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Abstract

Min–max model predictive control (MMMPC) is one of the few control techniques able to cope with modelling errors or

uncertainties in an explicit manner. The implementation of MMMPC suffers a large computational burden due to the numerical

min–max problem that has to be solved at every sampling time. This fact severely limits the range of processes to which this control

structure can be applied. An implementation scheme based on hinging hyperplanes that overcome these problems is presented here.

Experimental results obtained when applying the controller to the heat exchanger of a pilot plant are given.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) is one of the few
control techniques able to cope with modelling errors or
uncertainties in an explicit manner. There are many
ways of considering modelling errors: in some cases the
process dynamics are considered to be described by
equations of known structures and orders with uncer-
tain parameters. In other cases, the frequency response
of the process is considered to be uncertain (although
the process is supposed to be linear). The approach used
here is to consider that uncertainties affect the 1-step
ahead prediction model in a global manner (Camacho &
Bord !ons, 1999). The only consideration made is that the
1-step ahead prediction error of the model is bounded.
No supposition is made with regard to the real structure
and order of equations describing process dynamics.
One of the ways of considering these types of

uncertainties in the MPC context is by optimizing the
objective function for the worst case situation of the
uncertainties. That is, by solving a min–max model
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predictive control (MMMPC) problem. The solution of
a min–max problem requires a substantial computing
time and can only be applied in real time to processes
with slow dynamics. In fact, because of this computa-
tional burden, there are very few applications of
MMMPC to real processes. One of these applications
can be found in (Camacho & Berenguel, 1997), where a
MMMPC is used to control a solar power plant. In Kim
and Kwon (1998) MMMPC is applied to a simulated
complex model.
The application of MMMPC to processes with fast

dynamics cannot be based on numerical methods. Some
techniques have been proposed to overcome these
problems. In Ram!ırez, Arahal, and Camacho (2001) a
neural network based implementation is shown. Neural
networks have proven themselves to be good for
nonlinear function approximation, but there is always
an approximation error. Furthermore, patterns from a
large region of the process output space have to be
computed.
The solution of a MMMPC with 1 or N-norm based

cost function has been shown to be a piecewise affine
function of the state. This fact was deduced because this
problem can be posed as a multiparametric linear
constrained LP problem (Bemporad, Borrelli, & Morari,
2003), and the solution of a multiparametric linear
constrained LP problem is a piecewise linear function of
the parameters (i.e. the process state). In Ram!ırez and
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Camacho (2001) it is shown, by other means, that
unconstrained MMMPC with a quadratic criterion, that
cannot be posed as a linear constrained multiparametric
LP problem, is a piecewise affine function of the process
state. However, the number of regions needed to
implement the controller is excessive for realistic control
horizons. Efficient ways of solving the min–max
problem have recently been developed (Ram!ırez, Alamo,
& Camacho, 2002). These strategies involve the solution
in real time of a reduced min–max problem whose
solution is the same as that of the original problem. This
is a good choice for processes with dynamics with time
constants measured in tens of seconds or minutes, but it
is not appropriate for faster dynamics.
The solution proposed in this paper is to approximate

the controller by a set of hinging hyperplanes. An
approximation made with hyperplanes would be a better
option than the neural network approach since the
controller has been shown to be piecewise affine
(Ram!ırez & Camacho, 2001) and such an approximation
could be made practically error free. Although neural
networks exist based on piecewise linear sigmoidal
nodes (Hush & Horne, 1998), the more general hinging
hyperplanes (HH) technique is used here. The HH
technique (Breiman, 1993) is a nonlinear function
approximation method that uses hinge functions, i.e.
hyperplanes joined together. With this technique,
piecewise affine functions can be described using a basis
function expansion. Hinging hyperplanes have mainly
been used for modelling dynamical systems, as in
(Chikkula, Lee, & Ogunnaike, 1998) and, in a more
general context, piecewise linear models have been used
as early as in Sontag (1981).
This paper presents a method to implement MMMPC

