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Abstract

Min-max model predictive control (MMMPC) requires the on-line solution of a min-max problem, which can be computationally

demanding. The piecewise affine nature of MMMPC has been proved for linear systems with quadratic performance criterion. This

paper shows how to move most computations off-line obtaining the explicit form of this control law by means of a heuristic

algorithm. These results are illustrated with an application to a scaled laboratory process with dynamics fast enough to preclude the

use of numerical solvers.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) is a popular strategy
originated in the late seventies for the automation of
large multivariable industrial processes. The basic idea
of MPC is the explicit use of a model of the process to
predict the process output at future time instants, and to
obtain the control signal by minimizing a cost function
that depends on such predictions.

One approach used in robust MPC when uncertainties
are taken into account in the model, is to minimize the
objective function for the worst possible realization of
the uncertainty. This strategy is known as min-max
model predictive control (MMMPC). Min-max control
was originally proposed in Witsenhausen (1968) in the
context of robust receding control. In robust MPC the
problem was first tackled in Campo and Morari (1987).
e front matter r 2005 Elsevier Ltd. All rights reserved.
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All min-max control techniques have in common a high
computational burden which limits the range of
processes to which they can be applied (see Veres &
Norton, 1993; Lee & Yu, 1997; Scokaert & Mayne, 1998
and the references therein). Few applications of min-
max MPC can be found in literature (see Porfirio,
Almeida, & Odloak, 2002; Kim & Kwon, 1998).

Recently multi-parametric programming has been
applied with success to deterministic MPC to solve the
optimization problems off-line in order to obtain an
explicit description of the control law (see Bemporad,
Morari, Dua, & Pistikopoulos, 2002; Seron, Goodwin,
& De Doná, 2002). For cost functions based on 1-norms
or 1-norms, robust MPC controllers have also been
obtained in explicit form (see Bemporad, Borrelli, &
Morari, 2003; Kerrigan & Maciejowski, 2004).
The piecewise affine nature of these controllers for
unconstrained linear systems with quadratic cost func-
tions was shown in Ramı́rez and Camacho (2001), but
these results did not include an algorithm for determin-
ing the explicit solution of these controllers. This paper
presents a heuristic algorithm for obtaining the different
regions of a quadratic unconstrained MMMPC and the
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corresponding affine solutions. An application of an
explicit controller to a well known scaled laboratory
process (Ljung, 1987; Li, Tsang, & Ho, 1998; Bandyo-
padhyay & Patranabis, 2001; Horácek, 2000) is shown.
The process has simple dynamics, but is fast enough to
preclude the use of any nonexplicit implementation.
Experimental results are discussed in the paper.

The rest of the paper is organized as follows: In
Section 2 we introduce the controller and the
corresponding optimization problem. In Section 3 the
piecewise linear nature of the controller is shown. In
Section 4 an algorithm for building the regions of the
explicit formulation is developed. In Section 5 the
algorithm for exploring the state space and determining
the explicit controller is presented. In Section 6
experimental results are shown. Finally, in Section 7
we present concluding remarks.
2. Problem formulation

Consider the discrete time CARIMA model with
bounded integrated uncertainties of a SISO system

DAðz�1Þykþ1 ¼ z�dBðz�1ÞDuk þ yk, (1)

where yk 2 R is the output, uk 2 R is the input, D ¼

1 � z�1 and yk 2 R is the uncertainty. The uncertainty yk

is supposed to be bounded, that is kykk1p� with �40;
and globalizes all modeling errors. This is a general way of
describing uncertainty (see Camacho & Bordóns, 1999).

The objective is to compute the future control
sequence in such a way that the output predictions are
driven close to the set point sequence rk; rkþ1; . . . ; rkþN�1

for the prediction horizon N. The way in which the
system will approach the desired trajectory is indicated
by a cost function which depends on present and future
control signals and uncertainties.

