ð10Þ

and the system is controlled by KMPCðxðtÞÞ ¼ �KxðtÞ þ v�ðtjtÞ, where
v�ðxðtÞÞ ¼ ½v�ðtjtÞT ; . . . ; v�ðt þ N � 1jtÞT �T .
3. A QP approach to min–max MPC

In this section the main results of Alamo et al. (2007) are
presented briefly. In that work, it is shown how the min–max
problem (10) can be replaced by a tractable QP problem which
provides a close approximation of the solution of the original
problem. This can be accomplished with the following steps:
(1)
 Obtain an initial guess of the solution of (10), denoted ~v�. As
seen later, this can be achieved by solving a QP problem.
(2)
 Using ~v�, obtain a quadratic function of v that bounds the
worst case cost.
(3)
 Compute the control law. This involves the solution of a QP
problem.
The necessary steps to replace the original min–max problem will
be detailed in the following sections.

3.1. Computing ~v�

Given H defined as in Eq. (9), denote Ti ¼
PN�dy

j¼1 jHijj, where Hij

denotes the ði; jÞ-th component of matrix H. Then, define the
diagonal matrix T as

T ¼ diagðT1; . . . ; TnÞ ð11Þ

where TZH (Alamo et al., 2007). With

~V ðx; v; hÞ ¼ Vðx; v;0Þ þ hT Thþ 2qT ðx; vÞh ð12Þ

the maximum of ~V ðx; v; hÞ can be computed as

~V
�
ðx; vÞ ¼ Vðx; v;0Þ þ JHJse2 þ 2eJqðx; vÞJ1 ð13Þ

where JHJs denotes the sum of the absolute values of the
elements of H. This problem can be casted as a QP problem by
making use of slack variables to deal with the 1-norm term. An
initial guess of the solution of (10) can be obtained as

~v�ðxÞ ¼ arg min
~v

~V
�
ðx; ~vÞ

s:t: Gxxþ Gv ~vrde ð14Þ

3.2. Obtaining an upper bound of the worst case cost

The upper bound of the maximum will be obtained in the
following two steps:

3.2.1. Computing the parameter vector aðvÞ
Note that

V�ðx; vÞ ¼ max
h2vertðHÞ

h

1

� �T H qðx; vÞ

qT ðx;vÞ Vðx; v;0Þ

" #
h

1

� �
¼ max

JzJ1r1
zT MðvÞz

with

z ¼
hT

e 1

" #T

; MðvÞ ¼
e2H eqðx; vÞ

eqT ðx; vÞ Vðx; v;0Þ

" #
2 Rn�n

where n ¼ N � dy þ 1.
The following procedure provides an upper bound of the worst
case cost for a given v. It computes aðvÞ ¼ ½a1ðvÞ; . . . ;an�1ðvÞ�

T and
a diagonal matrix GðvÞZMðvÞ such that its trace is an upper bound
of the worst case cost for v (see Property 1 of Alamo et al., 2007).

Procedure 1. Computation of aðvÞ ¼ ½a1ðvÞ; . . . ;an�1ðvÞ�
T and GðvÞ.
(1)
 Let Sð0Þ ¼ MðvÞ 2 Rn�n.

(2)
 For k ¼ 1 to n� 1

(3)
 Let Mðk�1Þ

sub ¼ ½Sðk�1Þ
ij � for i; j ¼ k; . . . ;n.
(4)
 Obtain the partition

Mðk�1Þ
sub ¼

a bT

b Mr

" #

where a 2 R, b 2 Rn�k and Mr 2 R
ðn�kÞ�ðn�kÞ.ffiffiffiffiffiffiffiffiffiffip
(5)
 Make akðvÞ ¼ JbJ1.

(6)
 If akðvÞ ¼ 0 then SðkÞ ¼ Sðk�1Þ, else

SðkÞ ¼ Sðk�1Þ þ 0T
k�1;1 akðvÞ

�bT

akðvÞ

� �T

0T
k�1;1 akðvÞ

�bT

akðvÞ

� �
(7)
 end for
(8)
 Make GðvÞ ¼ Sðn�1Þ.
Note that in the previous procedure, 0m;n denotes a ðm� nÞ

matrix of zeros. Property 1 of Alamo et al. (2007) shows that the
trace of GðvÞ constitutes an improved upper bound of V�ðx; vÞ. That
is, V�ðx; vÞrtraceðGðvÞÞr ~V

�
ðx;vÞ.