with additive uncertainties and quadratic cost function
for linear processes using closed formulae of the control
law. These formulae are obtained using the HH
technique over a set of patterns computed off-line by
solving the min–max problem numerically.
Another difficulty arises when the process has a large

deadtime. In this case, the effect of past values of the
control signal have to be taken into account in the min–
max optimization. This paper shows how to overcome
this problem without losing the robust properties of
MMMPC and with only a moderate gain of conserva-
tiveness in the control law.
A heat exchanger has been chosen to illustrate the

implementation approach described in this paper.
Experimental results given in the paper attest the
suitability of this strategy.
The paper is organized as follows: Section 2 presents

the basic MMMPC with bounded global uncertainties
algorithm. Section 3 is devoted to the MMMPC with
bounded global uncertainties algorithm for processes
with long delays. The HH technique for nonlinear
function approximation and the implementation strat-
egy are described in Section 4. Finally, Section 5 shows
the application of the MMMPC to a heat exchanger and
Section 6 presents the conclusions.
2. MMMPC with bounded global uncertainties

The objective of MPC control is to compute
the future control sequence uk; ukþ1;y; ukþN�1 in
such a way that the optimal j-step ahead predictions
ykþjjk are driven close to the setpoint sequence
wk;wkþ1;y;wkþN�1 for the prediction horizon. The
way in which the system will approach the desired
trajectories will be indicated by a cost function J which
depends on the present and future control signals and
uncertainties.
When bounded uncertainties are explicitly considered,

it would seem that a more robust control would be
obtained if the controller tried to minimize the objective
function J for the worst situation. That is, by solving the
following min–max problem:

min
u

max
yAY

Jðy; uÞ; ð1Þ

where y represents the sequence of future uncertainties,
Y ¼ fy=

%
ypyp%yg the hypercube in which the future

uncertainty sequence is contained and u is the future
control sequence vector.
MMMPC is formulated either in state space (Lee &

Yu, 1997) or by using input–output description. The
latter is used here, since processes with large deadtime
are easy to describe using transfer function representa-
tions.
The most usual form of Jðy; uÞ is a quadratic criterion:

Jðy; uÞ ¼
XN2

j¼N1

ðykþjjk � wkþjÞ
2 þ l

XNu

j¼1

ðDukþj�1Þ
2; ð2Þ

where D ¼ 1� q�1; N1 and N2 define the beginning and
end of the cost horizon, Nu is the control horizon and
ykþjjk is the worst-case output prediction made at time k

for time k þ j: If the process has a time delay of d

sampling times, it is usual to set N1 ¼ d þ 1 because the
output will not be affected by the values of u until
instant d þ 1: Other types of objective functions have
been used in the literature. In Campo and Morari
(1987) a N�N norm is used while in Allwright (1994)
a 1�N norm is proposed. Furthermore, a sort of
adaptive worst-case design using min–max problems can
be found in Veres and Norton (1993).
When a global uncertainties approach is used, the way

of modelling the uncertainties is to assume that all
modelling errors are globalized in a vector of variables
that is added to the nominal prediction model. In the
case of transfer function models it is common to use a
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linear prediction model like

*Aðq�1Þyk ¼ q�dBðq�1ÞDuk�1 þ yk; ykAY ð3Þ

with *Aðq�1Þ ¼ DAðq�1Þ; D ¼ 1� q�1; d is the process
delay, yk the uncertainty at time k; yk and uk being the
output and control sequence of the plant. Note that in
this prediction model the error concept present in
CARIMA models (commonly used in GPC) is extended
to incorporate the effect of modelling uncertainties and
disturbances (Camacho & Bord !ons, 1999).
The prediction model (3) will be referred to as an

integrated uncertainties prediction model. Using such a
model, the prediction equation can be written as
(Camacho & Bord !ons, 1999)

y ¼ Guu þ Gyyþ Fxx; ð4Þ

where y ¼ ½ykþN1 jk; ykþN1þ1jk;y; ykþN2 jk

T; u ¼ ½Duk;