The cost function is a quadratic criterion, namely,

J ¼
XN

j¼1

ðykþj � rkþjÞ
2
þ l

XN�1

j¼0

ðDukþjÞ
2, (2)

with l40:
Taking into account the linearity of system (1), the set

of j-ahead optimal predictions for j ¼ 1; . . . ;N; can be
written (see Camacho & Bordóns, 1999; Bemporad
et al., 2002) in condensed form as

y ¼ Guuþ Gyh þ Gxx, (3)

where

y ¼ ½ykþ1 
 
 
 ykþN �
T 2 RN ,

u ¼ ½Duk 
 
 
DukþN�1�
T 2 RN ,

h ¼ ½yk 
 
 
 ykþN�1�
T 2 RN ,

x ¼ ½yk 
 
 
 yk�na
Duk�1 
 
 
Duk�nb

�T 2 Rnx.

The vector x is the state of the system.
Without loss of generality, consider a constant set
point of rkþj ¼ 0 (see Camacho & Bordóns, 1999;
Bemporad et al., 2002 for the case rkþja0). Then, the
cost function Jðu; h;xÞ becomes

Jðu; h;xÞ ¼ yTyþ luTu

¼ kGuuþ Gyh þ Gxxk
2
2 þ lkuk2

2, ð4Þ

which is a quadratic convex function on u; h and x for
positive values of l; see Camacho and Bordóns (1999);
Bazaraa and Shetty (1979).

The objective of MMMPC is to minimize the
objective function for the worst possible realization of
the uncertainty as first proposed in Witsenhausen
(1968). We define the min-max problem PNðxÞ as

J�ðxÞ ¼ min
u

max
h2Y

Jðu; h;xÞ, (5)

with Y ¼ fh 2 RN j khk1p�g the set of all possible
future uncertainty trajectories of length N.

The control is applied in a receding horizon scheme.
The solution of the optimization problem at time step k

provides an optimizer u�ðxkÞ which defines the future
inputs along the whole prediction horizon. However,
only the control input of the current time step Du�

k is
applied, the optimization is repeated in the following
sample time with the new real state of the system xkþ1:

Problem (5) is of high complexity because the evaluation
of the maximum of the cost function Jðu; h;xÞ is a NP-hard
problem. The maximum of a convex function is found in
the boundary of the feasible region. As Jðu; h;xÞ is convex
on h; the maximum is found in at least one of the 2N

vertices hi of Y: This way, 2N evaluations of Jðu; h;xÞ are
required (Bazaraa & Shetty, 1979). This implies a complex-
ity that grows exponentially with N, thus the computation
of the optimal control sequence u�ðxÞ is a difficult task. In
this paper we present an algorithm to obtain an explicit
piecewise affine form of u�ðxÞ; so the evaluation of the
optimum control input can be made in an efficient way.

This paper deals with a CARIMA model of a SISO
system and a fixed cost criterion over the input and the
output because this formulation is present in almost all
industrial plants, however, the results presented can be
applied to all linear systems with a quadratic cost
function, in particular, for state space models with cost
functions which include a terminal cost term for which
stability has been proven in Alamo, Muñoz de la Peña,
Limon, and Camacho (2003).
3. Some properties of the min-max problem

As seen before, the maximum of the cost function
Jðu; h;xÞ is found in at least one of the vertices of Y:
Each of the 2N vertices of Y; denoted as hi; i ¼

1; 2; . . . ; 2N ; defines a quadratic function on u and x:

Jiðu; xÞ ¼ Jðu; hi;xÞ.



ARTICLE IN PRESS
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The following property can be stated from the results
presented in Ramı́rez and Camacho (2002).