Property 1. Matrices Sð0Þ; Sð1Þ; . . . ; Sðn�1Þ, obtained by means of

Procedure 1 satisfy:
(i)
 SðkÞ is a partially diagonalized matrix. That is, there is a diagonal

matrix TðkÞ 2 Rk�k such that SðkÞ ¼ diagðT ðkÞ;MðkÞsubÞ.

(ii)
 Sðn�1Þ ¼ GðvÞ is a diagonal matrix.
(iii)
 V�ðx; vÞrtraceðGðvÞÞ.

(iv)
 JSðkÞJsrJSðk�1ÞJs.

(v)
 traceðGðvÞÞr ~V

�
ðx; vÞ, 8v.
Proof. See Alamo et al. (2007). &

This procedure is the foundation to obtain a QP problem that
provides a solution with a worst case cost that is close to the
optimal worst case cost but with the advantage of the lower
computational burden of a QP problem (see Section 3.2.2).

3.2.2. Obtaining the bound as a quadratic function on v
The diagonalization process shown in Procedure 1 can be used

to obtain a matrix denoted by ĜðvÞ, which allows one to obtain a
bound of the maximum that can be computed as a quadratic
function of v. This is achieved by means of the following
procedure:

Procedure 2. Obtaining the matrix ĜðvÞ.
(1)
 Obtain ~v� from the QP problem defined in (14).

(2)
 Compute að ~v�Þ by Procedure 1.

ð0Þ

(3)
 Let Ŝ ðvÞ ¼ MðvÞ 2 Rn�n.

(4)
 For k ¼ 1 to n� 1.

ðk�1Þ

(5)
 Let M̂ subðvÞ ¼ ½Ŝij ðvÞ� for i; j ¼ k; . . . ;n.

(6)
 Obtain the partition

M̂ subðvÞ ¼
aðvÞ bT ðvÞ

bðvÞ MrðvÞ

" #

where aðvÞ 2 R.
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(7)
 If akð ~v
�
Þ ¼ 0 then Ŝ

ðkÞ
ðvÞ ¼ Ŝ

ðk�1Þ
ðvÞ, else

Ŝ
ðkÞ
ðvÞ ¼ Ŝ

ðk�1Þ
ðvÞ

þ 0T
k�1;1 akð ~v

�
Þ
�bT ðvÞ

akð ~v
�
Þ

� �T

0T
k�1;1 akð ~v

�
Þ
�bðvÞT

akð ~v
�
Þ

" #

end for
(8)
(9)
 Make ĜðvÞ ¼ Ŝ
ðn�1Þ
ðvÞ.
Theorem 1. Denote V̂
�
ðx; vÞ ¼ trace ðĜðvÞÞ. Then
(1)
 Ĝð ~v�Þ ¼ Gð ~v�Þ.

(2)
 V̂

�
ðx; vÞ is a quadratic function on v.

�

(3)
 V�ðx; vÞrV̂ ðx; vÞ.
Fig. 1. Pilot plant used to apply the proposed MMMPC.
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Proof. See Alamo et al. (2007). &

Denote V̂
�
ðx;vÞ ¼ trace ðĜðvÞÞ. Theorem 1 of Alamo et al. (2007)

shows that V̂
�
ðx; vÞ is a quadratic function on v and also an upper

bound of the original worst case cost V�ðx; vÞ.

3.3. Computing the control law

The value of the control signal is obtained by solving the
following QP optimization problem:

v̂�ðxÞ ¼ arg min
v̂

V̂
�
ðx; v̂Þ

s:t: Gxxþ Gvv̂rde ð15Þ

and the system is controlled by K̂ MPCðxðtÞÞ ¼ �KxðtÞ þ v̂
�
ðtjtÞ,

where v̂
�
ðtjtÞ is the first element of v̂

�
ðxÞ.