Dukþ1;y;DukþNu�1

T; y is the uncertainty vector, i.e.

y ¼ ½ykþN1
; ykþ2;y; ykþN2


T and x represents the process
state in terms of the current and past outputs and past
inputs, that is

x ¼ ½ yk; yk�1;y; yk�na
;Duk�1;Duk�d�2;y;Duk�d�nb




with na and nb the degree of Aðq�1Þ and Bðq�1Þ;
respectively. Matrices Gu and Gy are lower triangular
matrices that can be computed using the shifted terms of
the step response of the process and the impulse
response of the system *Aðq�1Þyk ¼ yk; respectively. Note
that these matrices can also be computed using other
methods such as the diophantine equation procedure
used in the well known GPC controller (Clarke,
Mohtadi, & Tuffs, 1987; Camacho & Bord !ons, 1999).
Furthermore, the term Fxx represents the free response
of the system that can also be computed as in the GPC
controller (Camacho & Bord !ons, 1999).
The prediction equation (4) is an affine function of y:

This implies that for l > 0; the cost function Jðy; uÞ is
positively definite and convex on Y: Thus, the max-
imizer of Jðy; uÞ will be reached at one of the vertices of
Y (Camacho & Bord !ons, 1999). However, all vertices of
Y must be explored to find the maximum for each u

considered in the outer minimization problem. As the
number of vertices of Y exponentially depends on the
prediction horizon, the computational burden grows
exponentially with such a horizon.
The use of an integrated uncertainties prediction

model allows step disturbances to be rejected but
produces a continuous growth of the uncertainty band
(Camacho & Bord !ons, 1999), due to the integrated
nature of the uncertainties. A possible solution to this
problem is to consider bounds not only on the value of
the uncertainty yk but also on its integrated value. This
is accomplished by taking into account the following
constraints in the inner maximization problem:

%
Yp

XR

j¼1

ykþjp %Y; R ¼ N1;y;N2: ð5Þ

Thus, taking into account the prediction Eq. (4) the
MMMPC controller can be expressed as:

kMMMPCðx;wÞ

¼ arg min
u

max
yAY

ðGuu þ Gyyþ Fxx � wÞT

� ðGuu þ Gyyþ Fxx � wÞ þ uTlIu;

s:t:
%
Yp

XR

j¼1

ykþjp %Y; R ¼ N1;y;N2: ð6Þ

Solving this problem in real time can be very difficult as
its computational burden grows exponentially with the
prediction horizon. The idea proposed in this paper is to
approximate the function kMMMPCðx;wÞ by hinging
hyperplanes. The strategy is to compute the control
law for a set of points ðxi;wiÞ in the process operating
region and then obtain the approximator using the
hinging hyperplanes technique. This approximation
technique will be described in detail in Section 4.
3. Worst case prediction of delayed output MMMPC

The process state has to be fed to the controller in
order to obtain the control signal. In an input–output
description the state of a process is expressed in terms of
past values of the control signal which affect the current
output as well as the current and past values of the
output signal. Things become more complicated if the
process exhibits a pure delay d: In this case, the
information needed to compute the future evolution of
the output over the prediction horizon includes past
values of the control signal that affect the output up to
the deadtime, i.e. up to k þ d: For processes with a large
deadtime (i.e. above a half of the time constant), too
many past values of the control signal have to be
considered when the usual sampling ratios are used. As
an example, consider a first-order process with a time
delay equal to the time constant sampled with a
sampling ratio of 10 sampling times per time constant.
In this case, to predict the future evolution of the
process output the 10 previous values of the control
signal would be needed; that is, the state vector would
have a much higher dimension (11 instead of 1). As was
pointed out in Section 1, an approximator of the control
law is used in this paper. In processes with a large
deadtime the number of inputs to this approximator
would be great, and therefore, the task of building the
approximator would be very difficult, falling into what
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is often called the curse of dimensionality. Thus, a means
of avoiding this has to be developed.
The strategy used here to apply the MMMPC to