Proposition 1. The solution u�ðxÞ of the min-max problem

(5) in a given state vector x; can be characterized by the

set of vertices I in the following way:

u�ðxÞ ¼ uI ðxÞ ¼ arg min
u

Jiðu;xÞ

s:t: Jiðu;xÞ ¼ Jjðu;xÞ hi 2 I ; 8hj 2 I ð6Þ

if and only if uI ðxÞ satisfies the following optimality

conditions:
�
 JiðuI ðxÞ;xÞXJjðuI ðxÞ;xÞ hi 2 I 8hj 2 Y (max condi-

tion)

�
 uI ðxÞ is a local minimizer of JI ðu;xÞ ¼

maxhi2I Jðu; h;xÞ (local minimum condition)
Note 1. The optimum found solving (6) is an affine
function of x (i.e., uI ðxÞ ¼ KIxþ qI ) as, taking into
account (4), it is a quadratic minimization problem with
linear equality constraints.

Definition 2. We define the active vertices set for a given
state vector x as the set that verifies the optimality
conditions.

Definition 3. Let I be a set of vertices. The critical region
CRI is the region of the state space where set I is the
active vertices set.

For all states inside the critical region of I, the
solution to the min-max problem is an affine expression
of x (see Note 1):

u�ðxÞ ¼ uI ðxÞ ¼ KIxþ qI if x 2 CRI . (7)

Therefore, u�ðxÞ is a piecewise linear function of the state.
To characterize the explicit solution to the min-max
problem, it is necessary to characterize all the critical
regions CRI and their corresponding optimizers uI ðxÞ:
4. Region characterization

In this section, an algorithm for determining the
critical region CRI of a set I of vertices is presented.
The following definitions (Borrelli, 2002) will be used in
the rest of the paper.

Definition 4. Let a polyhedron X 2 Rn be represented by
the linear inequalities Axpb: Let the ith inequality be
aT

i xpbi: The hyperplane defined as aT
i x ¼ bi is called the

ith boundary hyperplane of the polyhedron.

Definition 5. Let a polyhedron X 2 Rn be represented by
the linear inequalities Axpb: Let the ith hyperplane,
aT

i x ¼ bi be denoted by H. If X \ H is ðn � 1Þ-dimen-
sional then F ¼ X \ H is called a facet of the polyhedron.
Definition 6. Two polyhedra are called neighboring
polyhedra if they have a common facet. Two active sets
are called neighboring sets if their critical regions are
neighboring polyhedra.

Note 2. This means that in this paper, only those
regions which have a common boundary of dimension
nx � 1 are considered neighboring regions.

Proposition 7. Consider two neighboring regions CR1;
CR2 with corresponding active sets I1; I2: Let F be their

common facet and H the separating hyperplane, then all

the following statements hold:
(1)
 H is defined as uI1
ðxÞ ¼ uI2

ðxÞ:

(2)
 If hi 2 I1; hj 2 I2 and hjeI1; then H is defined

as the hyperplane corresponding to the inequality

defined as

JiðuI1
ðxÞ;xÞXJjðuI1

ðxÞ; xÞ.
(3)
 If hi 2 I1; hj 2 I2 and hieI2; then H is defined as the

hyperplane corresponding to the inequality defined as

JjðuI2
ðxÞ;xÞXJiðuI2

ðxÞ; xÞ.
Proof. (1) Because of the uniqueness of the solution of
problem (5):

8x 2 F ; uI1
ðxÞ ¼ uI2

ðxÞ ¼ u�ðxÞ.

(2) and (3) Due to Proposition 1,

8x 2 CRI1
; JiðuI1

ðxÞ; xÞXJjðuI1
ðxÞ;xÞ,

8x 2 CRI2
; JjðuI2

ðxÞ;xÞXJiðuI2
ðxÞ;xÞ

so 8x 2 F ;

JiðuI1
ðxÞ;xÞXJjðuI1

ðxÞ;xÞ ¼ JjðuI2
ðxÞ;xÞ

XJiðuI2
ðxÞ; xÞ ¼ JiðuI1

ðxÞ;xÞ: &

The critical region for a given set of vertices I, if it
exists, is defined as a polyhedron on the state space Rnx :
If the neighboring sets are known, it is possible to
characterize the inequalities that define this polyhedron
with Proposition 7. For each neighbor, as I1aI2; a
linear inequality can be defined using the following
proposition.