The computational burden of the proposed strategy based on
an upper bound of the worst case cost is considerably lower than
that of the exact MMMPC (Alamo et al., 2007). This computational
complexity results mostly from the two QP problems that have to
be solved to obtain an initial guess and to compute the solution of
the min–max problem. Note that both QP problems of the
proposed strategy have the complexity of a standard constrained
MPC using a quadratic cost function. For the computation of the
exact worst case cost V�ðx; vÞ the cost function has to be evaluated
for all 2N�dy vertices of Y. The optimization of the exact min–max
problem is a well known NP-hard problem and allows only the use
of small prediction horizons due to its high computational burden.
Water tank

Fj

Tj,in
Ff,out

TT2

Fig. 2. Block diagram of the pilot plant with its main elements.
4. Process description

A real process represented by a pilot plant has been chosen for
the application of the proposed algorithm. The process has been
studied previously by several authors (Gruber et al., 2008;
Szeifert, Chovan, & Nagy, 1995) and has been used as a benchmark
for control purposes (Ramı́rez, Limón, Ortega, & Camacho, 1999).

4.1. Laboratory process

The pilot plant (see Fig. 1) is used to emulate exothermic
chemical reactions based on temperature changes as done in
Santos, Afonso, Castro, Oliveira, and Biegler (2001). The main
elements of the pilot plant are the reactor, the heat exchanger, the
cooling jacket and the valve to manipulate the flow rate through
the cooling jacket. The plant structure with the mentioned main
elements is given in the schematic diagram in Fig. 2.

The cooling jacket is used to reduce the caloric energy of the
reactor content. The heat dissipation can be regulated by the valve
v8 manipulating the flow rate Fj through the cooling jacket. Fig. 3
shows the static relation between the flow rate Fj and the opening
of valve v8 obtained from experimental data. The cooling fluid,
water, circulating through the cooling jacket is taken from a tank
with a capacity of 1 m3. After circulating through the jacket the
cooling fluid returns to the tank. To maintain the temperature of
the cold water constant the tank has an auxiliary cooler controlled
by a thermostat which maintains the temperature TT2 near to a
desired value in an interval of approximately 11.

The reactant is supplied to the reactor by the feed Ff ;in to keep
the chemical reaction active. Before entering the reactor, the
feed passes through a heat exchanger in order to reduce the
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Table 1
Model parameters and constant variables of the chemical reaction.

Value Unit

Parameter

k0 1:2650� 1017 l=ðmol sÞ

Cp 4:18 kJ=ðK kgÞ

DH �105:57 kJ=mol

E=R 13 550 K

Variable

V 25 l

M 25 kg

CA;in 1:2 mol=l

Ff 0:05 l=s

Tj;in 291:15 K

F j
l s

v8 [%]

0

0.06

0.12

0.18

0 20 60 80 10040

Fig. 3. Static relation between the flow rate Fj and the opening of valve v8.
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temperature difference between the feed and the reactor content.
The outflow Ff ;out is used to keep the volume of the reactor content
constant. As a consequence, as feed and outflow have the same
flow rate and nearly the same temperature, the two flows hardly
provoke temperature changes in the interior of the reactor.

To emulate exothermic reactions, the reactor possesses an
electrical resistance in order to supply caloric energy. The energy
to be supplied by the 14:4 kW electrical resistance is calculated
with a mathematical model of the reaction. The use of a resistance
has the advantage that no chemical reaction takes place in the
reactor, instead the reaction is emulated on basis of temperature
changes, as done in Santos et al. (2001).

4.2. Mathematical model

Although it is not necessary to have a mathematical model for
the design of the min–max predictive controller, this section
shows the process model to emphasize its nonlinear character.
The mathematical model also justifies the way to emulate the
heat generated by the chemical reaction with the aid of the
resistance.