processes with large deadtime splits the problem into
two stages. First, it is necessary to compute an
estimation of process output after deadtime. In this
work, an open-loop prediction of the process output
after the deadtime is computed using the nominal
prediction model, so that #ykþd jk is obtained.
The second step is the control law calculation for the

process after the deadtime (i.e. solving a min–max
problem in which the prediction horizon is d þ 1;y;N2)
taking into account the uncertainty in the estimation of
the process output up to the dead time. That is, ykþd is
affected by the uncertainties ykþi for i ¼ 1;y; d: Thus,
the uncertainty affects the predicted outputs for k þ d

and those previous values needed to compute the
predictions from N1 ¼ d þ 1 to N2: This is an additional
source of uncertainty that does not appear when no
deadtime is present, as the current and past values of the
process output are known. The effect of this additional
uncertainty has to be taken into account in the min–max
problem. In this work bounds on the value of the
process output up to deadtime are computed using all
possible values of the uncertainty along the deadtime,
i.e. yd ¼ ½ykþ1;y; ykþd 
T:

%y0 ¼ arg max
ydAYd

ðykþd � #ykþdÞ;

%
y0 ¼ arg min

ydAYd

ðykþd � #ykþdÞ; ð7Þ

where #ykþd ¼ ½ #ykþd ; #ykþd�1;y; #ykþd�na

T is the vector of

nominal values of the process output up to the deadtime
and ykþd ¼ ½ykþd ; ykþd�1;y; ykþd�na


T the vector of
uncertain output values. These bounds are used to
introduce the additional source of uncertainty in the
min–max problem to be solved:

min
u

max
y;y0

Jðu; y; y0Þ; ð8Þ

where
%
y0py0p %y0 is the additional uncertainty that

affects the output prediction up to the deadtime. In this
way, the prediction equation needs to be changed to
incorporate this additional source of uncertainty.

y ¼ Guu þ Gyyþ Fxx þ Fyy
0; ð9Þ

where Fy is a matrix built with the columns of Fx

associated to yk;y; yk�na
:

The prediction equation is an affine function of y0; as
well as y: This implies that the maximum of J for y0 will
be reached at one of the vertices of the hypercube Y0 ¼
f8y0 : y0py0p %y0g: Taking into account the prediction
%

equation (9), the controller can be expressed as

kMMMPCðx;wÞ

¼ arg min
u

max
yAY;y0AY0

ðGuu þ Gyyþ Fxx þ Fyy
0 � wÞT

� ðGuu þ Gyyþ Fxx þ Fyy
0 � wÞ þ uTlIu

s:t:
%
Yp

XR

j¼1

ykþjp %Y R ¼ N1;y;N2: ð10Þ

The application of this controller to a heat exchanger
will be shown in Section 5.
This strategy is more conservative than a traditional

MMMPC in the sense that only the maximum and
minimum values for ykþd are considered as a starting
point to the mm optimization. To illustrate this point,
consider a process described by a first order model (i.e.
the state is fully characterized by ½yk; yk�1
 when a
prediction model like (3) is used) with a deadtime of
d ¼ 6: In a traditional MMMPC there are 32 different
possible values for ykþd�1 and 64 for ykþd ; which will be
used as the starting point for the rest of the optimiza-
tion. With the strategy presented here only two possible
values for each of them are considered, which yields 4
combinations of the most extreme values of ykþd�1 and
ykþd : In addition, simulation and experimental tests
show that two of the combinations (f

%
y0kþd�1; %y

0
kþdg and

f%y0kþd�1; %
y0kþdg) are unrealistic. Finally, two sources of

uncertainty are considered in the prediction of the
ykþdþ1 and ykþdþ2; i.e. the global uncertainty yk and the
bounds for ykþd�1 and ykþd :
To avoid this excess of conservatism only the

combinations f
%
y0kþd�1;