Proposition 8. Given I, hi 2 I and hjeI ; the inequality

JiðuI ðxÞ;xÞXJjðuI ðxÞ;xÞ is equivalent to aT
j ðIÞxpbjðIÞ;

where ajðIÞ and bjðIÞ can be obtained as

ajðIÞ ¼ �2ðhi � hjÞ
T
ðGT

y GuKI þ GT
y GxÞ,

bjðIÞ ¼ 2ðhi � hjÞ
TGT

y GuqI þ hT
i GT

y Gyhi � hT
j GT

y Gyhj.

This proposition stems directly from (4) and the
definitions of Jiðu; xÞ and uI ðxÞ:
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Note 3. If aTx ¼ b defines the boundary hyperplane
between two regions, aTxpb characterizes one of them
and aTxXb characterizes the other.

With an exhaustive search of all the possible sets it is
assured that the real neighboring sets are explored, and
so the critical region is determined. This exploration is
not efficient as the amount of these sets grows in a
combinatorial explosion and, in practice, it is not
possible to search them all. In this paper, a heuristic
algorithm that obtains a characterization of the critical
region of a given set without having to resort to an
exhaustive search is proposed.

Hypothesis 9. Consider two neighboring regions CR1;
CR2 with corresponding optimal active sets I1; I2: Then

I1 ¼ I2 [ hj or I2 ¼ I1 [ hj ,

where hj is a vertex that belongs either to one set but not
to the other.

The proposed algorithm builds the possible collection
of neighboring sets supposing Hypothesis 9 holds.
Hypothesis 9 states that two neighboring regions have
active vertices sets that only differ in one component.
So, given an active set I, if the hypothesis is satisfied, it
has at most 2N neighboring sets, one for each vertex in I,
and one for each vertex not in I.

This hypothesis is based on the fact that multi-vertex
transitions happen when the boundary between critical
regions is defined by coincident hyperplanes. These
transitions occur only for special structures of the min-
max problem (5) and are very unlikely, moreover, any
small change of the controller parameters will define a
min-max problem which does satisfy the hypothesis. A
similar situation is also encountered in multi-parametric
quadratic programming (see Bemporad et al., 2002).

Algorithm 1. Algorithm to define the critical region CRI

of a set I
(1)
 Build the collection of sets FðIÞ of all possible

neighboring sets under the assumption that Hypothesis

9 holds.

(2)
 For each Ii 2 FðIÞ

� characterize the boundary by Proposition 7.
The algorithm defines 2N inequalities for each region.
The nonredundant inequalities define the polyhedron.
Moreover, each inequality has been obtained as the
frontier between set I and another known set, thus the
neighboring sets of I are also defined. The neighboring
sets are those for which the linear constraints define a
facet of CRI :
5. Characterization of the partition

The explicit solution of the min-max problem could
be obtained exploring all the possible active sets.
However, there is a combinatorial explosion of the
amount of possible sets. Using the previous results, the
explicit piecewise affine solution of a min-max problem
can be obtained using the following algorithm which
does not explore all the possible sets, but only those
which are active in a full-dimensional region of the state
space.

Algorithm 2. Algorithm for constructing the explicit

solution of a min-max problem.
Let Sc be the collection of active set candidates and Se

the collection of explored sets. Then the explicit solution

of MMMPC can be found using the following procedure:
(1)
 Find a valid solution set I0 solving problem (5) for a

given x0 using numerical methods.
(2)
 Sc ¼ I0:

(3)
 Se ¼ ;:

(4)
 Extract a set of vertices I from Sc:

(5)
 Se ¼ Se [ I :

(6)
 Build uI as in Proposition 1.

(7)
 Build CRI as in Algorithm 1.