The emulated chemical reaction, representing a refinement
process, was used previously in Lee, Lee, and Kim (2000) and
Gruber and Bordons (2007). Considering identical flow rates for
the feed and the outflow, i.e. Ff ¼ Ff ;in ¼ Ff ;out , the reactor volume
V and the mass M are constant. The temperature changes of the
reactor content can be defined as

dT

dt
¼ �

Fj

V
ðTj;out � Tj;inÞ þ

ð�DHÞV

MCp
k0 e�E=ðRTÞC2

A ð16Þ

where the first term considers the heat dissipation by the cooling
jacket and the second term denotes the generated heat by the
exothermic chemical reaction. Note that the second term is used
to calculate the heat to be supplied by the electric resistance in
the reactor tank in order to emulate the chemical reaction based
on temperature changes. The variables Fj, Tj;in and Tj;out represent
the flow rate through the cooling jacket and the temperature of
the cooling fluid entering and leaving the cooling jacket,
respectively. CA is the concentration of the reactant in the reactor
content. It has been assumed that the feed neither supplies nor
removes caloric energy from the reactor as the feed passes
through an heat exchanger and enters the reactor nearly with the
temperature of the reactor content.

The reactant concentration CA in the plant reactor is calculated
by

dCA

dt
¼

Ff

V
ðCA;in � CAÞ � k0e�E=ðRTÞC2

A ð17Þ

where the first term represents changes in the reactant concen-
tration due to the feed and the outflow. The second term considers
the reduction of the concentration as a result of the reactant
consumption by the chemical reaction. CA;in denotes the
reactant concentration in the feed. The model parameters and
the variables used with constant values are shown in Table 1.

The chemical reaction is nonlinear in the dynamics of the
temperature and the concentration due to the exponential
function and the quadratic terms of the concentration in the
model Eqs. (16) and (17). Furthermore, the relation between the
opening of the valve v8 and the flow rate Fj through the cooling
jacket (see Fig. 3) adds some static nonlinearity to the model.
5. Experimental results

The strategy described in Section 3 has been applied to the
chemical reaction process described in Section 4. In this section
the experimental results will be exposed and discussed. An
input–output model with integrated bounded additive uncer-
tainty has been used in the experiments:

Aðz�1ÞyðtÞ ¼ z�dBðz�1Þuðt � 1Þ þ
yðtÞ
D

ð18Þ

with D ¼ 1� z�1, yðtÞ 2 fy 2 Rdy : JyJ1reg, and dy the dimension
of yðtÞ. The use of this type of prediction models results in a
control law without error in steady state. The main difference
between using the algorithm of Section 3 for a state space model
and the given input–output model with bounded additive
uncertainties is the method used to find the matrices of the cost
function (7) (see Camacho & Bordons, 2004). Besides that, the
algorithm can be applied as described in Section 3.

In the following sections the control system in the pilot plant
will be described and the necessary steps to obtain a prediction
model will be presented. Finally, experimental results will be
exposed.
5.1. Description of the control system

The sensors and actuators in the plant are connected to a PMC-
10 control unit. The PMC-10 is connected by ARCnet to a personal
computer that runs the SCADA (supervisory control and data
acquisition) system Simatic-IT. The control algorithm has been
implemented directly in Matlab and the communication with
Simatic-IT is done using the OPC protocol (OLE for process control).
Both Simatic-IT and the controller run on the same personal
computer, based on a Pentium II processor at 300 MHz. This
computer does not have enough computational power to solve
exactly the min–max problem of a typical MMMPC, but can
compute the control action using the proposed strategy.
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5.2. Identification of the prediction model

A PRMSS (pseudo-random multilevel step sequence) has been
applied to the recirculation valve with the objective of collecting
data for the parameter identification of the prediction model. The
periods of the PRMSS have been chosen sufficiently long to
observe the reaction of the pilot plant to changes in the input (see
Fig. 4). It can be seen that the temperature of the tank reaches
steady state in each step in something more than 2 h, although the
variations in steady state are of several degrees. The reactant
concentration also suffers variations in steady state. It can be
observed that the input–output gain is negative and clearly
variable (greater gain for low openings of v8). A first order transfer
function model with delay is proposed as prediction model. It has
to be mentioned that the proposed low order prediction model
cannot describe correctly the nonlinear dynamic behavior of the
used process. Therefore the used process is a good candidate to be
controlled by a control strategy considering uncertainties and
disturbances.