%
y0kþdg and f%y0kþd�1; %y

0
kþdg are

considered in the optimization which has the added
benefit of reducing the amount of vertices to be
considered to compute the max part of the min–max
problem. For higher order models only the combina-
tions f

%
y0kþd�na

;y;
%
y0kþdg and f%y0kþd�na

;y; %y0kþdg should
be used. This has proved to be a realistic assumption in
the tests carried out.
The amount of time required to compute the control

sequence can be further reduced by considering that for
linear prediction models the superposition principle
holds, hence the part of the output prediction due to
the uncertainty yk can be separated from the part due to
control actions. The bound values

%
y0 and %y0 are

independent of the values of the output and also the
past and future control actions. These considerations
imply that the bounds for ykþd have to be computed
only once.
4. Hinging hyperplanes implementation

As mentioned in Section 2 the implementation
strategy proposed in this paper is to approximate the
control law, that is kMMMPCðx;wÞ; by hinging hyper-
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planes. Such an approximation is computed in an off-
line manner. Once the HH approximation is computed,
the control law can be obtained in real time without
many computational requirements. To fit the approx-
imator, the control law has to be computed off-line for a
significant number of points in the process state and
setpoint space. These points in ðx;wÞ and their
corresponding control action form patterns that are
fed to the approximation algorithm. Then the HH
algorithm, which will be described later in this section,
produces an approximator of the control law that is
used in real time to obtain the control signal to be
applied to the process. Different strategies can be
followed in order to provide setpoint tracking with the
computed approximator. The setpoint can be considered
as an extra input to the approximator, therefore a single
approximator can be computed for a range of setpoint
values. This is very close to considering the setpoint as
part of an augmented state vector as in (Bemporad,
Morari, Dua, & Pistikopoulos, 2002). Adding such an
extra input to the approximator involves more complex-
ity in the task of generating the necessary patterns to fit
the approximator. Although computed off-line, such a
task can be time consuming. Moreover, the task of
computing the approximator itself can be more difficult.
Taking into account that many processes only work
with fixed values of the setpoint it makes sense to
compute a separate approximator for every setpoint
value. Thus, less patterns are necessary to obtain the
approximator and the approximation error is reduced.
A different procedure can be used when no constraints
over the predicted output are considered in the outer
minimization problem. In this case, a single approx-
imator can be computed for a single setpoint value.
When operating the plant, the deviation of the actual
setpoint from the training setpoint is added to the inputs
of the approximator related to process output values.
This approach has the drawback, however, of having to
fit the approximator over a large process state space,
thus needing more patterns and, possibly, more hinges.
In the following section, the HH approximation
technique is discussed.
The hinging hyperplane method is a nonlinear function

approximation technique introduced by Breiman (1993),
which is described as a basis of function expansion

f ðxÞ ¼
XK

i¼1

hiðji;xÞ; ð11Þ

where hi are called the hinge functions. In this work,
f ðxÞ is the control law (10) and x is the process state. A
hinge function consists of two hyperplanes joined
together. These two hyperplanes are given by

hþ ¼ jþx; h� ¼ j�x; ð12Þ

where x ¼ ½1;x1;y;xm
: The hyperplanes are joined at
ðjþ � j�Þx ¼ 0: The hinge is defined by jþ � j� or its
multiples. The hinge function is given by

h ¼ maxðhþ; h�Þ or h ¼ minðhþ; h�Þ: ð13Þ

The correct form is that which gives the smallest
approximation error when the parameters, jþ and j�;
are estimated. Fig. 1 illustrates the elements of the HH.
The HH technique has advantages over other nonlinear
approximation methods such as neural networks, e.g.
the existence of an upper bound of the approximation
error (Breiman, 1993). Also, the function parameters are
estimated using a fast and efficient least squares
algorithm. Furthermore, the approximation by piece-
wise affine functions allows for the application of
existing analysis techniques.
In the HH approach there are two key elements: the

hinge finding algorithm (HFA) and the HH algorithm. In
Breiman (1993) and Pucar, Predrag, and Sj .oberg (1998),
and Docampo and Baldomir (1997) different types of
algorithms are presented. In this work, the original
algorithms presented in Breiman (1993) are used. Short
descriptions of these algorithms are given in the
following section.