(8)
 For each facet of CRI

� calculate neighboring set Ia;
� if Ia is not in Sc [ Se then Sc ¼ Sc [ Ia:
(9)
 If Sc is not empty go to step 4 else stop.
This algorithm is based on the ideas for partitioning
the state space presented in Tøndel, Johansen, and
Bemporad (2001),where the state space of a multi-
parametric quadratic programming problem was ex-
plored. The algorithm explores a given set from a list of
candidates. The critical region for that given set is
computed and all of its neighboring sets determined.
The algorithm then adds to the list of candidates those
neighboring sets that have not been previously explored
or are already on the list. This ensures that each set is
only explored once and that all possible sets are
explored given that any full-dimensional region must
have at least a neighboring region. The algorithm
finishes when the list of candidates is empty.
6. Application to a scaled laboratory process

The laboratory process to be controlled is the well
known Feedback PT-326 (Ljung, 1987; Li et al., 1998;
Bandyopadhyay & Patranabis, 2001; Horácek, 2000). In
this equipment, a centrifugal blower draws air from the
atmosphere and forces it through a heater grid inside a
tube. The heater can be controlled to keep the
temperature of the air at the output of the tube at a
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desired value. The air temperature is detected down-
stream of the grid by a bead thermistor. The air stream
velocity can be adjusted by means of an inlet throttle
attached to the blower. In this work the system input is
the voltage applied to the heater and the output the
voltage at the sensor. A schematic diagram of the
physical setup is shown in Fig. 1(a).

A model of the process is needed to apply the
proposed control strategy. First, a physical model
of the temperature response for the system will
be introduced. A diagram of the PT-326 is shown in
Fig. 1(b).

An energy balance yields

Heat stored ¼ Heat in � Heat out. (8)

Replacing the terms of this equation by their thermo-
dynamic equivalents yields:

d

dt
ðrVcpTÞ ¼ P � rcpQT , (9)

where cp is the specific heat of air, Q is the air flow rate,
r is the density, P is the power, V is the volume between
the heater and the thermistor and T is the temperature
above room temperature. Combining terms yields
the first order differential equation for the exhaust
temperature:

dT

dt
¼ _T ¼ �

Q

V
T þ

1

rVcpQ

� �
P. (10)

Solving this equation yields

TðtÞ ¼ ðT0 � Tf Þe
�ððt�t0Þ=tÞ þ Tf . (11)

Note that in order to obtain this model some
simplifying assumptions were made, the effect of air
turbulence, time delay, and other factors have been
neglected. Obtaining a first principle model (that is,
using physical principles) cannot usually be done
reliably except for the simplest processes. Thus, the
usual strategy is to resort to system identification.

For a nominal inlet throttle of 60� the system has a
time constant of 0.6 s and a time delay of 0.18 s. These
parameters are highly dependent on the environment
conditions as well as the setting of the inlet throttle. The
sampling time has been chosen to be 0.04 s. Note that
the sampling time is so small that it is very difficult to
DATA
ACQUISITION

BOARD

H

MEASURED OUTPUT VOLTAGE
(HOT AIR TEMPERATURE)

HEATER INPUT
VOLTAGE

ISA 16-BIT
BUS

(a) (

Fig. 1. A schematic diagram of the feedb
use a numerical solver to obtain the control sequence
even for small values of the horizon.

A discrete linear model of the PT-326 has been
identified using the least squares identification method
(note that this method has been applied to this process
in Ljung (1987, p. 440)). Several models of different
orders have been fitted to the experimental data. The
best model found was

Aðz�1Þyk ¼ Bðz�1Þuk�1�d , (12)

with Aðz�1Þ ¼ 1 � 0:5510z�1 � 0:4072z�2; Bðz�1Þ ¼

0:0090 þ 0:0127z�1 þ 0:0105z�2 and d ¼ 4: Thus the
prediction model will be

DAðz�1ÞyðkÞ ¼ Bðz�1ÞDuðk � 1 � dÞ þ hk. (13)