Using the data of Fig. 4 the system delay was approximated
with td ¼ 31:25 s. Taking in account the response time of the
system, the sampling period has been chosen to Ts ¼ 60 s. The
delay of the system was rounded to 1 sampling time in order to
avoid approximations of the time delay, e.g. Pad�e approximation.
With the experimental data (see Fig. 4) a least squares identifica-
tion has been carried out and the following model has been
identified:

yðtÞ ¼ 0:939yðt � 1Þ � 0:0597uðt � 2Þ ð19Þ

Thereby, the following input–output prediction model with
integrated bounded additive uncertainty was obtained:

yðt þ 1Þ ¼ 0:939yðtÞ � 0:0597uðt � 1Þ þ
yðtÞ
D

ð20Þ

5.3. Experimental results of the controller

The proposed control strategy was applied to the pilot plant
described in Section 4.1 using (20) as a prediction model. For the
implementation of the MMMPC a prediction horizon of N ¼ 15
and a control horizon of Nu ¼ 12 were used. Note that the use of
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Fig. 4. Experiment for the model identification. From top to bottom: tank

temperature (T), valve opening (v8) and reactant concentration (CA).
different prediction and control horizons (NaNu) in the cost
function (4) requires minor changes in the matrices Mvv, Myv and
Mvf in the quadratic cost function (7) as well as in the matrix Gv in
the considered min–max problem (8).1 In the implementation of
the proposed control strategy the terminal constraint and the
terminal cost have not been considered. With a prediction horizon
of N ¼ 15, including approximately one time constant of the
process, the terminal constraint is not active for the region of
interest. Also, the prediction horizon is sufficiently large and
therefore, the effect of not including a terminal cost can be
neglected. For a formal study when it is possible to disregard the
terminal constraint and terminal cost see Mayne et al. (2000), Hu
and Linnemann (2002) and Limon, Alamo, Salas, and Camacho
(2006).

The weighting factor for the control effort has been chosen
equal to R ¼ 2. Based upon the one step ahead prediction error
(see Fig. 5) the parameter e has been chosen to e ¼ 0:25. As a
result, in 97% of the samples the one step ahead prediction error
is bounded by the chosen value. In order to verify the goodness of
fit of the identified model a second set of experimental data has
been used to calculate the one step ahead prediction error. Fig. 6
shows the tank temperature and the one step ahead prediction
error of the prediction model (20). It can be seen from the figure
that the one step ahead prediction error is bounded by e ¼ 0:25
nearly throughout the whole experiment, only in a few samples
the prediction error exceeds the bound. Therefore the verification
confirms the election of e ¼ 0:25 as a valid choice.

Due to the varying delay of real process a correction in the
prediction of yðt þ 1Þ has been used. With the Smith like predictor
the predicted output at time t þ 1 using the nominal model,
ŷnðt þ 1jtÞ, is corrected as

ŷðt þ 1jtÞ ¼ ŷnðt þ 1jtÞ þ ðŷnðtjtÞ � yðtÞÞ ð21Þ

being yðtÞ the real process output at time t. This simple correction
improves the performance of predictive controllers in the case of
time delay systems (Normey-Rico & Camacho, 2007).

Finally, in order to restrict the system input and output in the
experiments, the following constraints have been used:

30rŷðt þ jjtÞr70; j ¼ 2; . . . ;16; 8h 2 vertðHÞ

5ruðt þ jjtÞr100; j ¼ 0; . . . ;11

�20rDuðt þ jjtÞr20; j ¼ 0; . . . ;11 ð22Þ
1 Defining the variable s ¼ N � Nu (the difference of the two horizons), the

necessary adjustment of the matrices Mvf , Gv , Myv and Mvv due to different

prediction and control horizons leads to the elimination of the last s rows of Mvf ,

the last s columns of Gv and Myv and the last s rows and columns of Mvv.
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2 A fair comparison between predictive controllers can only be carried out

when the cost functions are the same or at least close to be equal. Note that the

tuning parameters (including the uncertainty bounds in the MMMPC) define

the cost function. Therefore for both MMMPC and GPC the same linear model,

the same horizons and the same tuning parameters have been used (with

the exception of the uncertainty bounds that are not present in GPC). As a result,

the cost functions to be minimized by the MMMPC and GPC are as similar as

possible.
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Note that in the output restrictions the effect of the uncertainty
has to be considered.