4.1. Hinge finding algorithm

The initial data are N regression pairs fyi; xig: The
algorithm takes the following steps:
(1)
 Choose an initial partition of fyi;xig into two sets
named Sþ and S� with approximately half the data
of fyi; xig in each set.
(2)
 Compute jþ as the parameter vector of the hyper-
plane with the best fit in the least-squares sense.
Also, compute j� from S� in the same way.
(3)
 Update Sþ and S� according to Sþ ¼ fxi : jxi > 0g
and S� ¼ fxi : jxip0g:
(4)
 Repeat from step 2, until the convergence criterion
is satisfied. In this work the decrease in the squared
sum of errors is used.
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4.2. The HH algorithm

More than one hinge is usually necessary to approx-
imate a function. The HH algorithm allows as many
hinges to be used as necessary to approximate a
function. Here, the refitting method (Breiman, 1993) is
used:
(1)
 For K ¼ 1; find h1ðxÞ with the HFA.

(2)
 For K > 1:
(a)
 Run the HFA over the residuals f ðxÞ �PK�1
k¼1 hkðxÞ to find hK ðxÞ: Add hK ðxÞ to the set

of computed hinges.

(b)
 Refit all the computed hinges according to the

following scheme: P

(i)
 refit h1ðxÞ using f ðxÞ � K

k¼2 hkðxÞ

(ii)
 for jpK refit hjðxÞ using f ðxÞ �PK

k¼1;kaj hkðxÞ

(c)
 Repeat from step (b), until the convergence

criterion is satisfied. In this case until f ðxÞ �PK
k¼1 hkðxÞ ceases to significantly decrease.
Fig. 2. Photograph (showing the tank, heat exchanger and valve V8)

and diagram of the Pilot Plant.
5. Application to a heat exchanger

The controller presented in Sections 2 and 3 has been
applied to the heat exchanger of a pilot plant. A
photograph and a diagram of the pilot plant showing its
main elements as well as the localization of the various
instruments are given in Fig. 2.
The main elements are:

* Feed circuit. The pilot plant has two input pipes, a
cold water one (whose temperature is regulated by a
cooling plant) and a hot water one (at about 70�C)
with nominal flow and pressure conditions of
10 l=min and 2 bar for the cold water and 5 l=min
and 1 bar for the hot. The temperatures and the flows
of the inputs are measured by thermocouples and
orifice plates respectively, with controlled pneumatic
valves for regulating the input flows.

* Tank. This has a height of 1 m and an interior
diameter of 20 cm; it is thermally insulated and has
an approximate volume of 31 l: It can work both
when pressurized (up to a limit of 4 bar) or at
atmospheric pressure, depending on the position of
the vent valve. In its interior there is a 15 kW electric
resistor for heating, as well as an overflow pipe, an
output pipe and a pipe for recirculating the water
through the exchanger.

* Recirculation circuit. The hot water in the tank can be
cooled by the cold water entering through the cooling
circuit. This circuit is composed of a centrifugal
pump that circulates the hot water from the bottom
of the tank through a tube bundle heat exchanger
returning at a lower temperature at the top.
The pilot plant control elements are connected to a
PMC10 unit operated under the ORSI CUBE control
software. The PMC10 architecture allows the imple-
mentation of control algorithms programmed in a PC
using the ITER II language. However, the execution
time is restricted to 100 ms and taking into account the
fact that PMC10 CPU is an old Intel 8086 it is clear that
the min–max problem cannot be solved numerically in
the PMC10. Therefore, it is a suitable scenario for the
HH implementation described in this paper.
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A first-order linear model for the transfer function
from V8 to TT4 has been obtained by step response. The
initial conditions were V8 ¼ 50%; TT4 ¼ 31:73�C; TT5
controlled by a PID around 50�C; a constant tank level
of 76.8% and the setpoint for the cooling plant was set
in order to keep TT2 around 23:3�C: A step in the
aperture of valve V8 from 50% to 70% yields the
following model:

GðsÞ ¼
0:135

6s þ 1
e�6s: ð14Þ

The MMMPC controllers with bounded additive
uncertainty require the determination of uncertainty
bounds. These bounds were obtained computing the one
step ahead prediction error of the model from extensive
experimental data. In the application presented in this
paper the model obtained from (14) with a sampling
time of 1 s was used (thus, d ¼ 6). Many experiments
have been carried out to find the uncertainty bounds.
The error was always bounded by �0:2�C and 0:2�C:
Thus the uncertainty bounds can be set to these values
(that is, %y ¼ 0:2;

%
y ¼ �0:2). Furthermore, the bounds for

the integrated uncertainty can be selected according to
the shape of the uncertainty bands. When the prediction
horizon corresponds to a time constant of the process
dynamics it may be better to leave constraints (5) out of
the optimization procedure. However, if greater hor-
izons are used, constraints (5) have to be taken into
account, as the continuous growth of the uncertainty
band may affect the control adversely. The reason for
this is that the final part of the prediction horizon will be
affected by a very unrealistic predicted uncertainty that,
in addition, will have a great weight in the cost function
value. In the experiments presented here, the integrated
uncertainty bounds used were

%
Y ¼ �0:6; and %Y ¼ 0:6;

as this value proved itself to produce smooth control.
The remaining parameter controllers have been chosen
to be Nu ¼ 3; N1 ¼ 7; N2 ¼ 12; l ¼ 3:0: The control law
is defined as the solution of problem (10). The control
hardware available does not allow the real time solution
of the min–max problem, thus the HH implementation
will be used.
The experiments carried out do not consider output

constraints, thus a single controller can easily be
computed for setpoint tracking using the algorithms
from Section 4. A training set has been generated,
having 1000 patterns obtained from a temperature range
of 31:5�C to 37:5�C: Each pattern represent the first
control move (i.e. Duk) of the optimal sequence of future
control moves for a given process state and a set point
value of 35�C: The HH algorithm is applied to the set
until the squared sum of errors ceases to have any
significant decrease. In the training set two hinges lead
to a squared sum of errors less than 10�4: Such a small
amount of error means that only three hyperplanes exist
in this region of the process state space, each one for a
different type of solution to the min–max problem
(Ram!ırez & Camacho, 2001). Theoretically the error
should be zero, but the numerical method used in the
MATLAB function fmincon sometimes fails to find the
solution accurately.

Duk ¼ f ðxÞ ¼ h1ðj1;xÞ þ h2ðj2;xÞ;

¼min x
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2
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3
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2
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>;
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�305:9432

�16:0135

24:7503

2
64

3
75; x

�9:9174

4:8917

�4:6074

2
64

3
75

8><
>:

9>=
>;
;

ð15Þ



ARTICLE IN PRESS

0 200 400 600 800 1000
33

34

35

36

37

38

39

40

41

42

seconds

T
T

4 
°C

0 200 400 600 800 1000
40

50

60

70

80

V
8 

%

0 200 400 600 800 1000
50

55

60

65

0 200 400 600 800 1000
23

24

25

26

27

seconds

T
T

2 
°C

T
T

5 
°C

Fig. 4. Disturbance rejection experiment. Top to bottom: setpoint

and heat exchanger output temperature, valve V8 aperture, tank

temperature TT5 and cold water temperature TT2.

1The number of operations needed to solve the inner maximization

problem increases exponentially with the prediction horizons, as the

cost function must be evaluated at all the vertexes of the polytope that

contain the feasible uncertainty sequences.