The upper graphic in Fig. 2 shows the one-step
prediction error in the test set for model (12). It can be
seen that the error is always between �0:3 and 0.3. The
uncertainty bounds have been set according to the error
computed using the predicted output which came from
the prediction model (13) with hk ¼ 0: The errors
computed using this model are shown in the bottom
graphic of Fig. 2. The uncertainty bounds will be set to
�0:05 and 0.05, as 97.25% of the errors in the test set
are within these bounds.
eat In Heat Stored Heat Out

b)

ack PT-326 and the physical setup.
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6.1. Results of the MMMPC

The system model has a pure delay of d ¼ 4 sampling
times. A standard Smith predictor dead time compen-
sator has been used to compute the predicted delayed
output which will be denoted as ŷkþd : This prediction of
ykþd is subsequently used to compute the control
sequence for the nominal system without the time delay.
In this way, ŷkþd is computed as

ŷkþd ¼ ykþdjk þ ðykjk�d � ykÞ, (14)

where ykþdjk is the predicted value of ykþd using the
information (i.e., the process state) available at time k in
an open-loop manner, yk is the process output at time k

and ykjk�d is the predicted process output for time k

using the information available at time k � d: Thus, the
state of the process at time k will be

xk ¼ ½ŷkþd�1 ŷkþd�2 Duk�1 Duk�2 Duk�3�
T.

Reference tracking is needed in the experiments
presented here. The algorithm presented in Section 4
assumes a constant reference equal to zero. However,
the extension to nonzero references is straightforward.
The only modification needed is to augment the state
of the system with reference rk which we con-
sidered constant for the whole prediction horizon (see
Bemporad et al., 2002). The augmented state vector is

zk ¼ ½xT
k rk�

T.

The weight of the output error has been modified in this
experiment with a parameter ap1: The cost function is
then defined as

J ¼
XN

j¼1

ajðykþj � rkþjÞ
2
þ l

XN

j¼1

ðDukþj�1Þ
2.

Using the algorithm of Section 5, the explicit form of the
controller was computed for each tested configuration of
the controller parameters. The explicit form of the
controller (omitted due to lack of space) defined by (7) is
a set of rules as the following:

If

1:501 0:726 78:847 �34:087 �28:186 �16:573

0:023 0:011 1:155 �0:530 �0:426 �0:198

0:020 0:010 1:247 �0:443 �0:400 �0:404

�0:057 �0:029 �3:520 1:232 1:144 1:144

0:057 0:029 3:520 �1:232 �1:144 �1:144

�0:020 �0:010 �1:247 0:443 0:400 0:404

�0:023 �0:011 �1:155 0:530 0:426 0:198

�1:501 �0:726 �78:847 34:087 28:186 16:573

2
66666666666664

3
77777777777775

zkp

4:264

0:232

3:029

3:280

3:280

3:029

0:232

4:264

2
66666666666664

3
77777777777775

(15)

then

Duk ¼ ½�0:005 � 0:002 � 0:273 0:134 0:104 0:034�zk þ 0.

Note that the number of constraints in each rule is not
limited to that of (15), usually being higher.
In the experiments presented in this work the number
of regions that laid in the feasible set of the state space
was always between 3 and 6.

Many experiments were carried out with the PT-326
controlled by the explicit MMMPC controller. Fig. 3(a)
shows a selection of these experiments for different
controller parameters. Fig. 3(b) shows what we consider
a reasonably good tuning ðN ¼ 16; l ¼ 10; a ¼ 0:9Þ:

It can be seen from the control signal plot, that the
control is somewhat aggressive, making more changes to
the voltage applied to the heater than would seem to be
necessary. The explanation for this behavior is that the
control law is obtained using open-loop predictions, that
is, they do not take into account that the control law is
applied in a closed-loop manner. The solution is to use
closed-loop predictions, that is, a closed-loop or feed-
back MMMPC. Examples of this kind of MMMPC can
be found in Lee and Yu (1997); Scokaert and Mayne
(1998); Bemporad, Borrelli, and Morari (2001).