In order to analyze the system behavior, several experiments
with reference changes and disturbance rejection have been made
using the proposed control strategy. Fig. 7 shows the results of the
tracking experiment with references different enough to result in
control actions in a large interval. After the first reference change
no overshoot appears in spite of a quite fast controller reaction.
After the second reference change a small overshoot (of about
�0:5 3C), justified by the nonlinear process behavior, can be
observed. In steady state the controller shows small changes in
the control action necessary to stabilize the output on the
reference in presence of variations in the generated heat and the
cold water temperature.

In the second experiment the disturbance rejection capabilities
of the proposed MMMPC strategy were proven by means of an
additive disturbance in the input of the system. The results of the
experiment can be seen in Fig. 8 where u denotes the necessary
input signal for a given setpoint calculated by the min–max model
predictive controller and v8 represents the effective opening of the
valve measured directly in the pilot plant. In normal operation
mode and in absence of errors in the integrated valve controller
the variables u and v8 have the same values, i.e. v8 ¼ u. In the
experiment a discrepancy between u and v8 has been introduced
so that it acts as an input disturbance (like an error in the
integrated valve controller). With a disturbance Dv8 ¼ �15% the
measured opening of the valve has the value v8 ¼ uþ Dv8. After
the application of the input disturbance in t ¼ 70 min the effective
opening of the valve v8 is too low for the given setpoint and leads
to a rising temperature. The proposed MMMPC strategy reacts
rapidly to the increasing error in the temperature and rejects the
effect of the disturbance in approximately 20 min. After the
disappearance of the disturbance in t ¼ 101 min the controlled
system shows the same behavior and reaches steady state in
about 20 min. Neither the temperature nor the control action
show oscillations after the disappearance of the disturbance.

Fig. 9 shows the experimental results applying an additive
disturbance in the feeding Ff . In t ¼ 70 min a change in the feed
flow rate of DFf ¼ 0:0125 l=s, which corresponds to an error of
25%, has been applied. With an increasing error, the controller
reduces the opening of the valve and reaches a compensation of
the divergence after 15 min. In this experiment an overshoot of
�0:50 3C can be observed. The oscillation in the temperature and
the control action is quite small and seems acceptable due to the
strong disturbance.

The reference tracking experiment was repeated with a linear
constrained predictive controller (GPC) to allow the comparison
between the proposed strategy and a standard MPC method. The
GPC is based on the same linear model (20) as the MMMPC
strategy and was tuned with the same parameters as the MMMPC
(prediction horizon N ¼ 15, control horizon Nu ¼ 12 and weight-
ing factor for the control effort R ¼ 2). As a consequence both
control strategies are based on similar cost functions to be
optimized.2 Furthermore, the GPC was implemented with the
same constraints (22) as the MMMPC. It can be observed in the
results (see Fig. 10) that the process controlled by the GPC exhibits
significant oscillations in the temperature and the control action
after the reference changes. The comparison of the results shows
that the MMMPC stabilizes the temperature more efficiently and
with fewer oscillations in the opening of the valve than the
standard GPC. Although both controllers are based on the same
linear prediction model, the MMMPC obtains better results
controlling the nonlinear process due to the explicit
consideration of uncertainties and perturbations in the
optimization problem.
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Finally, it is important to mention that the calculation of the
control signal took place without problems within the chosen
sampling time (60 s). During the experiments the average
computation time was 5.64 s, with a maximum of 9.90 s and a
minimum of 1.86 s. These computation times are much smaller
than those required to compute the exact solution (e.g., using the
same computer, the average time for N ¼ Nu ¼ 12 was 324.63 s).
6. Conclusions

In this paper an MMMPC based on an tractable QP problem
was applied to a pilot plant. The results showed a good system
behavior and the stabilization of the plant temperature around
the operation point. After reference changes the controller quickly
compensates deviations. Furthermore, the MMMPC showed its
capacity to compensate errors caused by the disturbances.

The application to a process shown in this work joins the small
number of MMMPC applications reported in specialized literature.
The low computational requirements of the proposed control
strategy allowed the use of appropriate sampling times and
realistic prediction and control horizons. Thereby it is shown that
the use of the proposed strategy allows the application of this kind
of controllers to a larger number of processes.
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