D.R. Ram!ırez et al. / Control Engineering Practice 12 (2004) 1197–12051204
where x is the row vector

x ¼ ½1 yk�1 þ ð35� wref Þ yk�1 þ ð35� wref Þ


and wref is the setpoint. This expression was tested with
a test set of 100 patterns obtained from a temperature
range of 29241�C and the squared sum of errors was
again less than 10�4: This illustrates that, as expected,
the HH description obtained is a closed formula of the
control law in this region of the process state space and
not an approximation.
The saving of computational time using the HH

implementation is very large. In the controller used in
this paper, solving the min–max problem numerically
takes about 174958 floating point operations (as
counted by Matlab) and 1:7 s to obtain the solution in
a 450 Mhz Pentium III computer. The HH implementa-
tion takes only 21 floating point operations and the
computation time is negligible. Thus, more than 99.98%
of the needed computations are moved offline. This
saving is more evident when higher horizons are used:1

for an MMMPC with N2 � N1 ¼ 10; a numerically
solved solution takes about 7:1� 106 floating point
operations (as counted by Matlab) and 52 s to obtain
the solution in a 450 Mhz Pentium III computer. These
figures can be even worse in some cases as the
conditioning of the numerical problem depends on the
process state. On the other hand, the HH implementa-
tion always takes a number of floating point operations
measured in tens not in millions, yielding a negligible
computation time.
The resulting controller was applied to the heat

exchanger and some of the experimental results are
depicted in Figs. 3 and 4. Fig. 3 shows a setpoint
tracking experiment. It is noteworthy that the setpoint is
much higher than the operating point considered for
modelling the heat exchanger dynamics. The noisy
output is due to the variations in the tank temperature
(TT5) which is regulated by a local PI. The first setpoint
change raises the V8 aperture which in turn lowers the
tank temperature. This causes the V8 to be opened even
more because a greater flow through the heat exchanger
is required to reach the setpoint. As TT5 returns to its
nominal value, V8 closes to keep the output near the
setpoint.
Disturbance rejection is illustrated in Fig. 4. In this

case, the manual valve of cold water was closed for 12
and 11 s; causing the temperature to greatly deviate
from the setpoint. The controller reacts by closing the
recirculation valve V8 to lower the temperature by
having less hot water to be cooled. Re-opening the valve
is another disturbance and the controller has to open
the V8 valve again to bring the temperature TT4 to the
desired value. Moreover, before the second disturbance
a change in the setpoint of TT5 is brought about,
forcing it to reach a much higher value than that existing
when the model was identified. This is a slow variation
of process dynamics. The controller is able to keep the
output close to the setpoint as soon as the tank
temperature reaches the new operating point. Mean-
while, as is expected, a small offset is observed because
the uncertainty grows like a ramp and the integrated
uncertainties are formulated to reject step disturbances.
Finally, it is noteworthy that the disturbance rejection
capability is similar to the previous case when the cold
water valve was closed, even when the process dynamics
have changed from the nominal values.
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6. Conclusions

The paper shows how hinging hyperplanes can be
used to implement Min-Max MPC. Most of the
computation required is done in an off-line manner
and the technique allows the implementation of
MMMPC in real time.
The proposed MMMPC controller has been applied

to control the outlet temperature of a heat exchanger in
a pilot plant. Problems related to process delay have
been tackled taking into account real time implementa-
tion requirements.
Some open questions remain to be addressed. Further

improvements can be accomplished if the future values
of reference are included as inputs to the HH function.
This would allow a time-varying (over the prediction
horizon) reference at the cost of a higher dimension
function.
The inclusion of constraints on the process outputs

and inputs is also a task that has to be tackled.
Moreover, the HH implementation may also be suitable
for other control schemes in which the control law is
piecewise affine or linear, such as constrained MPC.
Finally, although the process controlled here is SISO,
this strategy can be used on multivariable processes
provided that enough patterns are generated to cover
the higher dimensional domain.
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