6.2. Results of the MMMPC controller with linear

feedback

The computational burden of feedback MMMPC
strategies is so high that they are too difficult to apply in
real time (when the cost function is based on 1 or 1

norm a piecewise linear description of the controller can
be found in Bemporad et al., 2001; Kerrigan &
Maciejowski, 2004, but this cannot be applied to
quadratic cost functions). Another way of introducing
some feedback into the predictions is to use a linear
feedback law as a pre-control, i.e. the control sequence
will be computed as

Duk ¼ Kzk þ vk, (16)

where vk is the control correction effort, which is
computed with an MMMPC controller. This strategy
allows us to reduce the effect of the uncertainty without
increasing the complexity of the problem (see Lee & Yu,
1997; Bemporad, 1998). Fig. 4 shows an example of the
predicted uncertainty bands for a simple first order
system, with and without a linear feedback.

As in Section 6.1, different settings of the controller
parameters have been tested in many experiments. The
following stabilizing pole placement feedback gain was
used as the inner control:

K ¼ ½�0:0052 � 0:0026 � 0:3036 0:1138 0:1016 0:0882�.

(17)

Fig. 5(a) shows a series of these experiments. It should
be noted that tuning proved to be a major issue here,
with the additional problem of the choice of the inner
feedback gain. Fig. 5(b) shows what we consider to be a
reasonably good tuning ðN ¼ 8; l ¼ 20; a ¼ 1Þ: The
control is smoother than that produced when no
feedback is used in the predictions.
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an MMMPC with a linear feedback controller.
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6.3. Comparisons

To test robustness, the inlet throttle of the PT-326 has
been set at different positions to the nominal one. In this
way the dynamics of the system changes and the
robustness properties of the controller are stressed.
The same series of experiments have been repeated for
an MPC controller and the MMMPC controllers with
the parameters of Figs. 3(b) and 5(b). The output
obtained each time has been plotted in a graphic to see
the overall performance of the controllers.

The MPC controller was tuned to obtain a good
control under nominal conditions, better indeed than
both MMMPC controllers. The parameters used in the
MPC were: N ¼ 16; l ¼ 0:5 and a ¼ 0:75: The output of
the MPC controller is shown in Fig. 6(a). Fig. 6(b)
shows the output with the MMMPC controller. It can
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be seen that the MMMPC controller produces a better
average control when the process dynamics change in a
wide range of model parameters.

Fig. 6(c) shows the output when the MMMPC with
linear feedback controller is used. The output with this
controller shows that its performance is better than the
MMMPC controller. Furthermore, as can be seen in
Fig. 6(d), the control is smoother than that produced in
the MMMPC controller.

It can be seen in all these experiments that the initial
state varies. This is due to the great sensitivity of the
systems dynamics to the room temperature and other
noncontrolled factors.

Although constraints are not explicitly considered in
the controller, the region of the state space where the
controller satisfies a set of linear constraints at the input
and at the output can always be evaluated. Input
constraints can be taken into account with the weight l
on the cost function.
7. Conclusions

An algorithm to obtain the explicit form of the
MMMPC control law for linear unconstrained systems
has been presented. An application to a process with fast
dynamics has also been shown.

The experimental results show that the min-max
strategy produces more robust controllers than the
nominal MPC one, that is, less sensitive to system
dynamics changes. Although the MPC had a better
response with the nominal system, the close loop
performance became much worse when the inlet throttle
was changed.
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A pre-control has been used to improve the MMMPC
control law. This inexpensive strategy, in terms of the
computational burden, proves to be a good compromise
between the more computationally expensive feedback
MMMPC and the more conservative open-loop MMMPC.

The way of implementing MMMPC presented in this
paper broadens the range of processes to which, in
practice, this controller can be applied and shows that
the min max strategy provides good robustness results
for the aerothermal system.
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